Each pill contains: Angelica sinensis 13 mg • Artemisia argui 13 mg • Astragalus membranaceus 9 mg • Cinnamomum cassia 2 mg • Cyperus rotundus 26 mg • Dipsacus Asperoides 7 mg • Evodia Rutaecarpa 9 mg • Ligusticum Chuanxiong 9 mg • Paeonia lactiflora 9 mg • Rehmannia glutinosa 4 mg. Other Ingredients: Honey.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
In 2004, Canada began regulating natural medicines as a category of products separate from foods or drugs. These products are officially recognized as "Natural Health Products." These products include vitamins, minerals, herbal preparations, homeopathic products, probiotics, fatty acids, amino acids, and other naturally derived supplements.
In order to be marketed in Canada, natural health products must be licensed. In order to be licensed in Canada, manufacturers must submit applications to Health Canada including information about uses, formulation, dosing, safety, and efficacy.
Products can be licensed based on several criteria. Some products are licensed based on historical or traditional uses. For example, if an herbal product has a history of traditional use, then that product may be acceptable for licensure. In this case, no reliable scientific evidence is required for approval.
For products with non-traditional uses, some level of scientific evidence may be required to support claimed uses. However, a high level of evidence is not necessarily required. Acceptable sources of evidence include at least one well-designed, randomized, controlled trial; well-designed, non-randomized trials; cohort and case control studies; or expert opinion reports.
Finished products licensed by Health Canada must be manufactured according to Good Manufacturing Practices (GMPs) as outlined by Health Canada.
Below is general information about the effectiveness of the known ingredients contained in the product Ai Fu Nuan Gong Wan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
There is insufficient reliable information available about the effectiveness of adrue.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of evodia.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Ai Fu Nuan Gong Wan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
There is insufficient reliable information available about the safety of adrue.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
There is insufficient reliable information available about the safety of Artemisia herba-alba.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Doses of astragalus up to 60 grams daily for up to 4 months have been used without reported adverse effects (32920,33038,95909,114804). ...when used intravenously. Infusion of doses up to 80 grams daily for up to 4 months under the supervision of a medical professional have been used with apparent safety (32811,32812,32828,95909,114688,114804). There is insufficient reliable information available about the safety of astragalus when used topically.
PREGNANCY AND LACTATION:
There is insufficient reliable information in humans.
However, astragaloside, a constituent of astragalus, has maternal and fetal toxic effects in animals (32881). Avoid using.
LIKELY SAFE ...when consumed in amounts commonly found in foods. Cassia cinnamon has Generally Recognized As Safe (GRAS) status in the US for use as a spice or flavoring agent (4912) ...when used orally and appropriately, short-term. Cassia cinnamon up to 2 grams daily has been used safely for up to 3 months (17011,21914). Cassia cinnamon 3-6 grams daily has been used safely for up to 6 weeks (11347,14344). Cassia cinnamon extract corresponding to 3 grams daily of cassia cinnamon powder has also been used safely for up to 4 months (21916).
POSSIBLY SAFE ...when used topically, short-term. Cassia cinnamon oil 5% cream applied topically to the legs has been used safely in one clinical trial (59580).
POSSIBLY UNSAFE ...when used orally in high doses, long-term. Some cassia cinnamon products contain high levels of coumarin. Coumarin can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg daily can result in hepatotoxicity that resolves when coumarin use is discontinued (15302). In most cases, ingestion of cassia cinnamon will not provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Cassia cinnamon 1 gram daily has been used safely in adolescents 13-18 years of age for up to 3 months (89648).
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of cassia cinnamon when used in medicinal amounts during pregnancy and breast-feeding. Stay on the safe side and stick to food amounts.
POSSIBLY SAFE ...when used orally and appropriately. Dong quai has been used with apparent safety in a dose of 4.5 grams daily for 24 weeks, or in combination with other ingredients in doses of up to 150 mg daily for up to 6 months (19552,35797). ...when used intravenously as a 25% solution, in a dose of 200-250 mL daily for up to 20 days (48438,48442,48443,48483).
POSSIBLY UNSAFE ...when used orally in large amounts, long-term. Theoretically, long-term use of large amounts of dong quai could be harmful. Dong quai contains several constituents such as bergapten, safrole, and isosafrole that are considered carcinogenic (7162). There is insufficient reliable information available about the safety of dong quai when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Dong quai has uterine stimulant and relaxant effects (8142); theoretically, it could adversely affect pregnancy. Observational research has found that intake of An-Tai-Yin, an herbal combination product containing dong quai and parsley, during the first trimester is associated with an increased risk of congenital malformations of the musculoskeletal system, connective tissue, and eyes (15129).
LACTATION:
Insufficient reliable information available; avoid use.
There is insufficient reliable information available about the safety of evodia when used orally. In animal studies, evodia has induced QT interval prolongation and Torsade de pointes (97035). It is not clear what dose, if any, is required to produce a similar effect in humans.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Active constituents in evodia have uterine stimulant activity in animal models. Evodia might also decrease litter size in animal models (15229). Theoretically, taking evodia during pregnancy might adversely affect pregnancy outcome.
LACTATION:
Insufficient reliable information available; avoid using.
There is insufficient reliable information available about the safety of mugwort when used orally or topically.
PREGNANCY: LIKELY UNSAFE
when used orally.
Mugwort is said to be an abortifacient and a menstrual and uterine stimulant (2,12).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short term. Total glucosides of peony has been used with apparent safety in doses of up to 1800 mg daily for up to 12 months (92786,97949,97950,98466,100992,110432,112861,112862). Peony root extract has been used with apparent safety at a dose of 2250 mg daily for up to 3 months (97216). There is insufficient reliable information available about the safety of peony when used orally, topically, or rectally, long-term.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Total glucosides of peony has been used with apparent safety in children 1.5-4 years of age at doses up to 180 mg/kg daily or 1.2 grams daily for up to 12 months (92785). Peony root extract 40 mg/kg daily has also been used with apparent safety in children 1-14 years of age for 4 weeks (106851).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Preliminary research suggests that peony can cause uterine contractions (13400). However, other preliminary research suggests a combination of peony and angelica with or without motherwort, banksias rose, and ligustica, might be safe (11015,48433). Until more is known, avoid use.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short term. Rehmannia root extract 4 grams daily or rehmannia leaf extract 800 mg daily has been used with apparent safety for 8 weeks in clinical studies (93660,93662).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Sweet Annie 300 mg daily has been used with apparent safety in studies lasting up to 9 months (11055,94520,94521). Sweet Annie tea, prepared from dried leaves and twigs and consumed in divided doses daily, has been used with apparent safety for up to 7 days (11055,11058). While rare, there is some concern that Sweet Annie might cause liver damage (16895,103254,103255).
POSSIBLY SAFE ...when used sublingually and appropriately, short-term. Sweet Annie up to 2400 biological units daily as sublingual immunotherapy has been used with apparent safety in studies lasting up to 16 months (106441,112392,112393,112394). There is insufficient reliable information available about the safety of Sweet Annie when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in the amounts commonly found in foods. Wormwood extracts are included in bitters, vermouth, absinthe, and other food or drink products (12814,15007). Wormwood products that are thujone-free have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912); however, products containing thujone might not be safe. Wormwood is described in the pharmacopoeia of various European countries. After being banned for a period of time, it is now allowed in European Union countries; however, beverages must not contain thujone in concentrations greater than 35 mg/kg (12814,15007,86551).
POSSIBLY SAFE ...when wormwood products not containing thujone are used orally in medicinal amounts, short-term (93468,93469). A specific product
POSSIBLY UNSAFE ...when wormwood products containing thujone are used orally. Thujone is a neurotoxin that is present in wormwood oil (12617). Seizures, rhabdomyolysis, and acute kidney failure can occur when as little as 10 mL of wormwood oil is ingested (662,12817).
PREGNANCY:
LIKELY UNSAFE .
.when used orally in amounts greater than those found in foods (662,12817). Some wormwood products contain thujone, a neurotoxin. Theoretically, thujone also has potential uterine and menstrual stimulant effects (12617). There is insufficient reliable information available about the safety of wormwood when used topically during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Ai Fu Nuan Gong Wan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Animal research suggests that taking adrue in combination with sodium thiopental increases total sleep time three-fold compared to the effects of sodium thiopental alone (57157). Theoretically, concomitant use of adrue and barbiturates might increase the risk of drowsiness and motor reflex depression. Some barbiturates include amobarbital (Amytal), butabarbital (Butisol), mephobarbital (Mebaral), pentobarbital (Nembutal), phenobarbital (Luminal), secobarbital (Seconal), and others.
|
Animal research suggests that taking adrue in combination with diazepam increases total sleep time four-fold compared to the effects of diazepam alone (57157). Theoretically, concomitant use adrue and benzodiazepines might increase the risk of drowsiness and motor reflex depression. Some benzodiazepines include clonazepam (Klonopin), diazepam (Valium), lorazepam (Ativan), and others.
|
Animal research suggests that taking adrue in combination with sodium thiopental or diazepam increases total sleep time up to four-fold compared to the effects of the drugs alone (57157). Theoretically, concomitant use of adrue with CNS depressants might cause additive sedation. Some CNS depressants include benzodiazepines, such as diazepam (Valium), alprazolam (Xanax), triazolam (Halcion), and estazolam (ProSom); barbiturates, such as mephobarbital (Mebaral), phenobarbital (Luminal Sodium), and pentobarbital sodium (Nembutal); zolpidem (Ambien); and others.
|
Theoretically, concomitant use with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking astragalus with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, astragalus might interfere with cyclophosphamide therapy.
Details
|
Theoretically, astragalus might interfere with immunosuppressive therapy.
Details
|
Theoretically, astragalus might increase levels and adverse effects of lithium.
Details
Animal research suggests that astragalus has diuretic properties (15103). Theoretically, due to this diuretic effect, astragalus might reduce excretion and increase levels of lithium.
|
Theoretically, cassia cinnamon may have additive effects with antidiabetes drugs.
Details
|
Theoretically, large doses of cassia cinnamon might cause additive effects when used with hepatotoxic drugs.
Details
There is some concern that ingesting large amounts of cassia cinnamon for an extended duration might cause hepatotoxicity in some people. Cassia cinnamon contains coumarin, which can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin use is discontinued (15302,97249). Lower amounts might also cause liver problems in sensitive people, such as those with liver disease or those taking potentially hepatotoxic agents.
|
Theoretically, dong quai may increase the risk of bleeding when used with anticoagulant or antiplatelet drugs; however, research is conflicting.
Details
Animal studies suggest that dong quai has antithrombin activity and inhibits platelet aggregation due to its coumarin components (6048,10057,96137). Additionally, some case reports in humans suggest that dong quai can increase the anticoagulant effects of warfarin (3526,6048,23310,48439). However, clinical research in healthy adults shows that taking 1 gram of dong quai root daily for 3 weeks does not significantly inhibit platelet aggregation or cause bleeding (96137). Until more is known, use dong quai with caution in patients taking antiplatelet/anticoagulant drugs.
|
Theoretically, dong quai may reduce the effects of estrogens.
Details
|
Dong quai may increase the risk of bleeding when used with warfarin.
Details
Case reports suggest that concomitant use of dong quai with warfarin can increase the anticoagulant effects of warfarin and increase the risk of bleeding (3526,6048,23310,48439). In one case, after 4 weeks of taking dong quai 565 mg once or twice daily, the international normalized ratio (INR) increased to 4.9. The INR normalized 4 weeks after discontinuation of dong quai (3526).
|
Theoretically, taking evodia with antiplatelet or anticoagulant drugs might increase the risk of bruising and bleeding.
Details
|
Theoretically, evodia might decrease the levels and clinical effects of caffeine.
Details
In animal models, evodia extract decreases caffeine levels by up to 71%. Evodia extract induces hepatic cytochrome P450 1A2 (CYP1A2) enzyme, of which caffeine is a substrate (15241).
|
Theoretically, evodia might decrease the levels and clinical effects of chlorzoxazone.
Details
Animal research shows that administration of rutaecarpine, a constituent of evodia, with chlorzoxazone reduces the area under the curve (AUC) of chlorzoxazone by 84% and increases its clearance by 646%. This interaction is likely due to induction of cytochrome P450 2E1 (CYP2E1) by rutaecarpine (107913).
|
Theoretically, drugs that inhibit CYP1A2 might increase the levels and clinical effects of evodia.
Details
The evodia constituent rutaecarpine is metabolized by CYP1A2 (15253).
|
Evodia might reduce the levels and clinical effects of CYP1A2 substrates through induction of CYP1A2.
Details
|
Theoretically, evodia might reduce the levels and clinical effects of CYP2E1 substrates through induction of CYP2E1.
Details
Animal research suggests that rutaecarpine, a constituent of evodia, induces CYP2E1 activity. In rats, rutaecarpine increases markers of CYP2E1 activity, and administration of rutaecarpine with chlorzoxazone, a known CYP2E1 substrate, reduces the area under the curve (AUC) of chlorzoxazone by 84% and increases its clearance by 646% (107913).
|
Theoretically, taking CYP3A4 inducers might decrease the levels and clinical effects of evodia.
Details
Animal research shows that concomitant administration of dexamethasone, a known CYP3A4 inducer, with the alkaloid constituents of evodia significantly reduces the area under the curve (AUC), maximum concentration (Cmax), and half-life of these constituents (107911).
|
Theoretically, CYP3A4 inhibitors might increase the levels and clinical effects of evodia.
Details
Animal research shows that concomitant administration of ketoconazole, a known CYP3A4 inhibitor, with the alkaloid constituents of evodia significantly increases the area under the curve (AUC), maximum concentration (Cmax), and half-life of these constituents (107911).
|
Theoretically, evodia might increase the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that evodia extract inhibits hepatic CYP3A4 (15236). This effect has not been reported in humans.
|
Theoretically, evodia might have an additive effect with drugs that prolong the QT interval, potentially increasing the risk of ventricular arrhythmias.
Details
Evodia has demonstrated dose-dependent activity as a proarrhythmic agent in animal and in vitro studies. Evodia infusion in animals extends the action duration potential and induces prolongation of the QT interval and Torsade de pointes (97035).
|
Theoretically, evodia might decrease the levels and clinical effects of theophylline.
Details
The evodia constituent rutaecarpine decreases theophylline levels and half-life by about 70% in animal models (15227). This constituent appears to induce hepatic cytochrome P450 1A2 (CYP1A2) enzyme activity, of which theophylline is a substrate (15227,15230). Rutaecarpine is the primary active constituent of evodia; however, it is not known if the whole crude extract of evodia also causes this interaction.
|
Theoretically, combining peony with anticoagulant or antiplatelet drugs might increase the risk of bleeding.
Details
In vitro research suggests that peony might have antiplatelet, anticoagulant, and antithrombotic effects (92787).
|
Theoretically, peony might increase the levels and clinical effects of clozapine.
Details
In vitro research shows that peony suppresses the metabolism of clozapine via weak-to-moderate inhibitory effects on cytochromes P450 (CYP) 1A2 and CYP3A4 (92790). This effect has not been reported in humans.
|
Theoretically, peony might interfere with contraceptive drugs due to competition for estrogen receptors.
Details
In vitro and animal research shows that peony extract has estrogenic activity (100990). Concomitant use might also increase the risk for estrogen-related adverse effects.
|
Theoretically, use of peony may increase the levels and clinical effects of drugs metabolized by CYP1A2.
Details
In vitro research shows that peony suppresses the metabolism of clozapine via weak-to-moderate inhibitory effects on CYP1A2 and CYP3A4 (92790). This effect has not been reported in humans.
|
Theoretically, use of peony may increase the levels and clinical effects of drugs metabolized by CYP3A4.
Details
In vitro research shows that peony suppresses the metabolism of clozapine via weak-to-moderate inhibitory effects on CYP1A2 and CYP3A4 (92790). This effect has not been reported in humans.
|
Theoretically, concomitant use of large amounts of peony might interfere with hormone replacement therapy and/or increase the risk for estrogen-related adverse effects.
Details
In vitro and animal research shows that peony extract has estrogenic activity (100990). Theoretically, peony might compete for estrogen receptors and/or cause additive estrogenic effects.
|
Theoretically, peony might reduce the levels and clinical effects of phenytoin.
Details
Animal research shows that taking peony root reduces levels of phenytoin (8657). Some researchers suggest that peony root might affect cytochrome P450 (CYP) 2C9, which metabolizes phenytoin. However, preliminary research in humans shows that peony root does not alter levels of losartan (Cozaar), which is also metabolized by CYP2C9 (11480).
|
In vitro, purple nut sedge dose-dependently inhibits acetylcholinesterase (AChE) (27563). Theoretically, concurrent use of anticholinergic drugs and purple nut sedge might decrease the effectiveness of purple nut sedge or the anticholinergic agent.
Details
Some anticholinergic drugs include atropine, benztropine (Cogentin), biperiden (Akineton), procyclidine (Kemadrin), and trihexyphenidyl (Artane).
|
In vitro, purple nut sedge inhibits platelet aggregation (27551). Theoretically, purple nut sedge might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
Details
Some anticoagulant or antiplatelet drugs include aspirin, clopidogrel (Plavix), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, ticlopidine (Ticlid), warfarin (Coumadin), and others.
|
Evidence from animal research suggests that purple nut sedge can reduce blood glucose levels (27554). Theoretically, purple nut sedge might have additive effects with antidiabetes drugs and increase the risk of hypoglycemia. Monitor blood glucose levels closely. Dose adjustments might be necessary.
Details
Some antidiabetes drugs include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
In vitro, purple nut sedge dose-dependently inhibits acetylcholinesterase (AChE) (27563). Theoretically, concurrent use of purple nut sedge with cholinergic drugs might have additive effects and increase the risk of cholinergic side effects.
Details
Cholinergic drugs include bethanechol (Urecholine), donepezil (Aricept), echothiophate (Phospholine Iodide), edrophonium (Enlon, Reversol, Tensilon), neostigmine (Prostigmin), physostigmine (Antilirium), pyridostigmine (Mestinon, Regonol), succinylcholine (Anectine, Quelicin), and tacrine (Cognex).
|
Theoretically, rehmannia might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, rehmannia might increase the risk of hypotension when taken with antihypertensive drugs.
Details
Animal research shows that rehmannia may have hypotensive effects. Laboratory research shows that formulations of dried and processed rehmannia root inhibit angiotensin-converting enzyme (ACE) (104272).
|
Sweet Annie may alter plasma levels and clinical effects of drugs metabolized by CYP2B6.
Details
In vitro research shows that the Sweet Annie constituent artemisinin induces CYP2B6, possibly increasing CYP2B6 activity by 1.6-fold (92501,109316). However, Sweet Annie extract seems to inhibit the activity of CYP2B6 in vitro, suggesting that other constituents of Sweet Annie play a role in its effects on the overall activity of this enzyme (109316). More information is needed to determine whether taking Sweet Annie extract affects the metabolism of CYP2B6 substrates.
|
Sweet Annie may alter plasma levels and clinical effects of drugs metabolized by CYP3A4.
Details
In vitro research shows that the Sweet Annie constituent artemisinin induces CYP3A4, possibly increasing CYP3A4 activity by 1.9-fold (92501). However, Sweet Annie extract seems to inhibit the activity of CYP3A4 in vitro, suggesting that other constituents of Sweet Annie play a role in its effects on the overall activity of this enzyme (109316). More information is needed to determine whether taking Sweet Annie extract affects the metabolism of CYP3A4 substrates.
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
Details
|
Theoretically, taking wormwood might interfere with the effects of anticonvulsant drugs.
Details
Thujone, a constituent of wormwood, has convulsant effects (12816).
|
Below is general information about the adverse effects of the known ingredients contained in the product Ai Fu Nuan Gong Wan. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...There is currently a limited amount of information on the adverse effects of Artemisia herba-alba.
A thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Bradycardia, hypotension.
Cardiovascular ...Orally, Artemisia herba-alba has been reported to cause a reduction in blood pressure and pulse rate in one small clinical trial (15075,15077).
Renal ...In one case report, a 59-year-old male with a history of diabetes mellitus developed acute renal failure with proteinuria and hyperkalemia after drinking a tea containing aqueous Artemisia herba-alba extract, 2 cups daily for 2 days. Recovery occurred after several sessions of dialysis (96567).
General
...Orally and intravenously, astragalus root seems to be well tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: A case report raises concerns about liver and kidney cysts with astragalus use.
Cardiovascular ...Orally, astragalus has reportedly been associated with lacunar angina in one clinical trial. However, this may not have been caused by astragalus (17355). In addition, rapid intravenous administration of astragalus has resulted in temporary palpitations (32812).
Dermatologic ...Intravenously, astragalus may cause rash, eczema, and pruritus (33034).
Gastrointestinal ...Orally, astragalus has reportedly been associated with enterocolitis and nausea in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Genitourinary ...Orally, astragalus has reportedly been associated with vulvitis in one clinical trial. However, this effect may not have been caused by astragalus (17355).
Hepatic ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
Musculoskeletal ...Orally, astragalus has been associated with reports of musculoskeletal pain in one clinical trial. However, these effects may not have been caused by astragalus (114803).
Neurologic/CNS ...Intravenously, administration of astragalus has been associated with temporary dizziness in patients with heart failure in clinical research (32812,114804). Orally, astragalus has also been associated with dizziness in one clinical study. However, these effects may not have been caused by astragalus (114803).
Pulmonary/Respiratory ...Orally, astragalus has reportedly been associated with rhinosinusitis and pharyngitis in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Renal ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
General
...Orally, cassia cinnamon appears to be well-tolerated.
Significant side effects have not been reported in most patients.
Most Common Adverse Effects:
Topically: Burning mouth, stomatitis.
Dermatologic
...In one clinical trial, a rash was reported in one patient taking cassia cinnamon 1 gram daily for 90 days (17011).
In one case, a 58-year-old female with a documented allergy to topically applied cinnamic alcohol presented with eyelid dermatitis, which was found to be a manifestation of systemic contact dermatitis to cinnamon in the diet. Symptoms improved in two days and completely cleared five days after discontinuing the addition of cinnamon to food products (95599). In other case reports, two adults presented with allergic contact cheilitis following the ingestion of chai tea with cinnamon and yogurt with cinnamon. Cinnamon components were confirmed as the causative allergic agents with patch tests, and both cases of allergic contact cheilitis completely resolved upon cessation of the cinnamon-containing products (113516,113515).
Topically, allergic skin reactions and stomatitis from toothpaste flavored with cassia cinnamon have been reported (11915,11920). Intraoral allergic reactions with symptoms of tenderness and burning sensations of the oral mucosa have also been reported in patients using breath fresheners, toothpaste, mouthwash, candy, or chewing gum containing cinnamon, cinnamic aldehyde or cinnamic alcohol as flavoring agents. Glossodynia, or burning mouth syndrome, has also been reported in a 62-year-old female who ate apples dipped in cinnamon nightly (95598), and allergic contact dermatitis has been reported in a teenage female using a homemade cinnamon sugar face scrub (95596).
Endocrine ...In one clinical trial, a hypoglycemic seizure was reported in one patient taking cassia cinnamon 1 gram daily for 3 months. The event occurred one day after enrolling in the study (89648). It is unclear if cassia cinnamon caused this event.
Hepatic ...There is some concern about the safety of ingesting large amounts of cassia cinnamon for extended durations due to its coumarin content. Coumarin can cause hepatotoxicity in animal models (15299). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin is discontinued (15302). In clinical trials, taking cassia cinnamon 360 mg to 12 grams daily for 3 months did not significantly increase levels of aspartate transaminase (AST) or alanine transaminase (ALT) (21918,96280,108259). However, in one case report, acute hepatitis with elevated AST and ALT occurred in a 73-year-old female who started taking a cinnamon supplement (dose unknown) one week prior to admission. The cinnamon supplement was added on to high-dose rosuvastatin, which may have led to additive adverse hepatic effects. After discontinuing both products, liver function returned to normal, and the patient was able to restart rosuvastati without further complications (97249). In most cases, ingestion of cassia cinnamon won't provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease or taking potentially hepatotoxic agents, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
Immunologic ...An unspecified allergic reaction was reported in one patient taking cassia cinnamon 1 gram daily for 3 months (89648).
General
...Orally, dong quai is generally well-tolerated.
Most Common Adverse Effects:
Orally: Burping and flatulence.
Intravenously: Headache.
Cardiovascular ...Orally, dong quai might cause hypertension; according to one case report, a parent and breastfed infant experienced hypertension (195/85 mmHg and 115/69 mmHg, respectively) after the parent consumed a soup containing dong quai root (48428).
Dermatologic ...Dong quai contains psoralens that may cause photosensitivity and photodermatitis (10054,10057,48461).
Endocrine ...In a case report, a male developed gynecomastia after ingesting dong quai tablets (48504).
Gastrointestinal ...Orally, burping and gas may occur with dong quai (738).
Hematologic ...In one case report, a 55-year-old female with protein S deficiency and systemic lupus erythematosus (SLE) had temporary vision loss in the left eye from hemiretinal vein thrombosis three days after taking a phytoestrogen preparation containing dong quai 100 mg, black cohosh 250 mg, wild Mexican yam 276 mg, and red clover 250 mg (13155). It is unclear if dong quai contributed to this event.
Neurologic/CNS ...Dong quai given orally or by injection may be associated with headache (738,48438).
Oncologic ...Dong quai contains constituents that are carcinogenic; however, whether these constituents are present in concentrations large enough to cause cancer with long-term or high-dose use is unknown (7162).
Pulmonary/Respiratory ...A pharmacist experienced allergic asthma and rhinitis after occupational exposure to dong quai and other herbs (48435).
General ...There is no reliable evidence regarding the safety of evodia from clinical trials. In animal studies, evodia has induced QT prolongation and Torsade de pointes (97035).
Cardiovascular ...In animal studies, evodia acts as a proarrhythmic agent with a dose-dependent effect. Evodia infusion has resulted in QT prolongation and Torsade de pointes (97035). It is not clear what dose of evodia, if any, is required to produce a similar effect in humans.
General
...Orally, adverse effects to mugwort seem to be rare; however, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
All ROAs: Allergic reactions.
Immunologic ...Allergy to mugwort pollen has been reported when taken orally or inhaled. Symptoms have included asthma, rhinitis, conjunctivitis, rash, and anaphylaxis (567,3717,31341,35623,57474,63909,63915,63917,92852,92853)(101049,101050,101051,101052).
Psychiatric ...Orally, mania has been reported in a 49-year-old male following the intake of 1 liter of an infusion thought to contain mugwort. The presence of thujone in the patient's serum and urine was confirmed, and thujone poisoning was considered to be the cause of these symptoms. Although thujone levels are normally low in mugwort, concentrations can be variable. It was postulated that the mugwort infusion contained an unusually high amount of thujone. It was also considered to be possible that the metabolism of thujone was decreased in this particular patient or that the poisoning was related to the chronic intake of small amounts. However, a sample of the plant was not analyzed, and adulteration or contamination by a related species cannot be ruled out (101053).
General
...Orally, peony seems to be well tolerated when used alone and as part of Chinese herbal formulas.
Most Common Adverse Effects:
Orally: Abdominal distension, anorexia, diarrhea, gastrointestinal discomfort, nausea.
Topically: Dermatitis.
Dermatologic ...Topically, peony has been reported to cause contact dermatitis (13555).
Endocrine ...Orally, a specific traditional Chinese medicine preparation called DDT has been reported to lower follicle-stimulating hormone (FSH) levels and increase estradiol levels. It is not known if this effect is due to peony or the other ingredients (48404). Another specific traditional Chinese medicine preparation, Toki-shakuyaku-san, has been reported to increase plasma progesterone levels in some patients. It is not known if this effect is due to peony or the other ingredients (15294).
Gastrointestinal ...Orally, peony and total glucosides of peony (TGP) have been reported to cause gastrointestinal discomfort, including abdominal distension, anorexia, diarrhea, and nausea, in some patients (13538,92785,97949,98466,100992). In one clinical study, diarrhea was reported in 5% of patients taking TGP 600 mg three times daily for 24 weeks versus 1% of patients taking placebo (100992).
Hematologic ...Orally, there is one case report of easy gum bleeding, epistaxis, and skin bruising with an international normalized ratio (INR) above 6 in a 61-year-old male who was previously stable on warfarin therapy. This patient had switched from one brand of quilinggao, a popular Chinese herbal product, to another brand 5 days prior. This product contained Fritillaria spp. (beimu), Paeonia rubra, Chinese peony (chishao), Lonicera japonica (jinyinhua), and Poncirus trifoliata (jishi). The patient's INR decreased to 1.9 after temporary withdrawal of warfarin therapy. Upon re-initiation of quilinggao, his INR increased to 5.2. It is not known if the increased INR is due to peony or the other ingredients (68343).
General ...There is currently a limited amount of information available about the adverse effects of purple nut sedge. Orally, purple nut sedge tuber seems to be generally well tolerated. In clinical research, purple nut sedge tuber 450 mg taken orally daily as a part of a combination product for 8 weeks did not cause adverse effects (89900). Topically, purple nut sedge essential oil seems to be well-tolerated, except for a complaint of bad odor (99457).
General ...Orally, rehmannia seems to be well tolerated.
General
...Orally, Sweet Annie is generally well-tolerated.
Most Common Adverse Effects:
Orally: Nausea and vomiting.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity.
Gastrointestinal ...Orally, Sweet Annie might cause gastrointestinal upset including nausea and vomiting in some patients (11058,112393).
Hepatic
...Orally, Sweet Annie might cause hepatic adverse effects (16895,103254,103255).
In one case, a 52-year-old patient developed hepatitis after taking the Sweet Annie constituent artemisinin 200 mg three times daily for 10 days. The patient developed abdominal pain and dark urine and was found to have elevated liver enzymes consistent with hepatitis. Symptoms resolved within 2 weeks of discontinuing use. Although it is possible this supplement caused liver disease in this patient, it is not certain. In clinical trials evaluating artemisinin, elevated liver enzymes have only been reported in around 0.9% of patients. However, the dose of artemisinin in this case was substantially higher than a typical dose (16895). A case of severe acute cholestatic hepatitis has also been reported in a 51-year-old male who drank Sweet Annie tea daily, prepared using 1.25 grams of Sweet Annie powder, for malaria prophylaxis during a 4-week trip to Ethiopia. Three weeks after his return, he presented with malaise, abdominal discomfort, jaundice, elevated liver enzymes, and markers of cholestasis. The patient was treated with corticosteroids and ursodeoxycholic acid and ultimately recovered (103255).
A series of cases linking the use of a supercritical carbon dioxide extract of Sweet Annie to hepatoxicity has also been reported. Of the 29 reports of adverse hepatic reactions to this extract, 19 patients noted symptoms within 12 weeks of starting the extract, 16 patients experienced jaundice, and 9 patients required hospitalization. Other common symptoms of hepatotoxicity included abdominal pain, vomiting, nausea, fever, headache, anorexia, malaise, fatigue, and lethargy. All but one case involved doses below or up to the extract's recommended dose of 300 mg daily. Upon discontinuation, symptoms resolved completely or were improved in nearly all cases (103254).
Immunologic ...One case of a mild allergic reaction to Sweet Annie tea has been reported. The reaction was characterized by a rash and cough that resolved quickly and did not require treatment (11059). When low doses are taken sublingually by individuals allergic to Sweet Annie, numbness of the tongue and throat itching have been reported (109315,112392,112393,112394).
General
...Wormwood contains thujone, a neurotoxin.
When products containing thujone are used orally in medicinal amounts, wormwood may be unsafe.
Most Common Adverse Effects:
Orally: The oil from wormwood leaves can cause diffuse muscle aches, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: The oil from wormwood leaves can cause acute kidney toxicity, rhabdomyolysis, and seizures.
Dermatologic ...Topically, a single case report describes a sensitivity or first degree chemical burn reaction, with facial pain and erythema, after a 50-year-old adult applied a homemade poultice containing wormwood to the face for an unreported length of time (93466).
Gastrointestinal ...Orally, the oil from wormwood leaves can cause nausea and vomiting (662). Use of a home-prepared wormwood extract has been associated with vomiting and severe diarrhea in an infant (93467).
Hematologic ...Orally, use of a home-prepared wormwood extract has been associated with severe metabolic acidosis in an infant (93467).
Immunologic ...Theoretically, wormwood might cause an allergic reaction in people sensitive to the Asteraceae/Compositae family (12815). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Musculoskeletal ...Orally, the oil from wormwood leaves can cause diffuse muscle aches and rhabdomyolysis (662).
Neurologic/CNS ...Orally, the oil from wormwood leaves can cause seizures (662).
Renal ...Orally, the oil from wormwood leaves can cause acute kidney toxicity and acute kidney failure (662).
Other ...Chronic ingestion of absinthe, an alcoholic beverage that contains wormwood extract, has been linked to absinthism. Absinthism was first described in the 1800s when absinthe was at its peak levels of consumption. It has been characterized by addiction, gastrointestinal adverse effects, insomnia, auditory and visual hallucinations, tremors, paralysis, epilepsy, and brain damage. There is also increased risk of psychiatric disease and suicide (662,12814,15008). Increasing thujone concentrations of absinthe increases anxiety and decreases attention in healthy individuals (86541). A case of bradyarrhythmias associated with absinthe intoxication has also been reported (86543). However, there is speculation that some of the symptoms of absinthism originally described might be attributed to adulteration with metals or toxic plants such as calamus and tansy, rather than the ingredients usually used in absinthe drinks (15007). Some researchers also suggest that absinthism is not a unique condition and is indistinguishable from alcohol use disorder. In fact, some evidence suggests that the thujone concentrations in the absinthe formulations from the 1800s were too low to cause significant thujone-related toxicities (15008,15009).