purified Water • Glyceryl Stearate • Laureth-23 • Isopropyl Palmitate • Propylene Glycol • Stearic Acid • Cetyl Alcohol • Carthamus Tinctorius Seed Oil (safflower) • Soya Sterol • Stearyl Alcohol • Dimethicone • Imidazolidinyl Urea • Citric Acid • SODIUM HYDROXIDE • Methylparaben • Soluble Collagen • Carbomer • N(6)furfuryladenine • Panthenol • Propylparaben • Triethanolamine • Ascorbic Acid • hydrolyzed elastin • Aloe Barbadensis leaf juice.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Kinerase Intensive Eye Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
Alpha hydroxy acids represent a group of natural chemicals that are used alone or in combination. See specific monographs for effectiveness information.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Kinerase Intensive Eye Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when aloe gel is used topically and appropriately. Aloe gel-containing formulations have been safely applied in clinical trials (101,11982,12096,12098,12159,12160,12163,12164,17418)(90123,90124,90127,90128,90129,90131,97320,98816,103305). When included in topical cosmetics, the Cosmetic Ingredient Review Expert Panel concluded that aloe-derived anthraquinone levels should not exceed 50 ppm (90122).
POSSIBLY SAFE ...when aloe gel is used orally and appropriately, short-term. Aloe gel has been safely used in a dose of 15 mL daily for up to 42 days or 100 mL of a 50% solution twice daily for up to 4 weeks (11984,12164). Also, a specific aloe gel complex (Aloe QDM complex, Univera Inc.) has been safely used at a dose of approximately 600 mg daily for up to 8 weeks (90121). ...when aloe extract is used orally and appropriately, short-term. Aloe extract has been used with apparent safety in a dose of 500 mg daily for one month (101579). Also, an aloe extract enriched in aloe sterols has been used with apparent safety in a dose of 500 mg daily for 12 weeks (101577).
POSSIBLY UNSAFE ...when aloe latex is used orally. There is some evidence that anthraquinones in aloe latex are carcinogenic or promote tumor growth, although data are conflicting (6138,16387,16388,91596,91597). In 2002, the US FDA banned the use of aloe latex in laxative products due to the lack of safety data (8229). ...when aloe whole-leaf extract is used orally. Aloe whole-leaf extract that has not been filtered over charcoal still contains anthraquinones. This type of aloe whole-leaf extract is referred to as being "nondecolorized". The International Agency for Research on Cancer has classified this type of aloe whole-leaf extract as a possible human carcinogen (91598,91908). Although filtering aloe whole-leaf extract over charcoal removes the anthraquinones, some animal research suggests that this filtered extract, which is referred to as being "decolorized", may still cause gene mutations (91598). This suggests that constituents besides anthraquinones may be responsible for the carcinogenicity of aloe whole-leaf extract. It should be noted that commercial products that contain aloe whole-leaf extract may be labeled as containing "whole leaf Aloe vera juice" or "aloe juice" (91908).
LIKELY UNSAFE ...when aloe latex is used orally in high doses. Ingesting aloe latex 1 gram daily for several days can cause nephritis, acute kidney failure, and death (8,8961).
CHILDREN: POSSIBLY SAFE
when aloe gel is used topically and appropriately.
Aloe gel-containing formulations have been safely applied in clinical trials (90124,90131).
CHILDREN: POSSIBLY UNSAFE
when aloe latex and aloe whole leaf extracts are used orally in children.
Children younger than 12 years may experience abdominal pain, cramps, and diarrhea (4).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Anthraquinones present in aloe latex and aloe whole leaf extracts have irritant, cathartic, and possible mutagenic effects (4,16387,16388,90122). There are also anecdotal reports and evidence from animal research that anthraquinones or aloe whole leaf extracts might induce abortion and stimulate menstruation; avoid using (4,8,19,90122).
LACTATION: POSSIBLY UNSAFE
when aloe preparations are used orally.
Cathartic and mutagenic anthraquinones present in aloe latex and aloe whole leaf extracts might pass into milk; avoid using (4,19).
Some alpha hydroxy acids are used topically, while others are used orally, intravaginally, or by inhalation. See specific monographs for safety information.
PREGNANCY AND LACTATION:
See specific monographs for safety information.
LIKELY SAFE ...when used orally and appropriately. The pantothenic acid derivative calcium pantothenate has a generally recognized as safe (GRAS) status for use in food products (111258). While a tolerable upper intake level (UL) has not been established, pantothenic has been used in doses of 10-20 grams daily with apparent safety (15,6243,111258) ...when applied topically and appropriately, short-term. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and its derivatives are safe for use in cosmetic products in concentrations up to 5.3% (111258). Gels or ointments containing a derivative of pantothenic acid, dexpanthenol, at concentrations of up to 5%, have been used safely for up to 30 days (67802,67806,67817).
POSSIBLY SAFE ...when applied intranasally and appropriately, short-term. A dexpanthenol nasal spray has been used with apparent safety up to four times daily for 4 weeks (67826). ...when applied in the eyes appropriately, short-term. Dexpanthenol 5% eyedrops have been used with apparent safety for up to 28 days (67783). ...when injected intramuscularly and appropriately, short-term. Intramuscular injections of dexpanthenol 500 mg daily for up to 5 days or 250 mg weekly for up to 6 weeks have been used with apparent safety (67822,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately (15,6243).
Calcium pantothenate is generally recognized as safe (GRAS) when used as a food additive and in infant formula (111258). However, a tolerable upper intake level (UL) has not been established (15,6243). ...when applied topically and appropriately (67795,105190,111262). Infant products containing pantothenic acid and its derivatives have been used safely in concentrations of up to 5% for infant shampoos and 2.5% for infant lotions and oils. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and derivatives are safe for use in topical infant products. (111258).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during pregnancy is 6 mg (3094).
LACTATION: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during lactation is 7 mg (3094).
LIKELY SAFE ...when safflower oil is used orally as part of the diet (6,13146,72238).
POSSIBLY SAFE ...when safflower oil is used topically for up to 8 weeks (95938). ...when safflower oil is administered intravenously in recommended doses by a health care professional. A specific safflower oil emulsion (Liposyn) 10% to 20% has been used intravenously for up to 2 weeks (72300,72301). ...when safflower yellow, a component of safflower flower, is administered intravenously and appropriately. Safflower yellow has been used with apparent safety in doses up to 150 mg daily for up to 5 weeks (94038,94041,102381).
CHILDREN: POSSIBLY SAFE
when safflower oil is administered intravenously in recommended doses by a healthcare professional.
A specific safflower oil emulsion (Liposyn) 20% has been used intravenously in infants and children for up to 2 weeks (72284,72295). ...when safflower oil is used orally in medicinal amounts. Safflower oil 2.5 mL daily has been taken safely for 8 weeks (94042). There is insufficient reliable information available about the safety of safflower flower in children.
PREGNANCY: LIKELY SAFE
when safflower oil is used orally as part of the diet (6,13146,72238).
PREGNANCY: POSSIBLY SAFE
when safflower oil is administered intravenously in recommended doses by a healthcare professional (20529).
PREGNANCY: LIKELY UNSAFE
when safflower flower is used due to its abortifacient, menstrual stimulant, and uterine stimulant effects (11,12).
LACTATION: LIKELY SAFE
when safflower oil is used orally as part of the diet (6,13146,72238).
There is insufficient reliable information available about the safety of safflower flower during lactation; avoid using.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product Kinerase Intensive Eye Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, aloe gel might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
In vitro research shows that aloe gel can inhibit platelet aggregation. This inhibition was greater than that seen with celecoxib, but less than that seen with aspirin (105501).
|
Aloe might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, aloe might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that aloe extract induces CYP1A2 enzymes (111404).
|
Theoretically, aloe latex might increase the risk of adverse effects when taken with cardiac glycosides.
Details
Overuse of aloe latex can increase the risk of adverse effects from cardiac glycoside drugs, such as digoxin, due to potassium depletion. Overuse of aloe, along with cardiac glycoside drugs, can increase the risk of toxicity (19).
|
Theoretically, aloe latex might increase the risk of hypokalemia when taken with diuretic drugs.
Details
Overuse of aloe latex might compound diuretic-induced potassium loss, increasing the risk of hypokalemia (19).
|
Theoretically, aloe latex might increase the risk for fluid and electrolyte loss when taken with stimulant laxatives.
Details
|
Theoretically, aloe latex might increase the risk of bleeding when taken with warfarin.
Details
Aloe latex has stimulant laxative effects. In some people aloe latex can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Advise patients who take warfarin not to take excessive amounts of aloe vera.
|
High doses of safflower oil might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
Small clinical studies show that taking safflower oil, approximately 55 grams daily for 2-3 weeks, decreases platelet aggregation (72241,72303). However, taking lower doses of safflower oil, such as 5 grams daily for 4 weeks, does not seem to affect platelet function (66267). In one case report, a 74-year-old male stabilized on warfarin developed urinary tract bleeding and an elevated INR after taking a safflower extract 20 grams daily for 14 days (95939).
|
Theoretically, safflower oil might alter the effects of antidiabetes drugs.
Details
Some clinical research shows that taking safflower oil 10 grams daily for 3 weeks can increase fasting blood glucose in patients with type 2 diabetes (13146). However, clinical research in patients with metabolic syndrome with or without impaired glucose tolerance shows that taking safflower oil 8 grams daily for 12 weeks reduces fasting glucose levels by around 8 mg/dL (108889). Some clinical research also shows that taking safflower oil 8 grams daily for 16 weeks does not affect fasting glucose levels in patients with type 2 diabetes (94039).
|
Theoretically, safflower oil might increase the risk of bleeding when taken with warfarin.
Details
In one case report, a 74-year-old male stabilized on warfarin developed urinary tract bleeding and an elevated INR after taking a safflower extract 20 grams daily for 14 days (95939).
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product Kinerase Intensive Eye Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and topically, aloe products are generally well tolerated when used in typical doses.
However, oral aloe latex is associated with a greater risk of adverse effects, especially when used in high doses or long-term.
Most Common Adverse Effects:
Orally: Aloe latex may cause abdominal pain, cramps, and diarrhea.
Topically: Burning, erythema, and itching. Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Aloe latex is associated with serious adverse effects when taken in high doses or long-term. Cases of acute hepatitis due to a hypersensitivity reaction to aloe leaf extract has been reported.
Dermatologic ...Topically, aloe gel has occasionally been associated with burning (12164,19741,30697,30706), itching (12164,19741,30697), eczema (90122), erythema (19748,30706,90123), contact dermatitis (12163,12164,30695,30736,30737,30738,30740), popular eruption (30732), and urticaria (30712). Also, a case of generalized nummular and popular dermatitis attributed to hypersensitivity has been reported for a 47-year-old male who used aloe leaf gel, both topically and orally, for 4 years (30740).
Endocrine ...A case of severe hypokalemia has been reported for a male breast cancer patient who was undergoing chemotherapy and using aloe vera 1 liter daily orally for 2 weeks. The hypokalemia was attributed to the cathartic effects of aloe and resolved once aloe use was discontinued (30704).
Gastrointestinal
...Orally, aloe latex can cause abdominal pain and cramps.
Long-term use or abuse of aloe latex can cause diarrhea, sometimes with hypokalemia, albuminuria, hematuria, muscle weakness, weight loss, arrhythmia, and pseudomelanosis coli (pigment spots in intestinal mucosa). Pseudomelanosis coli is believed to be harmless, and usually reverses with discontinuation of aloe. It is not directly associated with an increased risk of developing colorectal adenoma or carcinoma (6138). Orally, aloe gel may cause nausea, stomach cramps, and other gastrointestinal complaints in some patients (104174,111921,111663).
Topically, applying aloe gel in the mouth may cause nausea within 5 minutes of application in some patients (90124).
Hematologic ...A case of Henoch-Schonlein purpura, characterized by abdominal pain, purpura, and severe arthralgia, has been reported in a 52-year-old male who drank aloe juice prepared from four to five leaflets for 10 days prior to symptom development (91598).
Hepatic ...Cases of acute hepatitis have been reported after ingestion of aloe leaf extracts for between 3 weeks and 5 years. This is thought to be a hypersensitivity reaction (15567,15569,16386,17419,90126,91598). A case of acute hepatitis has also been reported for a 45-year-old female who drank two ounces of Euforia juice (Nuverus International), a product containing green tea, noni, goji, and aloe, daily for one month (90125). However, one small clinical trial in healthy individuals shows that taking aloe gel 2 ounces twice daily for 60 days does not impair liver function (104174).
Renal ...Orally, aloe latex can cause hemorrhagic gastritis, nephritis, and acute kidney failure following prolonged use of high doses (1 gram daily or more) (8961).
General ...Alpha hydroxy acids represent a group of natural chemicals, some of which can cause adverse effects. See specific monographs for safety information.
General
...Orally, pantothenic acid is generally well tolerated.
Topically and intramuscularly, dexpanthenol, a synthetic form of pantothenic acid, seems to be well tolerated.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, eczema, irritation, and itching related to dexpanthenol.
Cardiovascular ...There is one case of eosinophilic pleuropericardial effusion in a patient taking pantothenic acid 300 mg per day in combination with biotin 10 mg per day for 2 months (3914).
Dermatologic ...Topically, dexpanthenol has been associated with itching, burning, skin irritation, contact dermatitis, and eczema (67779,67781,67788,111258,111262). Three cases of allergic contact dermatitis have been reported (111260,111261).
Gastrointestinal ...Orally, pantothenic acid has been associated with diarrhea (67822,111258).
General
...Orally and intravenously, safflower oil seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Liver failure.
Dermatologic ...Intravenously, safflower yellow, a constituent of safflower flower, can cause skin rash (94038,94041). In one case, adjusting the rate of the drip improved the rash (94041).
Hepatic ...Orally, safflower oil has been associated with liver failure. There are at least 7 case reports of acute liver failure requiring liver transplant that are probably associated with over-use of safflower oil, usually for weight loss purposes. However, it is not clear what dose or duration of safflower use led to liver failure in these cases (99138).
Immunologic ...Safflower can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family. Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).