Each capsule contains: Codonopsis Pilosula 2.57:1 extract (DHE: 128.5 mg) 50 mg • Crataegus Pinnatifida 2.57:1 extract (DHE: 251.8 mg) 98 mg • Lycium barbarum 2.57:1 extract (DHE: 164.4 mg) 64 mg • Ophiopogon japonicus 2.57:1 extract (DHE: 93.5 mg) 34 mg • Panax ginseng 2.57:1 extract (DHE: 93.5 mg) 34 mg • Panax notoginseng 64 mg • Polygonum Multiflorum thunb 2.57:1 extract (DHE: 128.5 mg) 50 mg. Other Ingredients: Gelatin.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
In 2004, Canada began regulating natural medicines as a category of products separate from foods or drugs. These products are officially recognized as "Natural Health Products." These products include vitamins, minerals, herbal preparations, homeopathic products, probiotics, fatty acids, amino acids, and other naturally derived supplements.
In order to be marketed in Canada, natural health products must be licensed. In order to be licensed in Canada, manufacturers must submit applications to Health Canada including information about uses, formulation, dosing, safety, and efficacy.
Products can be licensed based on several criteria. Some products are licensed based on historical or traditional uses. For example, if an herbal product has a history of traditional use, then that product may be acceptable for licensure. In this case, no reliable scientific evidence is required for approval.
For products with non-traditional uses, some level of scientific evidence may be required to support claimed uses. However, a high level of evidence is not necessarily required. Acceptable sources of evidence include at least one well-designed, randomized, controlled trial; well-designed, non-randomized trials; cohort and case control studies; or expert opinion reports.
Finished products licensed by Health Canada must be manufactured according to Good Manufacturing Practices (GMPs) as outlined by Health Canada.
Below is general information about the effectiveness of the known ingredients contained in the product Kang'Erxin Jiaonang. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Kang'Erxin Jiaonang. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Traditionally, aqueous extract of codonopsis 6-9 grams daily has been used with apparent safety (12).
POSSIBLY UNSAFE ...when used orally in large amounts. Large doses of codonopsis (30-60 grams) have been associated with adverse effects including chest pain, arrhythmia, visual impairment, dizziness, and other conditions (12).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY UNSAFE ...when used orally. Fo-ti has been linked to several cases of liver damage (7626,7627,14327,14347,14482,16459,17192,50711,50727,50729) (92892,92895,112231).
CHILDREN: POSSIBLY UNSAFE
when used orally.
Fo-ti has been linked to several cases of liver damage in adults and at least one case in a 5-year-old child (14339,92895).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Fo-ti contains anthraquinone constituents, which can exert a stimulant laxative effect. Bulk-forming or emollient laxatives are preferred in pregnancy (272). Fo-ti has also been linked to several cases of liver damage (7626,7627,14327). There is insufficient reliable information available about the safety of fo-ti when used topically during pregnancy.
LACTATION: POSSIBLY UNSAFE
when used orally.
Anthraquinone constituents can cross into breast milk and might cause loose stools in some breast-fed infants (272). Fo-ti has also been linked to several cases of liver damage (7626,7627,14327). There is insufficient reliable information available about the safety of fo-ti when used topically during lactation.
POSSIBLY SAFE ...when goji fruit preparations are used orally and appropriately, short-term. Goji berry whole fruit, boiled or steamed, has been used with apparent safety at a dose of 15 grams daily for 16 weeks (105489). Other goji berry products have also been used with apparent safety in clinical research, including a specific goji fruit juice (GoChi, FreeLife International) 120 mL daily for 30 days (52532), a goji fruit polysaccharide 300 mg daily for 3 months (92117), and a specific milk-based formulation of goji berry (Lacto-Wolfberry, Nestlé Research Center) for 3 months (52539). There has been some concern about the atropine content of goji; however, most analyses show that levels of atropine in goji berries from China and Thailand are far below potentially toxic levels (52524,94667). There is insufficient reliable information available about the safety of oral use of other parts of the goji plant.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Some animal research shows that goji fruit may stimulate the uterus (12). However, this has not been reported in humans. Until more is known, avoid using during pregnancy or lactation.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Hawthorn preparations in doses of up to 1800 mg daily seem to be safe when used for up to 16 weeks. Although hawthorn might be safe for long-term use, current studies have not evaluated safety past 16 weeks (8279,8280,8281,10144,17203,104689). There is insufficient reliable information available about the safety of hawthorn when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Panax ginseng seems to be safe when used for up to 6 months (8813,8814,17736,89741,89743,89745,89746,89747,89748,103044)(103477,114980,114981,114984,114985). Panax ginseng sprout extract has also been used with apparent safety in doses up to 450 mg daily for up to 12 weeks (114983).
POSSIBLY UNSAFE ...when used orally, long-term. There is some concern about the long-term safety due to potential hormone-like effects, which might cause adverse effects with prolonged use (12537). Tell patients to limit continuous use to less than 6 months. There is insufficient reliable information available about the safety of Panax ginseng when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in infants.
Use of Panax ginseng in newborns is associated with intoxication that can lead to death (12). There is limited reliable information available about use in older children (24109,103049); avoid using.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Ginsenoside Rb1, an active constituent of Panax ginseng, has teratogenic effects in animal models (10447,24106,24107); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Panax notoginseng has been used with apparent safety in doses of 100-400 mg 1-3 times daily for up to 6 weeks (17183,94321,94326,94378,94384,109674). ...when given as an injection, under medical supervision. Panax notoginseng extract has been used with apparent safety in doses of 400-800 mg daily for up to 10 weeks (94324,94326,94373,98976,109523). There is insufficient reliable information available about the safety of Panax notoginseng when administered rectally.
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally (5559).
Ginsenoside Rb1, an active constituent of Panax notoginseng, has teratogenic effects in animal models (10447).
Below is general information about the interactions of the known ingredients contained in the product Kang'Erxin Jiaonang. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking codonopsis root with abiraterone might reduce the levels and therapeutic effects of abiraterone.
Details
Animal research in rats shows that intragastric administration of codonopsis root along with abiraterone every 2 days for 2 weeks seems to increase the clearance of abiraterone and reduce the overall exposure and time to maximum concentration (105912). This interaction has not been reported in humans.
|
Theoretically, codonopsis liquor might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
Details
A small clinical study in adults with coronary heart disease shows that consuming Codonopsis pilosula liquor for 4 weeks inhibits platelet aggregation but does not affect tissue-type plasminogen activator (t-PA) or plasminogen activator inhibitor (PAI) (43888).
|
Theoretically, codonopsis might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Laboratory and animal research suggest that codonopsis has antidiabetic effects (110743).
|
Theoretically, fo-ti might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, taking large amounts of fo-ti might interfere with contraceptive drugs due to competition for estrogen receptors.
Details
|
Theoretically, fo-ti might increase or decrease the levels and clinical effects of drugs metabolized by CYP1A2.
Details
In vitro research suggests that fo-ti might inhibit CYP1A2 (12479,112351). Additionally, in vitro research suggests that the degree of CYP1A2 inhibition depends on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, in an animal study, an aqueous extract of fo-ti inhibited CYP1A2 while an alcoholic extract of fo-ti induced CYP1A2 (92898). Induction or inhibition of CYP1A2 by fo-ti has not been reported in humans.
|
Theoretically, fo-ti might increase the levels and clinical effects of drugs metabolized by CYP2B6.
Details
Animal research suggests that fo-ti might inhibit CYP2B6 (92898). One in vitro study suggests that the degree of CYP2B6 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti may increase the levels and clinical effects of drugs metabolized by CYP2C19.
Details
Animal and in vitro research suggests that fo-ti may inhibit CYP2C19 (12479,92898,112351). An in vitro study suggests that the degree of CYP2C19 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti might increase the levels and clinical effects of drugs metabolized by CYP2C8.
Details
In vitro research suggests that fo-ti might inhibit CYP2C8 (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti may increase the levels and clinical effects of drugs metabolized by CYP2C9.
Details
|
Theoretically, fo-ti may increase the levels and clinical effects of drugs metabolized by CYP2D6.
Details
Animal research suggests that fo-ti might inhibit CYP2D6 (92898). Additionally, an in vitro study suggests that the degree of CYP2D6 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this interaction has not been reported in humans.
|
Theoretically, fo-ti might increase the levels and clinical effects of drugs metabolized by CYP3A4.
Details
In vitro research suggests that fo-ti might inhibit CYP3A4 (12479,112351). One in vitro study suggests that the degree of CYP3A4 inhibition may depend on the type of fo-ti extract (i.e., the raw plant leads to greater inhibition than extensively processed extracts) (112351). However, this evidence conflicts with animal research suggesting that fo-ti does not inhibit CYP3A4 (92898). This interaction has not been reported in humans.
|
Theoretically, fo-ti, particularly raw fo-ti root, might increase the risk of hypokalemia and cardiotoxicity when taken with digoxin.
Details
|
Theoretically, fo-ti, particularly raw fo-ti root, might increase the risk of hypokalemia when taken with diuretic drugs.
Details
|
Theoretically, taking large amounts of fo-ti might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
|
Theoretically, fo-ti might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, fo-ti, particularly raw fo-ti root, might increase the risk of fluid and electrolyte depletion when taken with stimulant laxatives.
Details
|
Theoretically, fo-ti might increase or decrease the levels and clinical effects of sulindac.
Details
Animal research suggests that the type of fo-ti extract might affect the levels of sulindac differently; the raw plant may increase levels, but processed parts may decrease levels (112351). Induction or inhibition of CYP1A2 by fo-ti has not been reported in humans.
|
Theoretically, fo-ti might increase the effects and adverse effects of warfarin.
Details
Fo-ti may have stimulant laxative effects and cause diarrhea, especially when the raw or unprocessed fo-ti root is used (5,12,16459,50733,99855). Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Also, fo-ti has been linked to cases of acute liver failure which can decrease clotting factor production and increase the effects of warfarin. In one case, a patient who had been stable on warfarin presented with acute hepatitis and an INR elevated to 14.98. The patient had been taking fo-ti for 90 days prior to admission. Discontinuation of warfarin and fo-ti lead to a decrease in the INR and full recovery (17192).
|
Theoretically, concomitant use of goji fruit polysaccharides or goji root bark with antidiabetes drugs might have additive effects.
Details
Animal and in vitro research show that goji root bark and fruit polysaccharides might have hypoglycemic effects (7126,92118,94667). However, clinical research has only shown that taking goji fruit polysaccharides with or without antidiabetes drugs modestly reduces postprandial glucose when compared with control, with no reports of hypoglycemia (92117).
|
Theoretically, concomitant use of goji root bark, but not goji fruit, with antihypertensive drugs might have additive effects.
Details
|
Theoretically, goji berry might inhibit CYP2C19 and reduce metabolism of CYP2C19 substrates.
Details
In vitro research shows that goji berry tincture and juice inhibit CYP2C19 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2C19 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP2C9 and reduce metabolism of CYP2C9 substrates.
Details
In vitro research shows that goji berry tincture and juice inhibit CYP2C9 enzymes (105486). Additionally, multiple case reports suggest that goji berry concentrated tea and juice inhibit the metabolism of warfarin, a CYP2C9 substrate (7158,105462). Concomitant use with goji may decrease metabolism and increase levels of CYP2C9 substrates.
|
Theoretically, goji berry might inhibit CYP2D6 and reduce metabolism of CYP2D6 substrates.
Details
In vitro research shows that goji berry juice inhibits CYP2D6 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2D6 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP3A4 and reduce metabolism of CYP3A4 substrates.
Details
In vitro research shows that goji berry juice inhibits CYP3A4 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP3A4 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might increase the levels and clinical effects of flecainide.
Details
In one case report, a 75-year-old patient stable on flecainide and warfarin presented to the emergency room with fainting and pleomorphic arrhythmia caused by flecainide toxicity. Flecainide toxicity was attributed to drinking 1-2 glasses of concentrated goji tea daily for 2 weeks. Theoretically, goji may have inhibited the cytochrome P450 2D6 (CYP2D6) metabolism of flecainide (105462).
|
Goji can increase the effects of warfarin and possibly increase the risk of bleeding.
Details
There are at least 5 case reports of increased international normalized ratio (INR) in patients stabilized on warfarin who began drinking goji juice, concentrated goji tea, or goji wine (7158,16529,23896,105462,105487). Goji may inhibit the metabolism of warfarin by cytochrome P450 2C9 (CYP2C9) (7158).
|
Theoretically, hawthorn may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro and animal research shows that hawthorn can inhibit platelet aggregation (95528,95529,95530,95531). However, its effect in humans is unclear. One observational study shows that patients taking hawthorn shortly before undergoing coronary artery bypass graft (CABG) surgery or valve replacement surgery have a 10% incidence of postoperative bleeding, compared with 1% in those who never consumed hawthorn extract (95527). However, clinical research shows that taking a specific preparation of dried hawthorn leaves and flowers (Crataesor, Soria Natural Lab) 800 mg three times daily for 15 days does not affect platelet aggregation or levels of thromboxane B2, the metabolite of thromboxane A2, in healthy humans (54664).
|
Theoretically, concomitant use might cause additive effects on blood pressure and heart rate.
Details
|
Theoretically, concomitant use might cause additive coronary vasodilation and hypotensive effects.
Details
|
Theoretically, hawthorn might potentiate the effects and adverse effects of digoxin.
Details
Hawthorn appears to improve cardiac output (12595); however, hawthorn does not appear to affect digoxin pharmacokinetics (19249). Case reports suggest that at least one species of hawthorn root extract (Crataegus mexicana) may produce adverse effects similar to digoxin and can cross-react with digoxin assays, leading to falsely elevated plasma digoxin levels (113112,113113).
|
Theoretically, concomitant use might cause additive coronary vasodilatory effects.
Details
|
Theoretically, concomitant use might result in additive vasodilation and hypotension.
Details
Hawthorn might inhibit PDE-5 and cause vasodilation (12595).
|
Although Panax ginseng has shown antiplatelet effects in the laboratory, it is unlikely to increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro evidence suggests that ginsenoside constituents in Panax ginseng might decrease platelet aggregation (1522,11891). However, research in humans suggests that ginseng does not affect platelet aggregation (11890). Animal research indicates low oral bioavailability of Rb1 and rapid elimination of Rg1, which might explain the discrepancy between in vitro and human research (11153). Until more is known, use with caution in patients concurrently taking anticoagulant or antiplatelet drugs.
|
Theoretically, taking Panax ginseng with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Monitor blood glucose levels closely.
|
Theoretically, taking Panax ginseng with caffeine might increase the risk of adverse stimulant effects.
Details
|
Theoretically, Panax ginseng might decrease levels of drugs metabolized by CYP1A1.
Details
In vitro research shows that Panax ginseng can induce the CYP1A1 enzyme (24104).
|
Theoretically, Panax ginseng might increase levels of drugs metabolized by CYP2D6. However, research is conflicting.
Details
There is some evidence that Panax ginseng can inhibit the CYP2D6 enzyme by approximately 6% (1303,51331). In addition, in animal research, Panax ginseng inhibits the metabolism of dextromethorphan, a drug metabolized by CYP2D6, by a small amount (103478). However, contradictory research suggests Panax ginseng might not inhibit CYP2D6 (10847). Until more is known, use Panax ginseng cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, Panax ginseng might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Panax ginseng may affect the clearance of drugs metabolized by CYP3A4. One such drug is imatinib. Inhibition of CYP3A4 was believed to be responsible for a case of imatinib-induced hepatotoxicity (89764). In contrast, Panax ginseng has been shown to increase the clearance of midazolam, another drug metabolized by CYP3A4 (89734,103478). Clinical research shows that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478). Until more is known, use Panax ginseng cautiously in combination with CYP3A4 substrates.
|
Theoretically, concomitant use of large amounts of Panax ginseng might interfere with hormone replacement therapy.
Details
|
Theoretically, Panax ginseng might decrease blood levels of oral or intravenous fexofenadine.
Details
Animal research suggests that taking Panax ginseng in combination with oral or intravenous fexofenadine may reduce the bioavailability of fexofenadine. Some scientists have attributed this effect to the ability of Panax ginseng to increase the expression of P-glycoprotein (24101).
|
Theoretically, Panax ginseng might reduce the effects of furosemide.
Details
There is some concern that Panax ginseng might contribute to furosemide resistance. There is one case of resistance to furosemide diuresis in a patient taking a germanium-containing ginseng product (770).
|
Theoretically, Panax ginseng might increase the effects and adverse effects of imatinib.
Details
A case of imatinib-induced hepatotoxicity has been reported for a 26-year-old male with chronic myelogenous leukemia stabilized on imatinib for 7 years. The patient took imatinib 400 mg along with a Panax ginseng-containing energy drink daily for 3 months. Since imatinib-associated hepatotoxicity typically occurs within 2 years of initiating therapy, it is believed that Panax ginseng affected imatinib toxicity though inhibition of cytochrome P450 3A4. CYP3A4 is the primary enzyme involved in imatinib metabolism (89764).
|
Theoretically, Panax ginseng use might interfere with immunosuppressive therapy.
Details
Panax ginseng might have immune system stimulating properties (3122).
|
Theoretically, taking Panax ginseng with insulin might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Insulin dose adjustments might be necessary in patients taking Panax ginseng; use with caution.
|
Although Panax ginseng has demonstrated variable effects on cytochrome P450 3A4 (CYP3A4), which metabolizes lopinavir, Panax ginseng is unlikely to alter levels of lopinavir/ritonavir.
Details
Lopinavir is metabolized by CYP3A4 and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Panax ginseng has shown variable effects on CYP3A4 activity in humans (89734,89764). However, taking Panax ginseng (Vitamer Laboratories) 500 mg twice daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in 12 healthy volunteers (93578).
|
Theoretically, Panax ginseng may increase the clearance of midazolam.
Details
Midazolam is metabolized by cytochrome P450 3A4 (CYP3A4). Clinical research suggests that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478).
|
Theoretically, Panax ginseng can interfere with MAOI therapy.
Details
|
Theoretically, taking Panax ginseng with nifedipine might increase serum levels of nifedipine and the risk of hypotension.
Details
Preliminary clinical research shows that concomitant use can increase serum levels of nifedipine in healthy volunteers (22423). This might cause the blood pressure lowering effects of nifedipine to be increased when taken concomitantly with Panax ginseng.
|
Theoretically, Panax ginseng has an additive effect with drugs that prolong the QT interval and potentially increase the risk of ventricular arrhythmias. However, research is conflicting.
Details
|
Theoretically, taking Panax ginseng with raltegravir might increase the risk of liver toxicity.
Details
A case report suggests that concomitant use of Panax ginseng with raltegravir can increase serum levels of raltegravir, resulting in elevated liver enzymes levels (23621).
|
Theoretically, Panax ginseng might increase or decrease levels of selegiline, possibly altering the effects and side effects of selegiline.
Details
Animal research shows that taking selegiline with a low dose of Panax ginseng extract (1 gram/kg) reduces selegiline bioavailability, while taking a high dose of Panax ginseng extract (3 grams/kg) increases selegiline bioavailability (103053). More research is needed to confirm these effects.
|
Theoretically, taking Panax ginseng with stimulant drugs might increase the risk of adverse stimulant effects.
Details
|
Panax ginseng might affect the clearance of warfarin. However, this interaction appears to be unlikely.
Details
There has been a single case report of decreased effectiveness of warfarin in a patient who also took Panax ginseng (619). However, it is questionable whether Panax ginseng was the cause of this decrease in warfarin effectiveness. Some research in humans and animals suggests that Panax ginseng does not affect the pharmacokinetics of warfarin (2531,11890,17204,24105). However, other research in humans suggests that Panax ginseng might modestly increase the clearance of the S-warfarin isomer (15176). More evidence is needed to determine whether Panax ginseng causes a significant interaction with warfarin.
|
Theoretically, taking Panax notoginseng concomitantly with aspirin may increase the risk of adverse effects from both products.
Details
|
Theoretically, taking Panax notoginseng may decrease the levels and clinical effects of caffeine.
Details
Animal research shows that administering Panax notoginseng intravenously for 7 days before intraperitoneal injection of caffeine can decrease maximal blood levels of caffeine by 37%. This interaction is attributed to the ability of Panax notoginseng to increase the activity of cytochrome P450 1A2 (CYP1A2) enzymes (94319).
|
Theoretically, taking Panax notoginseng might reduce the levels and clinical effects of CYP1A2 substrates.
Details
Animal research shows that administering Panax notoginseng intravenously for 7 days before intraperitoneal injection of caffeine can decrease maximal blood levels of caffeine by 37%. This interaction was attributed to the ability of Panax notoginseng to increase the activity of CYP1A2 (94319).
|
Theoretically, taking Panax notoginseng concomitantly with warfarin may increase the risk of bleeding.
Details
Animal research shows that taking Panax notoginseng concomitantly with warfarin increases plasma warfarin levels, prothrombin time, and international normalized ratio when compared with control. In vitro research also suggests that Panax notoginseng may downregulate expression of cytochrome P450 3A4 enzymes, which may affect warfarin metabolism (109676).
|
Below is general information about the adverse effects of the known ingredients contained in the product Kang'Erxin Jiaonang. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, codonopsis seems to be well tolerated when used appropriately; however, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Allergic reactions such as anaphylaxis.
Cardiovascular ...Orally, very large doses of codonopsis (30-60 grams) may cause chest pain or arrhythmia (12).
Gastrointestinal ...Orally, very large doses of codonopsis (30-60 grams) may cause throat pain and loss of voice (12).
Immunologic ...Orally, codonopsis can cause allergic reactions including anaphylaxis and urticaria. In one case report, an 18-year-old male developed anaphylaxis after ingesting codonopsis roots. In an oral re-challenge test, he developed anaphylaxis and urticaria again 30 minutes after consuming 20 grams of codonopsis root. Although codonopsis is in the same family as mugwort, the patient did not appear to be sensitized to mugwort pollen (100060).
Neurologic/CNS ...Orally, very large doses of codonopsis (30-60 grams) may cause vision problems, dizziness, loss of balance, leg spasms, and confusion (12).
General
...Orally, fo-ti may be unsafe.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, nausea, and vomiting with use of unprocessed fo-ti.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity with processed or unprocessed fo-ti.
Dermatologic ...Orally, one case of a fine maculopapular rash was reported in a patient taking the herbal product known as Shen-Min, which contains fo-ti. Symptoms resolved within three weeks after discontinuing the product (14482). It is unclear if the rash was due to fo-ti or other ingredients in the herbal product.
Gastrointestinal ...Orally, unprocessed fo-ti may cause diarrhea, abdominal pain, nausea, and vomiting (12,50733).
Hematologic ...Orally, one case of mild eosinophilia was reported in a patient taking the herbal product known as Shen-Min, which contains fo-ti. Symptoms resolved within three weeks after discontinuing the product (14482). It is unclear if this reaction was due to fo-ti or other ingredients in the herbal product. A case of agranulocytosis was reported in a 65-year-old female taking fo-ti 30 grams/day for 17 days. The patient recovered gradually following a 15-day hospitalization, which included treatment with intravenous steroids and granulocyte colony-stimulating factor (112231).
Hepatic
...Orally, cases of liver damage due to both processed and unprocessed fo-ti have been well documented in the medical literature.
(7626,7627,14327,14339,14347,14482,16459,17192,50711,50726)(50727,50729,92892,92895,112231).
In a systematic review, around 450 cases of hepatitis associated with fo-ti were identified. These cases occurred in patients 5-78 years of age. Liver damage occurred at a wide range of doses, formulations, and durations of intake. The type of liver injury ranged from hepatocellular, to cholestatic, or mixed. Outcomes ranged from full recovery to cirrhosis, liver transplantation, and/or death. The evidence suggests that when the daily fo-ti dose is less than 12 grams, the median time to occurrence of liver damage is 60 days. When the daily fo-ti dose is more than 12 grams, the median time to liver damage is 30 days (92895). Presenting signs and symptoms may include jaundice, abdominal pain, nausea, fatigue, loss of appetite, dark urine, myalgias, and elevations in liver function tests (LFTs), ferritin, transferrin, prothrombin time, and INR (17192,92892). Other manifestations may include fever, skin rash, thrombocytopenia, pancytopenia, and arthralgias. Symptoms and increased LFTs usually seem to resolve within a month after discontinuing fo-ti (7626,7627,14339,14347,14482,16459). In one case series, liver enzymes began to normalize 48 hours after discontinuation of fo-ti and treatment with S-adenosylmethionine, compound glycyrrhizin injection, polyene phosphatidylcholine, and reduced glutathione. All patients were eventually discharged home in stable condition (92892). Rechallenge with fo-ti should not be attempted. A patient who had recovered from hepatitis associated with fo-ti use presented with myalgias and markedly elevated LFTs after a single dose of the herb (17192).
It is thought that this idiosyncratic reaction leading to liver damage is at least partially related to genetic polymorphisms. Cytochrome P450 1A2 (CYP1A2) is the predominant enzyme involved in biotransformation of emodin, a constituent of fo-ti thought to play a role in liver damage. In one genetic study, the frequency of CYP1A2*1C mutation in fo-ti induced drug-induced liver injury patients was 46.5%, which is significantly higher than the 27.9% frequency of liver injury reported in healthy patients without the mutation. Patients with a CYP1A2*1C mutation may have decreased activity of the CYP1A2 enzyme, which could inhibit the metabolism of fo-ti, causing an accumulation of toxic substances (92897).
General
...Orally, goji fruit seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions including anaphylaxis.
Dermatologic ...A case of photosensitivity secondary to consumption of goji berries has been reported. The patient presented with a pruriginous eruption that had lasted for 2 weeks. The patient had been taking goji berries for 5 months and cat's claw for 3 months. Upon testing, it was revealed that the patient tested positive to goji berries in a photoprovocation test, but not to cat's claw (40263).
Hepatic ...Orally, consumption of goji berries has been associated with a single case report of autoimmune hepatitis (52541). A case of acute hepatitis has also been reported in a female who consumed 2 ounces of a specific combination product (Euforia, Nuverus International) containing goji berry, pomegranate, curcumin, green tea, noni, acai berry, aloe vera, blueberry, resveratrol, mangosteen, and black seed, daily for one month. It is unclear whether the liver injury was caused by goji berry, other ingredients, or the combination (90125).
Immunologic ...Several cases of allergic reactions secondary to consumption of goji berries have been reported. Symptoms included facial angioedema with dyspnea, pharyngeal itching, itching in the mouth, ears, and axilla, labial angioedema, and perioral skin rash (92116). Anaphylaxis has also been reported (52538).
General
...Orally, hawthorn seems to be well tolerated when used appropriately.
Topically, no adverse effects have been reported, although a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Multiorgan hypersensitivity reactions resulting in acute renal failure have been reported rarely.
Cardiovascular
...Orally, tachycardia (with facial pains) of uncertain relationship to hawthorn was reported in a multicenter clinical trial (54640).
Palpitations (19244) were reported in three patients in a large surveillance trial of 3,664 patients with cardiac failure (54692) and in 11 patients with congestive heart failure (CHF) in a literature review of 5,577 patients (19247). Circulation failure has been reported in two patients with CHF in a literature review of 5,577 patients (19247). Incidences of hospitalization, hospitalization due to CHF, worsening of CHF, angina, and atrial fibrillation have also been reported with the use of hawthorn extract WS 1442 (Crataegutt forte), although it is unclear if these events are related to hawthorn supplementation or existing CHF (19222). In clinical trials, chest pain (8281), short-term increases in blood pressure (19240), and other non-specific heart problems (17203) have also been reported following the use of various hawthorn preparations (e.g. WS 1442, Korodin).
Orally, severe bradycardia, bradypnea, and Mobitz type 1 second degree heart block have been reported in a 16-year-old female who consumed Hawthorn root extract. Blood tests indicated plasma digoxin levels in the therapeutic range, despite no history of digoxin use. Medical treatment for digoxin cardiotoxicity did not improve symptoms. Symptoms gradually normalized over 3 days after discontinuation of the product (113112). Similarly, a 40-year-old female presented with bradycardia and elevated plasma digoxin levels after taking hawthorn root extract 196 mg daily for 2 days with no history of digoxin use. Symptoms resolved within 24 hours (113113).
Dermatologic ...Orally, erythematous rash has been reported in patients with CHF in a literature review of 5,577 patients (19247). Non-specific rashes and itching (19222,19243) as well as toxiderma from the fruits of hawthorn (54670) have also been reported.
Gastrointestinal ...Orally, rare abdominal discomfort of uncertain relationship to hawthorn has been reported in a large clinical trial, surveillance study, case reports, and a literature review (19247,54640,54692,113112). Digestive intolerance (19241), diarrhea (19243,113112), flatulence (8281), gastroenteritis (8281), increased bowel movements (19243), obstipation (8281), mild and rare nausea (10144,19247,19244), vomiting (113112), nutritional and metabolic problems (17203), and other non-specific gastrointestinal effects (19222), have also been reported. Furthermore, gastrointestinal hemorrhage has been reported in two patients with CHF in a literature review of 5,577 patients (19247).
Musculoskeletal ...In clinical trials, arthritis (8281), back pain (8281), weakness (19243), and other non-specific musculoskeletal effects (19222) have been reported following the use of various hawthorn preparations g. WS 1442, CKBM-A01). Additionally, in a case report, myalgia has been reported following use of hawthorn root extract (113113).
Neurologic/CNS ...Orally, headache and dizziness/vertigo were reported in 2 patients in a large surveillance trial of 3,664 patients with cardiac failure (54692), in 15 patients with CHF as reported in a literature review of 5,577 patients (19247), in a varying number of clinical trial participants (8281,19222,19244), and in case reports (113112,113113). Incidences of fainting (19222), fever (17203), and infrequent, mild and transient sleepiness have also been reported (19221,54692).
Psychiatric ...Orally, agitation was reported in a large surveillance trial of 3,664 patients with cardiac failure (54692).
Pulmonary/Respiratory ...Orally, bronchitis has been reported following the use of hawthorn extract WS 1442 (8281), and bradypnea has been reported following the use of hawthorn root extract (113112).
Renal ...A case of multiorgan hypersensitivity reaction and acute renal failure following the consumption of C. orientalis has been reported (54654).
Other ...Flu-like syndrome (8281) and other non-specific infections have been reported following the use of the hawthorn extract WS 1442 (17203,19222). Hawthorn has also been reported to cause nosebleeds (8281,10144).
General
...Orally, Panax ginseng is generally well tolerated when used for up to 6 months.
There is some concern about the long-term safety due to potential hormone-like effects.
Topically, no adverse effects have been reported when ginseng is used as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Insomnia.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, arrhythmia, ischemia, Stevens-Johnson syndrome.
Cardiovascular ...Panax ginseng may cause hypertension, hypotension, and edema when used orally in high doses, long-term (3353). However, single doses of Panax ginseng up to 800 mg are not associated with changes in electrocardiogram (ECG) parameters or increases in heart rate or blood pressure (96218). There is a case report of menometrorrhagia and tachyarrhythmia in a 39-year-old female who took Panax ginseng 1000-1500 mg/day orally and also applied a facial cream topically that contained Panax ginseng. Upon evaluation for menometrorrhagia, the patient also reported a history of palpitations. It was discovered that she had sinus tachycardia on ECG. However, the patient was a habitual consumer of coffee 4-6 cups/day and at the time of evaluation was also mildly anemic. The patient was advised to discontinue taking Panax ginseng. During the 6 month period following discontinuation the patient did not have any more episodes of menometrorrhagia or tachyarrhythmia (13030). Also, a case of transient ischemic attack secondary to a hypertensive crisis has been reportedly related to oral use of Panax ginseng (89402).
Dermatologic
...Orally, Panax ginseng may cause itching or an allergic response consisting of systemic rash and pruritus (89743,89760,104953,114984,114985).
Skin eruptions have also been reported with use of Panax ginseng at high dosage, long-term (3353). Uncommon side effects with oral Panax ginseng include Stevens-Johnson syndrome (596).
In one case report, a 6-year-old male with a previous diagnosis of generalized pustular psoriasis, which had been in remission for 18 months, presented with recurrent pustular lesions after consuming an unspecified dose of Panax ginseng. The patient was diagnosed with pityriasis amiantacea caused by subcorneal pustular dermatosis. Treatment with oral dapsone 25 mg daily was initiated, and symptoms resolved after 4 weeks (107748). In another case report, a 26-year-old female presented with itchy exanthem and oval erythematous lesions on the face, neck, and abdomen after consuming a decoction containing Panax ginseng, aconite, ginger, licorice, Cassia cinnamon, goldthread, and peony 400 mL twice daily for 1 week. Pityriasis rosea-like eruption was suspected, but the patient refused topical or oral antihistamines or corticosteroids. The patient continued taking the decoction but with Panax ginseng and aconite removed. After 6 days, symptoms began to resolve, and by 17 days symptom improvement was significant (114986). It is unclear if this reaction was due to Panax ginseng, aconite, the combination, or some other factor. Pityriasis rosea typically resolves spontaneously.
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, mild pain, local irritation, and burning have occurred (2537).
Endocrine
...The estrogenic effects of ginseng are controversial.
Some clinical evidence suggests it doesn't have estrogen-mediated effects (10981). However, case reports of ginseng side effects such as postmenopausal vaginal bleeding suggest estrogenic activity (590,591,592,10982,10983).
In a 12-year-old Korean-Japanese male, enlargement of both breasts with tenderness in the right breast (gynecomastia) occurred after taking red ginseng extract 500 mg daily orally for one month. Following cessation of the product, there was no further growth or pain (89733). Swollen and tender breasts also occurred in a 70-year-old female using Panax ginseng orally (590).
Gastrointestinal ...Orally, Panax ginseng can cause decreased appetite (3353), constipation, diarrhea, dyspepsia (3353,89734,103477,112841,114980,114985), abdominal pain (89734,87984,112841,114985), and nausea (589,87984). However, these effects are typically associated with long-term, high-dose usage (3353). Some evidence suggests that fermented Panax ginseng is more likely to cause abdominal pain and diarrhea when compared with unfermented Panax ginseng (112841).
Genitourinary
...Amenorrhea has been reported with oral use of Panax ginseng (3353).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, sporadic erectile dysfunction and excessively delayed ejaculation have occurred (2537). Less commonly, patients can experience vaginal bleeding (591,592,3354,23630).
Hepatic ...It is unclear if Panax ginseng is associated with adverse hepatic effects. Cholestatic hepatitis has been reported in a 65-year old male following oral use of a combination product containing Panax ginseng and other ingredients (Prostata). However, it is unclear if this adverse effect was due to Panax ginseng, other ingredients, or the combination (598). An elevation in liver enzymes has been rarely reported in clinical research (114985).
Immunologic ...A case of anaphylaxis, with symptoms of hypotension and rash, has been reported following ingestion of a small amount of Panax ginseng syrup (11971).
Neurologic/CNS ...Orally, one of the most common side effects to Panax ginseng is insomnia (589,89734,111336,114985). Headache (594,23638,112840,114985), vertigo, euphoria, and mania (594) have also been reported. Migraine and somnolence occurred in single subjects in a clinical trial (87984). In a case report of a 46-year-old female, orobuccolingual dyskinesia occurred following oral use of a preparation containing black cohosh 20 mg and Panax ginseng 50 mg twice daily for menopausal symptoms. The patient's condition improved once the product was stopped and treatment with baclofen 40 mg and clonazepam 20 mg daily was started (89735).
General
...Panax notoginseng seems to be generally well tolerated when used orally or intravenously.
Most Common Adverse Effects:
Orally: Dry mouth, flushed skin, insomnia, nausea, nervousness, rash, vomiting.
Intravenously: Headache, itching, rash.
Serious Adverse Effects (Rare):
Intravenously: Fever, pustular drug eruption.
Dermatologic ...Orally, Panax notoginseng can cause flushed skin (5558). When given orally or intravenously, rash has been reported (94321,94324,94326,94378,98976). There is a case of interstitial granulomatous drug reaction in a 73-year-old male who had been using oral Panax notoginseng extract for 2 months. The condition repeated after 5 days of intravenous use at a later time. The skin condition gradually cleared after use of the product was discontinued (94316). In a retrospective review of hospital records of 30,884 patients, a specific Xueshuantong injection (XSTI) containing Panax notoginseng saponins was associated with a 4% incidence of skin reactions, including redness, itching, and maculopapules (98976).
Gastrointestinal ...Orally and intravenously, Panax notoginseng can cause dry mouth, nausea, and vomiting (5558,94321,98976). In one case report, a patient developed a large submucosal hematoma extending from the hypopharynx to lower esophagus after taking one oral dose of an unknown quantity of Panax notoginseng and hirudin (109671). It is unclear if this event was due to Panax notoginseng, hirudin, or other factors.
Immunologic ...Intravenously, Panax notoginseng saponins have been associated with five cases of pustular drug eruption due to acute generalized exanthematous pustulosis. The skin eruption was associated with fever and an increased neutrophil count in some cases. Symptoms were deemed to be probably or likely due to the Panax notoginseng product (94327). In a retrospective review of hospital records of 30,884 patients, a specific Xueshuantong injection (XSTI) containing Panax notoginseng saponins was associated with a fever frequency of 0.2%, edema frequency of 0.1%, and anaphylactic reactions in 0.03% (98976).
Neurologic/CNS ...Orally, Panax notoginseng can cause nervousness and insomnia (5558). Intravenously, Panax notoginseng has been reported to cause headache (94326,94378). In a retrospective review of hospital records of 30,884 patients, a specific Xueshuantong injection (XSTI) containing Panax notoginseng saponins was associated with a headache frequency of 0.3% and paresthesia frequency of 0.1% (98976).