Peppermint leaf • Chamomile flower • Catnip leaf • Strawberry leaf • Linden leaf and flower • Passion Flower herb • Scullcap • Licorice root • Valerian root • Natural Flavor.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Relaxing Evening Tea. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of linden.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Relaxing Evening Tea. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Oral Baikal skullcap 0.5-3.52 grams daily has been used with apparent safety for up to 8 weeks (92776,101738,101739,110023). However, a high quality assessment of safety has not been conducted. A specific product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been associated with an increased risk for liver and lung injury. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination. There is insufficient reliable information available about the safety of Baikal skullcap when used intravenously or topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when linden leaf is used orally and appropriately in amounts normally found in foods (12). Linden leaf has Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of linden when used orally or topically in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally as a flavoring in foods. The US Food and Drug Administration (FDA) lists passion flower as a permitted food flavoring additive, to be used in the minimum quantity necessary (91203).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Passion flower extract has been used with apparent safety at doses up to 800 mg daily for up to 8 weeks (88198,102866). A specific passion flower extract (Pasipay, Iran Darouk Pharmaceutical Company) has been safely used at a dose of 45 drops daily for up to one month (8007,95036). Also, a tea prepared by steeping 2 grams of the dried aerial parts of passion flower in 250 mL of boiling water for 10 minutes has been used nightly for 7 nights (17374). There is insufficient reliable information available about the safety of passion flower when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A specific passion flower product (Pasipay, Iran Darouk Pharmaceutical Company) has been used safely in children aged 6-13 years at a dose of 0.04 mg/ kg daily for 8 weeks (88197).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Some case reports suggest that passion flower use during the first and second trimesters of pregnancy may be associated with an increased risk for premature rupture of membranes and meconium aspiration syndrome; however, causality has not been confirmed (97279). The alkaloids harman and harmaline, which are sometimes found in passion flower, have been reported to have uterine stimulant activity (4,11020,95037). It is not known whether these constituents are present in sufficient quantities to have an effect.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when peppermint oil is used orally, topically, or rectally in medicinal doses. Peppermint oil has been safely used in multiple clinical trials (3801,3804,6190,6740,6741,10075,12009,13413,14467,17681)(17682,68522,96344,96360,96361,96362,96363,96364,96365,99493).
POSSIBLY SAFE ...when peppermint leaf is used orally and appropriately, short-term. There is some clinical research showing that peppermint leaf can be used safely for up to 8 weeks (12724,13413). The long-term safety of peppermint leaf in medicinal doses is unknown. ...when peppermint oil is used by inhalation as aromatherapy (7107). There is insufficient reliable information available about the safety of using intranasal peppermint oil.
CHILDREN: POSSIBLY SAFE
when used orally for medicinal purposes.
Enteric-coated peppermint oil capsules have been used with apparent safety under medical supervision in children 8 years of age and older (4469).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (96361).
There is insufficient information available about the safety of using peppermint in medicinal amounts during pregnancy or lactation; avoid using.
There is insufficient reliable information available about the safety of skullcap.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Valerian 300-600 mg daily has been safely used in clinical studies in over 12,000 patients for up to 6 weeks (2074,3484,3485,4032,15018,17577,17578,19409,96242,103221)(104010,105718). There is insufficient reliable information available about the safety of valerian when used orally for longer than 6 weeks.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Valerian 160-320 mg has been used with apparent safety in children under 12 years of age for 4-8 weeks (14416).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Relaxing Evening Tea. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol.
Details
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap might increase the risk of bleeding when used concomitantly with anticoagulant and antiplatelet drugs.
Details
Preliminary clinical research suggests that taking capsules containing a combination of astragalus, goldthread, and Baikal skullcap daily for 4 weeks inhibits platelet aggregation; the effect seems to be similar to that of aspirin 50 mg daily (33075). It is unclear if this effect is due to Baikal skullcap, other ingredients, or the combination.
|
Theoretically, concomitant use of Baikal skullcap with antidiabetes drugs might enhance blood glucose lowering effects.
Details
Baicalein, a constituent of Baikal skullcap, has alpha-glucosidase inhibitory activity in vitro (6292). Animal research also suggests that Baikal skullcap enhances the antidiabetic effects of metformin (33408). However, in a small human study, taking Baikal skullcap extract did not enhance the antidiabetic effects of metformin, although it did modestly lower glucose levels during an oral glucose tolerance test (OGTT) (101738). Until more is known, use cautiously.
|
Theoretically, concomitant use of Baikal skullcap with antihypertensive drugs might have additive effects and increase the risk of hypotension.
Details
Animal research suggests that baicalein, a constituent of Baikal skullcap, might lower blood pressure (33374).
|
Theoretically, concomitant use of Baikal skullcap and antithyroid drugs may result in additive activity and increase the risk of hypothyroidism.
Details
In an animal hyperthyroid model, Baikal skullcap improved levels of triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) (101736). The clinical significance of this effect is unclear.
|
Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties.
Details
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap may increase levels of drugs metabolized by CYP1A2 enzymes.
Details
|
Theoretically, Baikal skullcap might increase levels of drugs metabolized by CYP2C19 enzymes.
Details
In vitro evidence suggest that wogonin, a constituent of Baikal skullcap, modestly inhibits the activity of CYP2C19 enzymes (33484). This effect has not been reported in humans.
|
Theoretically, concomitant use of large amounts of Baikal skullcap might interfere with hormone replacement therapy, due to competition for estrogen receptors.
Details
In vitro evidence suggests that Baikal skullcap has estrogenic activity (16061).
|
Theoretically, Baikal skullcap might reduce lithium excretion and increase serum levels of lithium.
Details
Baikal skullcap is thought to have diuretic properties, which may reduce lithium excretion (5541). The dose of lithium might need to be decreased.
|
Theoretically, Baikal skullcap might alter the levels and clinical effects of OATP substrates.
Details
Some pharmacokinetic research shows that baicalin, a constituent of Baikal skullcap, can decrease plasma levels of rosuvastatin. The mechanism is thought to involve stimulation of the activity of the organic anion-transporting polypeptide 1B1 (OATP1B1), which transports rosuvastatin into the liver. This decreases plasma levels of the drug, but increases levels at the site of action in the liver. The degree to which rosuvastatin levels are affected depends on the OATP1B1 haplotype of the individual (16395). Baikal skullcap might also affect other OATP1B1 substrates (16396,16397,16398).
|
Theoretically, Baikal skullcap might increase levels of drugs transported by P-glycoprotein.
Details
|
Theoretically, concomitant use with drugs with sedative properties may cause additive effects and side effects.
Details
|
Theoretically, catnip might reduce excretion and increase levels of lithium.
Details
Catnip is thought to have diuretic properties which might reduce lithium excretion. The dose of lithium might need to be decreased.
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
Details
|
Theoretically, licorice might reduce the effects of cisplatin.
Details
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Details
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that licorice induces CYP1A2 enzymes (111404).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
Details
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
Details
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
Details
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
Details
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Details
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Details
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
Details
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Details
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Details
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
Details
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
Details
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Details
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Details
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
Theoretically, due to its potential diuretic effects, linden might increase the effects and adverse effects of lithium.
Details
Linden is thought to have diuretic properties (4). The dose of lithium might need to be decreased.
|
Concomitant use of passion flower with sedative drugs might cause additive effects and side effects.
Details
|
Theoretically, passion flower might decrease the effects of CYP3A4 substrates.
Details
In vitro research suggests that passion flower can induce CYP3A4 enzymes, albeit to a much lower degree than rifampin, a known CYP3A4 inducer (110704).
|
Theoretically, passion flower might reduce the bioavailability of OATP2B1 and OATP1A2 substrates.
Details
In vitro research shows that the passion flower constituents apigenin and vitexin inhibit OATP2B1 and OATP1A2. This inhibition may be dose-dependent. One specific high-flavonoid passion flower extract (Valverde) seems to inhibit OATP2B1 and OATP1A2, while another extract with a lower flavonoid concentration (Arkocaps) shows less potent inhibition (105095). OATPs are responsible for the uptake of drugs and other compounds into the body; however, the specific activities of OATP2B1 and OATP1A2 are not well characterized.
|
Theoretically, peppermint oil might increase the levels and adverse effects of cyclosporine.
Details
In animal research, peppermint oil inhibits cyclosporine metabolism and increases cyclosporine levels. Inhibition of cytochrome P450 3A4 (CYP3A4) may be partially responsible for this interaction (11784). An interaction between peppermint oil and cyclosporine has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP1A2 substrates.
Details
In vitro and animal research shows that peppermint oil and peppermint leaf inhibit CYP1A2 (12479,12734). However, in clinical research, peppermint tea did not significantly affect the metabolism of caffeine, a CYP1A2 substrate. It is possible that the 6-day duration of treatment may have been too short to identify a difference (96359).
|
Theoretically, peppermint might increase the levels of CYP2C19 substrates.
Details
In vitro research shows that peppermint oil inhibits CYP2C19 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that peppermint oil inhibits CYP2C9 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP3A4 substrates.
Details
|
Theoretically, skullcap can have additive effects when used with other CNS depressants.
Details
|
In vitro and animal research suggests that strawberry extract can inhibit platelet aggregation due to its phenolic content (76472,76488). Theoretically, strawberry might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
Details
Some anticoagulant or antiplatelet drugs include aspirin, clopidogrel (Plavix), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, ticlopidine (Ticlid), warfarin (Coumadin), and others.
|
In vitro research suggests that strawberry extract can inhibit p-glycoprotein efflux (76474,76476). Theoretically, strawberry might inhibit p-glycoprotein mediated drug efflux and potentially increase levels of drugs that are substrates of p-glycoprotein. Until more is known, strawberry should be used cautiously in people taking p-glycoprotein substrates.
Details
Drugs that might be affected include some chemotherapeutic agents (etoposide, paclitaxel, vinblastine, vincristine, vindesine), antifungals (ketoconazole, itraconazole), protease inhibitors (amprenavir, indinavir, nelfinavir, saquinavir), H2 antagonists (cimetidine, ranitidine), some calcium channel blockers (diltiazem, verapamil), corticosteroids, erythromycin, cisapride (Propulsid), fexofenadine (Allegra), cyclosporine, loperamide (Imodium), quinidine, and others.
|
Valerian can have additive sedative effects when used concomitantly with alcohol.
Details
Valerian has sedative effects (9894). Theoretically, valerian might have an additive sedative effect when combined with alcohol. Excessive sedation has been reported in an alcohol-abusing individual who took valerian and Gingko biloba (19426). However, the potential interaction between valerian and alcohol has been disputed in other research. Limited evidence suggests that a combination of valerian 160 mg and lemon balm 80 mg (Euvegal) does not cause further deterioration in reaction ability and reaction rate when taken with alcohol as compared to the effects of alcohol alone (19427).
|
Valerian can have additive sedative effects when used with alprazolam. Also, valerian in high doses might modestly increase alprazolam levels, though this is not likely to be clinically significant.
Details
Valerian has sedative effects (9894). Theoretically, valerian might cause additive sedation when combined with alprazolam. Also, a small pharmacokinetic study shows that taking valerian extract 1000 mg daily (providing 11 mg valerenic acid) might increase alprazolam levels by about 19%. This might be due to valerian's mild inhibition of cytochrome P450 3A4 (CYP3A4) (13014). Despite being statistically significant, this increase is not likely to be clinically significant.
|
Valerian can have additive sedative effects when used concomitantly with CNS depressant drugs.
Details
|
Valerian does not seem to have a clinically relevant effect on levels of drugs metabolized by CYP2D6.
Details
Although some in vitro evidence suggests that valerian affects CYP2D6, clinical pharmacokinetic (PK) studies show that valerian is unlikely to affect the CYP2D6 enzyme (13014,13536,19430,19431). In one PK study, taking valerian 1000 mg (providing about 11 mg valerenic acid) nightly for 14 days did not affect the metabolism of dextromethorphan, a CYP2D6 substrate. In another PK study, taking valerian 125 mg three times daily for 28 days did not affect metabolism of debrisoquine, an accepted CYP2D6 probe-substrate (13014,13536).
|
Valerian does not seem to have a clinically relevant effect on levels of drugs metabolized by CYP3A4.
Details
Although some in vitro evidence suggests that valerian extract might inhibit or induce CYP3A4, clinical pharmacokinetic (PK) studies show that valerian does not have a clinically significant effect on the CYP3A4 enzyme (6450,12214,13014,13536,19431). In one PK study, taking valerian 125 mg three times daily for 28 days did not affect metabolism of midazolam, an accepted CYP3A4 probe-substrate. In another PK study, taking valerian 1000 mg (providing about 11 mg valerenic acid) nightly for 14 days modestly increases levels of alprazolam, a CYP3A4 substrate, suggesting mild inhibition of CYP3A4 (13014,13536). However, this mild inhibition is unlikely to be clinically relevant.
|
Valerian might weakly inhibit glucuronidation and increase concentrations of drugs metabolized by UGT1A1 and UGT2B7.
Details
In vitro research shows that methanolic valerian extract and valerenic acid might competitively inhibit UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1) and UGT2B7 (81685).
|
Below is general information about the adverse effects of the known ingredients contained in the product Relaxing Evening Tea. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, Baikal skullcap seems to be well-tolerated.
There is currently a limited amount of information on the adverse effects of intravenous and topical Baikal skullcap.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, erythema, nausea, pruritus, and vomiting.
Intravenously: Skin reactions.
Topically: Dermatitis.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity and hypersensitivity pneumonitis have been reported with a specific combination product (Limbrel, Primus Pharmaceuticals) containing extracts of Baikal skullcap and catechu.
Cardiovascular ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, elevated triglyceride levels occurred in 1 of 10 patients who received 400 mg every 8 hours and 2 of 10 patients treated with 600 mg every 8 hours, compared with 0 of 10 patients who received 200 mg every 8 hours and 0 of 6 patients who received placebo. Triglyceride elevations were considered mild and resolved after discontinuation (110023).
Dermatologic
...Orally, taking Baikal skullcap may cause erythema and pruritus (105867).
Intravenously, Baikal skullcap as part of a Tanreqing injection has been associated with reports of skin reactions in some pediatric patients (96281).
Topically, several cases of allergic contact dermatitis have been reported after applying sunscreen containing Baikal skullcap extract (105869,105870). Allergic contact dermatitis has also been reported after applying a facial cream (Resveratrol BE, Skinceuticals) containing Baikal skullcap root extract 0.5% and resveratrol 1%. Patch testing identified a positive reaction to both ingredients (110024). Baikal skullcap-induced dermatitis appears to respond to treatment with a topical corticosteroid and calcineurin inhibitor (105870).
Gastrointestinal ...Orally, use of Baikal skullcap has been associated with epigastric pain, abdominal pain, constipation, diarrhea, nausea, and vomiting (101738,105867).
Hepatic
...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of acute liver damage.
There have been at least five published reports of liver damage associated with this product. In all cases, the patients were females aged 54-68 years taking doses of 250-500 mg twice daily for 1-3 months. Signs and symptoms included jaundice, pruritus, abdominal pain, fever, rash, and elevated serum bilirubin and liver transaminase levels. All patients fully recovered and levels normalized within 3 months after discontinuation (18009,96282). In addition to these published case reports, approximately 30 liver-related adverse events have been reported to the manufacturer of this product (18009). The mechanism of hepatotoxicity is unclear (18009,18010); it is estimated that the incidence of hepatotoxicity with this product is around 1 in 10,000, although the actual incidence is unknown (18010). In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Hepatotoxicity has also been reported in two patients taking a specific dietary supplement (Move Free Advanced, Reckitt Benckiser) containing Baikal skullcap, black catechu, glucosamine, chondroitin, and hyaluronic acid (33460) and in a patient taking Baikal skullcap, elderflower, horseradish, and white willow (101737). The investigators determined that the hepatotoxicity was likely caused by Baikal skullcap in these cases (33460,101737). Additionally, cases of liver injury are reported in 4 of 37 patients taking various Kampo formulations containing Baikal skullcap and other herbs daily. Patients presented with elevated liver function tests 7 to 38 days after consumption (112179). It is unclear if this adverse effect is from Baikal skullcap, other ingredients, or the combination.
In a small study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, liver transaminase elevations occurred in 2 of 10 patients who received 400 mg every 8 hours for 6 days, compared with 0 of 6 patients who received placebo. No patients receiving either 200 mg or 600 mg every 8 hours experienced liver transaminase elevations. The elevations were considered mild and resolved after discontinuation (110023).
Pulmonary/Respiratory ...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of hypersensitivity pneumonitis. Symptoms include fever, chills, headache, cough, chronic bronchitis, shortness of breath, weight loss, and fatigue. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Renal ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, proteinuria of undefined severity occurred in 1 of 10 patients who received 200 mg every 8 hours for 6 days, 3 of 10 patients who received 400 mg every 8 hours for 6 days, and 5 of 10 patients who received 600 mg every 8 hours for 6 days, compared with 1 of 6 patients who received placebo. The proteinuria was considered mild and resolved after discontinuation (110023).
General
...Orally, catnip is generally well-tolerated when used in appropriate amounts.
Most Common Adverse Effects:
Orally: Headache, malaise, vomiting.
Gastrointestinal ...Orally, large amounts of catnip might cause stomachache and vomiting (6,2596).
Neurologic/CNS ...Orally, taking too much catnip may result in headache and malaise (6). In one case, a toddler developed a stomachache and irritability, followed by lethargy and a hypnotic state, after ingesting raisins soaked in catnip tea and chewing on the tea bag (5,2596).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General ...There is insufficient reliable information available about the adverse effects of linden.
Cardiovascular ...Frequent consumption of linden tea is thought to be associated with cardiac damage, but this seems to be rare (6).
Immunologic ...Orally, there is one case report of allergic reaction to linden pollen in a linden flower tea (12). Topically, there is one case report of contact urticaria following the use of a linden extract-containing shampoo (12).
General
...Orally, passion flower is well tolerated.
Most Common Adverse Effects:
Orally: Confusion, dizziness, hypersensitivity, and sedation.
Cardiovascular ...There is a case report involving a 34-year-old female who was hospitalized with severe nausea, vomiting, drowsiness, prolonged QT interval, and episodes of nonsustained ventricular tachycardia following use of passion flower extract tablets (Sedacalm, Bioplus Healthcare), 1500 mg on day 1 and 2000 mg on day 2 to relieve stress. All symptoms resolved within one week after passion flower was discontinued (6251).
Genitourinary ...The alkaloids harman and harmaline, which are sometimes found in small amounts in passion flower, have been reported to have uterine stimulant activity (4,11020,95037).
Hematologic ...Orally, passion flower has been reported to cause epistaxis in one clinical trial (95038). Vasculitis has also been reported with use of a specific herbal product (Relaxir) produced mainly from the fruits of passion flower (6).
Hepatic ...There is debate about whether passion flower contains cyanogenic glycosides. Several related Passiflora species do contain these constituents (3), including Passiflora edulis, which is associated with liver and pancreatic toxicity (7).
Immunologic
...An idiosyncratic hypersensitivity reaction characterized by urticaria and cutaneous vasculitis has been reported in a 77-year-old male with rheumatoid arthritis after taking a specific combination product that included passion flower extract (Naturest) (68308).
It is unclear if these effects were caused by passion flower or other ingredients.
In clinical trials, passion flower has been reported to cause allergy symptoms including sinus irritation; however, the frequency of these events was statistically nonsignificant when compared to treatment with midazolam 15 mg (95038).
Musculoskeletal ...Orally, passion flower has been reported to cause muscle relaxation in a clinical trial (95038).
Neurologic/CNS ...Orally, sedation, dizziness, ataxia, and confusion have been reported in clinical trials. However, these events generally do not necessitate discontinuation (8007,15391,15392,95036,95038). Altered consciousness has been reported with use of a specific herbal product (Relaxir) produced mainly from the fruits of passion flower (6).
General
...Orally, topically, or rectally, peppermint oil is generally well tolerated.
Inhaled,
peppermint oil seems to be well tolerated. Intranasally, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted. Orally, peppermint leaf seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, anal burning, belching, diarrhea, dry mouth, heartburn, nausea, and vomiting.
Topically: Burning, dermatitis, irritation, and redness.
Dermatologic
...Topically, peppermint oil can cause skin irritation, burning, erythema, and contact dermatitis (3802,11781,31528,43338,68473,68457,68509,96361,96362).
Also, a case of severe mucosal injury has been reported for a patient who misused an undiluted over the counter mouthwash that contained peppermint and arnica oil in 70% alcohol (19106).
In large amounts, peppermint oil may cause chemical burns when used topically or orally. A case of multiple burns in the oral cavity and pharynx, along with edema of the lips, tongue, uvula, and soft palate, has been reported for a 49-year-old female who ingested 40 drops of pure peppermint oil. Following treatment with intravenous steroids and antibiotics, the patient's symptoms resolved over the course of 2 weeks (68432). Also, a case of chemical burns on the skin and skin necrosis has been reported for a 35-year-old male who spilled undiluted peppermint oil on a previous skin graft (68572). Oral peppermint oil has also been associated with burning mouth syndrome and chronic mouth ulceration in people with contact sensitivity to peppermint (6743). Also, excessive consumption of mint candies containing peppermint oil has been linked to cases of stomatitis (13114).
Gastrointestinal ...Orally, peppermint oil can cause heartburn, nausea and vomiting, anal or perianal burning, abdominal pain, belching, dry mouth, diarrhea, and increased appetite (3803,6740,6741,6742,10075,11779,11789,17682,68497,68514)(68532,68544,96344,96360,102602,104219,107955). Enteric-coated capsules might help to reduce the incidence of heartburn (3802,4469,6740,11777). However, in one clinical study, a specific enteric-coated formulation of peppermint oil (Pepogest; Nature's Way) taken as 180 mg three times daily was associated with a higher rate of adverse effects when compared with placebo (48% versus 31%, respectively). Specifically, of the patients consuming this product, 11% experienced belching and 26% experienced heartburn, compared to 2% and 12%, respectively, in the placebo group (107955). A meta-analysis of eight small clinical studies in patients with irritable bowel syndrome shows that taking enteric-coated formulations of peppermint oil increases the risk of gastroesophageal reflux symptoms by 67% when compared with a control group (109980). Enteric-coated capsules can also cause anal burning in people with reduced bowel transit time (11782,11789).
Genitourinary ...Orally, a sensitive urethra has been reported rarely (102602).
Hepatic ...One case of hepatocellular liver injury has been reported following the oral use of peppermint. Symptoms included elevated liver enzymes, fatigue, jaundice, dark urine, and signs of hypersensitivity. Details on the dosage and type of peppermint consumed were unavailable (96358).
Immunologic ...One case of IgE-mediated anaphylaxis, characterized by sudden onset of lip and tongue swelling, tightness of throat, and shortness of breath, has been reported in a 69-year-old male who consumed peppermint candy (89479). An allergic reaction after use of peppermint oil in combination with caraway oil has been reported in a patient with a history of bronchial asthma (96344). It is not clear if this reaction occurred in response to the peppermint or caraway components.
Neurologic/CNS ...Orally, headache has been reported rarely (102602).
Ocular/Otic ...Orally, peppermint has been reported to cause blurry vision (3803).
General
...There is currently a limited amount of information available on the adverse effects of skullcap.
Most Common Adverse Effects:
Orally: Cognitive impairment, digestive disturbances, sedation.
Gastrointestinal ...Orally, mild digestive disturbances were reported in around 9% of patients taking skullcap 350 mg three times daily for 2 weeks (91690).
Hepatic ...There are four reports of hepatotoxicity associated with products thought to contain skullcap. However, it is uncertain whether the products actually contained skullcap. It is thought that the products might have been contaminated with an adulterant such as germander (515), which is known to cause liver damage.
Neurologic/CNS ...A single skullcap extract dose of 100 mg does not seem to have adverse CNS effects. However, a higher dose of 200 mg might cause sedation and cognitive impairment (12216). One patient taking skullcap 350 mg three times daily for 2 weeks reported vivid dreams (91690). It is unclear if this event was associated with skullcap.
General
...Orally, strawberry is well tolerated when taken in the amounts commonly found in food.
When taken in medicinal amounts, strawberry seems to be generally well tolerated (100109,100113,100116,100119). Rarely, strawberry has been reported to cause nausea and allergic reactions, including oral allergy syndrome and skin reactions (100113,100119,103880).
Topically, strawberry can cause contact dermatitis (13637).
Gastrointestinal ...Orally, taking freeze-dried strawberry powder 50 grams daily has been reported to cause nausea in clinical trials (100113,100119).
Immunologic ...Orally, consuming strawberry has been reported to cause allergic reactions, including oral allergy syndrome and skin reactions, in some patients. (103880). Topically, strawberry has caused contact urticaria in one case report (13637). Overall, allergy to strawberry appears to be rare (103880).
General
...Orally, valerian is generally well-tolerated.
Most Common Adverse Effects:
Orally: Dizziness, drowsiness, and mental slowness. Other reported side effects include headache, gastrointestinal upset, excitability, and vivid dreams. When used chronically and abruptly stopped, symptoms of withdrawal such as tachycardia, anxiety, irritability, and insomnia might occur. Advise patients to taper doses slowly after extended use.
Serious Adverse Effects (Rare):
Orally: Several case reports raise concerns about hepatotoxicity after the use of valerian and valerian-containing multi-ingredient dietary supplements. Withdrawal from chronic valerian use has been associated with cases of cardiac failure and hallucinations.
Cardiovascular ...When used orally in high doses for an extended period of time, valerian withdrawal has been associated with tachycardia and high output cardiac failure in one patient with a history of coronary artery disease (3487). Chest tightness has been reported for an 18-year-old female who took 40-50 capsules containing valerian 470 mg/capsule (659). A case of severe hypotension, suspected to be due to vasodilation, hypocalcemia, and hypokalemia, has been reported for a patient who injected an unknown quantity of a crude tap water extract of raw valerian root (81734).
Dermatologic ...Orally, valerian might rarely cause a rash. A case of valerian-related rash that resolved after valerian root discontinuation was reported in clinical research (19422).
Gastrointestinal ...Orally, valerian has been associated with increased incidence of gastrointestinal problems including diarrhea, nausea, vomiting, and stomach pain (15046,19406,19407,19422,110712). In one individual, taking 20 times the normal dose caused abdominal cramping (659).
Hepatic
...There have been several case reports of hepatotoxicity associated with the use of multi-ingredient oral preparations containing valerian (8243,96241).
In one case report, a 57-year-old man presented with acute hepatitis after consuming a cold and flu remedy containing valerian 2 grams for 3 days; the remedy also contained white willow, elderberry, and horseradish. Although the use of the cold and flu remedy was discontinued one month prior to symptom presentation, the acute hepatitis was attributed to valerian root and treated with steroids (96241). It is possible, however, that some of these preparations may have been adulterated with hepatotoxic agents (8243).
Hepatotoxicity involving long-term use of single-ingredient valerian preparations has also been reported (3484,17578). Also, a case of a 38-year-old female with liver insufficiency and cirrhosis of a vascular parenchymal nature who developed hepatotoxic symptoms following valerian and ethyl-alcohol abuse has been reported (81697). Symptoms resolved and laboratory values normalized following intense plasmapheresis treatment. Another case of acute hepatitis characterized by elevated aminotransferases, mild fibrosis, and liver inflammation has been reported for a 50-year-old female who consumed valerian root extract 5 mL three times weekly along with 10 tablets of viamine, a product containing dry valerian extract 125 mg/tablet, for 2 months (81696). Because a variety of doses were used in these cases, and many people have used higher doses safely, these hepatotoxic reactions might have been idiosyncratic. Tell patients the long-term effect of valerian on liver function is unknown.
Musculoskeletal ...In a case report, combined intake of valerian and passionflower caused throbbing and muscular fatigue when taken concomitantly with lorazepam (19429).
Neurologic/CNS ...Orally, valerian might cause dizziness, headaches, fatigue, sleepiness, and mental dullness (3484,17578,19411,19422,81723,89407). The severity of adverse effects appears to increase with higher doses (19411). However, taking valerian extracts in doses up to 1800 mg does not appear to significantly affect mood or psychomotor performance (10424,15044). Valerian does not usually have a negative impact on reaction time, alertness, and concentration the morning after intake (2074,8296). Clinical research shows that a single dose of valerian root 1600 mg is not associated with any changes in sleepiness, reaction time, or driving performance within 1-4 hours after intake (96240). More serious side effects may occur when valerian is taken at higher doses. In one individual, 20 times the normal dose caused tremor of the hand and foot and lightheadedness (659). In a case report, combined intake of valerian and passionflower caused shaking of the hands and dizziness when taken concomitantly with lorazepam (19429).
Psychiatric ...Orally, valerian has been associate with reports of restlessness, excitability, uneasiness, agitation, and vivid dreams (3484,17578,19411,19422). Chronic use and rapid cessation can lead to withdrawal syndrome with symptoms of agitation, insomnia, and hallucinations (104003). There appears to be a trend towards increased severity of adverse effects with higher doses (19411). A case of acute hypomania has been reported for a 21-year-old female patient who took a valerian decoction in water each night for one month to treat subclinical anxiety. Symptoms included euphoric mood, rapid speech, and increased sociability and sexual interest. Following cessation of valerian use and treatment with quetiapine 100 mg daily for two weeks, the patient recovered (89405). In another case report, an 85-year-old male with mild cognitive impairment, major depression, anxiety, and chronic kidney disease presented to the emergency department with hallucinations, confusion, and agitation thought to be due to abrupt cessation after taking valerian 600 mg daily for about 6 months. The symptoms resolved in about 5 days (104003).