Ingredients | Amount Per Serving |
---|---|
(D-Calcium Pantothenate, Pantethine)
(Pantothenic Acid (Form: as D-Calcium Pantothenate, Pantethine) )
|
100 mg |
(as Magnesium Citrate)
(Magnesium (Form: as Magnesium Citrate) )
|
25 mg |
(root/leaf)
(32% Oligosaccharides, 8% Withanolide Glycosides)
(Sensoril(R) Ashwagandha extract (Form: 8% Withanolide Glycosides Note: equal to 20 mg, 32% Oligosaccharides Note: equal to 80 mg) PlantPart: root/leaf )
|
250 mg |
(Gamma-Aminobutyric Acid)
|
200 mg |
150 mg | |
(3.5% Vitexin)
(Passion Flower extract (Form: 3.5% Vitexin Note: equal to 3.5 mg) )
|
100 mg |
(from Coconut Oil, 50% Medium Chain Triglycerides)
(Medium Chain Triglycerides (MCT) concentrate (Form: from Coconut Oil, 50% Medium Chain Triglycerides Note: equal to 40 mg) )
|
80 mg |
(seed)
(2% Jujubosides)
(Wild Jujube extract (Form: 2% Jujubosides Note: equal to 1 mg) PlantPart: seed )
|
50 mg |
Cellulose, Cellulose Note: capsule shell, L-Leucine, Maltodextrin (Form: Potato), Silica
Below is general information about the effectiveness of the known ingredients contained in the product Stress Shield Nighttime. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Stress Shield Nighttime. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Ashwagandha has been used with apparent safety in doses of up to 1250 mg daily for up to 6 months (3710,11301,19271,90649,90652,90653,97292,101816,102682,102683) (102684,102685,102687,103476,105824,109586,109588,109589,109590). ...when used topically. Ashwagandha lotion has been used with apparent safety in concentrations up to 8% for up to 2 months (111538).
PREGNANCY: LIKELY UNSAFE
when used orally.
Ashwagandha has abortifacient effects (12).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. GABA has been used with apparent safety in doses of 75 mg to 1.5 grams daily for up to one month in small clinical studies (19361,19363,19369,110134,110135). There is insufficient reliable information available about the safety of GABA when used orally for longer than one month or when used sublingually or intravenously.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used orally and appropriately (11726,11727,11728,11729,11730,93729). ...when used parenterally and appropriately (2275,2276,2278,11726,11727,11728,11729). There is insufficient reliable information available about the safety of MCTs when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. The pantothenic acid derivative calcium pantothenate has a generally recognized as safe (GRAS) status for use in food products (111258). While a tolerable upper intake level (UL) has not been established, pantothenic has been used in doses of 10-20 grams daily with apparent safety (15,6243,111258) ...when applied topically and appropriately, short-term. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and its derivatives are safe for use in cosmetic products in concentrations up to 5.3% (111258). Gels or ointments containing a derivative of pantothenic acid, dexpanthenol, at concentrations of up to 5%, have been used safely for up to 30 days (67802,67806,67817).
POSSIBLY SAFE ...when applied intranasally and appropriately, short-term. A dexpanthenol nasal spray has been used with apparent safety up to four times daily for 4 weeks (67826). ...when applied in the eyes appropriately, short-term. Dexpanthenol 5% eyedrops have been used with apparent safety for up to 28 days (67783). ...when injected intramuscularly and appropriately, short-term. Intramuscular injections of dexpanthenol 500 mg daily for up to 5 days or 250 mg weekly for up to 6 weeks have been used with apparent safety (67822,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately (15,6243).
Calcium pantothenate is generally recognized as safe (GRAS) when used as a food additive and in infant formula (111258). However, a tolerable upper intake level (UL) has not been established (15,6243). ...when applied topically and appropriately (67795,105190,111262). Infant products containing pantothenic acid and its derivatives have been used safely in concentrations of up to 5% for infant shampoos and 2.5% for infant lotions and oils. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and derivatives are safe for use in topical infant products. (111258).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during pregnancy is 6 mg (3094).
LACTATION: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during lactation is 7 mg (3094).
LIKELY SAFE ...when used orally as a flavoring in foods. The US Food and Drug Administration (FDA) lists passion flower as a permitted food flavoring additive, to be used in the minimum quantity necessary (91203).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Passion flower extract has been used with apparent safety at doses up to 800 mg daily for up to 8 weeks (88198,102866). A specific passion flower extract (Pasipay, Iran Darouk Pharmaceutical Company) has been safely used at a dose of 45 drops daily for up to one month (8007,95036). Also, a tea prepared by steeping 2 grams of the dried aerial parts of passion flower in 250 mL of boiling water for 10 minutes has been used nightly for 7 nights (17374). There is insufficient reliable information available about the safety of passion flower when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A specific passion flower product (Pasipay, Iran Darouk Pharmaceutical Company) has been used safely in children aged 6-13 years at a dose of 0.04 mg/ kg daily for 8 weeks (88197).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Some case reports suggest that passion flower use during the first and second trimesters of pregnancy may be associated with an increased risk for premature rupture of membranes and meconium aspiration syndrome; however, causality has not been confirmed (97279). The alkaloids harman and harmaline, which are sometimes found in passion flower, have been reported to have uterine stimulant activity (4,11020,95037). It is not known whether these constituents are present in sufficient quantities to have an effect.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. L-theanine has been used safely in clinical research in doses of up to 900 mg daily for 8 weeks (12188,36439,96331,96332,96334,96341,97923,101986,104976). There is insufficient reliable information available about the safety of L-theanine when used long-term.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A specific L-theanine product (Suntheanine, Taiyo Kagaku) 200 mg twice daily has been used safely in males aged 8-12 years for up to 6 weeks (91744).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when zizyphus fruit is consumed in the amounts typically found in foods.
POSSIBLY SAFE ...when zizyphus fruit or seed is used orally and appropriately, short-term. Zizyphus fruit powder has been used with apparent safety at doses up to 30 grams daily for up to 12 weeks (93317,104507). Zizyphus fruit extract has been used with apparent safety at a dose of 20-40 drops daily for up to 12 weeks (93316). Zizyphus seed extract has been used with apparent safety at a dose of 2 grams daily for 4 weeks (107921). There is insufficient reliable information available about the safety of zizyphus when used topically.
PREGNANCY AND LACTATION: LIKELY SAFE
when zizyphus fruit is consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of zizyphus fruit in amounts greater than those found in foods; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Stress Shield Nighttime. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking ashwagandha with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ashwagandha with antihypertensive drugs might increase the risk of hypotension.
Animal research suggests that ashwagandha might lower systolic and diastolic blood pressure (19279). Theoretically, ashwagandha might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking ashwagandha might increase the sedative effects of benzodiazepines.
There is preliminary evidence that ashwagandha might have an additive effect with diazepam (Valium) and clonazepam (Klonopin) (3710). This may also occur with other benzodiazepines.
|
Theoretically, taking ashwagandha might increase the sedative effects of CNS depressants.
Ashwagandha seems to have sedative effects. Theoretically, this may potentiate the effects of barbiturates, other sedatives, and anxiolytics (3710).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that ashwagandha extract induces CYP1A2 enzymes (111404).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that ashwagandha extract induces CYP3A4 enzymes (111404).
|
Theoretically, taking ashwagandha with hepatotoxic drugs might increase the risk of liver damage.
|
Theoretically, taking ashwagandha might decrease the effects of immunosuppressants.
|
Ashwagandha might increase the effects and adverse effects of thyroid hormone.
Concomitant use of ashwagandha with thyroid hormones may cause additive therapeutic and adverse effects. Preliminary clinical research and animal studies suggest that ashwagandha boosts thyroid hormone synthesis and secretion (19281,19282,97292). In one clinical study, ashwagandha increased triiodothyronine (T3) and thyroxine (T4) levels by 41.5% and 19.6%, respectively, and reduced serum TSH levels by 17.4% from baseline in adults with subclinical hypothyroidism (97292).
|
Theoretically, taking GABA with antihypertensive drugs might increase the risk of hypotension.
Some clinical research shows that GABA can decrease blood pressure in patients with hypertension (19367).
|
Theoretically, GABA might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
Endogenous GABA has well-established relaxant effects (51152) and GABA(A) receptors have an established physiological role in sleep (51143). However, the effects of GABA supplements are unclear, as it is unknown whether exogenous GABA crosses the blood-brain barrier (51120,51153,90570). Although there have been limited reports of drowsiness or tiredness with GABA supplements (5115,19364), these effects have not been widely reported in clinical studies. Additionally, intravenous GABA 0.1-1 mg/kg has been shown to induce anxiety in a dose-dependent manner (5116).
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
|
Gabapentin absorption can be decreased by magnesium.
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Concomitant use of passion flower with sedative drugs might cause additive effects and side effects.
|
Theoretically, passion flower might decrease the effects of CYP3A4 substrates.
In vitro research suggests that passion flower can induce CYP3A4 enzymes, albeit to a much lower degree than rifampin, a known CYP3A4 inducer (110704).
|
Theoretically, passion flower might reduce the bioavailability of OATP2B1 and OATP1A2 substrates.
In vitro research shows that the passion flower constituents apigenin and vitexin inhibit OATP2B1 and OATP1A2. This inhibition may be dose-dependent. One specific high-flavonoid passion flower extract (Valverde) seems to inhibit OATP2B1 and OATP1A2, while another extract with a lower flavonoid concentration (Arkocaps) shows less potent inhibition (105095). OATPs are responsible for the uptake of drugs and other compounds into the body; however, the specific activities of OATP2B1 and OATP1A2 are not well characterized.
|
Theanine might lower blood pressure, potentiating the effects of antihypertensive drugs.
|
Theoretically, theanine might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
|
Theoretically, zizyphus might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, zizyphus might cause additive sedative effects when taken with CNS depressants.
|
Theoretically, zizyphus might decrease the levels and clinical effects of drugs metabolized by CYP1A2.
Animal research shows that zizyphus induces CYP1A2 enzymes (93311). However, this effect has not been reported in humans.
|
Below is general information about the adverse effects of the known ingredients contained in the product Stress Shield Nighttime. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, ashwagandha seems to be well-tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, nausea, and vomiting. However, these adverse effects do not commonly occur with typical doses.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about acute hepatitis, acute liver failure, hepatic encephalopathy, the need for liver transplantation, and death due to liver failure with ashwagandha treatment.
Dermatologic ...Orally, dermatitis has been reported in three of 42 patients in a clinical trial (19276).
Endocrine ...A case report describes a 73-year-old female who had taken an ashwagandha root extract (unspecified dose) for 2 years to treat hypothyroidism which had been previously managed with levothyroxine. The patient was diagnosed with hyperthyroidism after presenting with supraventricular tachycardia, chest pain, tremor, dizziness, fatigue, irritability, hair thinning, and low thyroid stimulating hormone (TSH) levels. Hyperthyroidism resolved after discontinuing ashwagandha (108745). Additionally, an otherwise healthy adult who was taking ashwagandha extract orally for 2 months experienced clinical and laboratory-confirmed thyrotoxicosis. Thyrotoxicosis resolved 50 days after discontinuing ashwagandha, without other treatment (114111). Another case report describes a 37-year-old female who presented with moderate symptomatic hyponatremia secondary to adrenal insufficiency after chronic consumption of ashwagandha for 2 years. This subject was effectively managed with oral hydrocortisone (114790).
Gastrointestinal ...Orally, large doses may cause gastrointestinal upset, diarrhea, and vomiting secondary to irritation of the mucous and serous membranes (3710). When taken orally, nausea and abdominal pain (19276,110490,113609) and gastritis and flatulence (90651) have been reported.
Genitourinary ...In one case report, a 28-year-old male with a decrease in libido who was taking ashwagandha 5 grams daily over 10 days subsequently experienced burning, itching, and skin and mucous membrane discoloration of the penis, as well as an oval, dusky, eroded plaque (3 cm) with erythema on the glans penis and prepuce (32537).
Hepatic ...Orally, ashwagandha in doses of 154 mg to 20 grams daily has played a role in several case reports of cholestatic, hepatocellular, and mixed liver injuries. In most of these cases, other causes of liver injury were excluded, and liver failure did not occur. Symptoms included jaundice, pruritus, malaise, fatigue, lethargy, weight loss, nausea, diarrhea, abdominal pain and distension, stool discoloration, and dark urine. Symptom onset was typically 5-180 days from first intake, although in some cases onset occurred after more than 12 months of use (102686,107372,110490,110491,111533,111535,112111,113610,114113). Laboratory findings include elevated aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, serum bilirubin, and international normalized ratio (INR) (112111,113610,114113). In most cases, liver enzymes normalized within 1-5 months after discontinuation of ashwagandha (102686,107372,110491,111535,112111,114113). However, treatment with corticosteroids, lactulose, ornithine, ursodeoxycholic acid, and plasmapheresis, among other interventions, was required in one case (111533). Rarely, use of oral ashwagandha has been reported to cause hepatic encephalopathy, liver failure requiring liver transplantation, and acute-on-chronic liver failure resulting in death (110490,113610).
Neurologic/CNS ...Orally, ashwagandha has been reported to cause drowsiness (110492,113609). Headache, neck pain, and blurry vision have been reported in a 47-year-old female taking ashwagandha, cannabis, and venlafaxine. Imaging over the course of multiple years and hospital admissions indicated numerous instances of intracranial hemorrhage and multifocal stenosis of intracranial arteries, likely secondary to reversible cerebral vasoconstriction syndrome (RCVS) (112113). It is unclear whether the RCVS and subsequent intracranial hemorrhages were precipitated by ashwagandha, cannabis, or venlafaxine.
General
...Orally, GABA seems to be generally well tolerated.
Sublingually, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Drowsiness, gastric upset, minor throat burning, muscle weakness, and nausea.
Cardiovascular ...Intravenously, GABA can cause dose-related increases in blood pressure and pulse (5116).
Gastrointestinal ...Orally, minor throat burning has been associated with GABA in one study (5115). In another study in which GABA was administered with phosphatidylserine, one patient experienced severe gastric distress, two patients reported moderate nausea, and one reported constipation (19364). Children with cerebral palsy taking GABA experienced nausea and decreased appetite (19362).
Genitourinary ...In one study, one patient treated with oral GABA and phosphatidylserine reported transient amenorrhea (19364).
Musculoskeletal ...Orally, minor adverse effects associated with GABA included muscle weakness (5115).
Neurologic/CNS ...Orally, GABA may cause drowsiness, headache, or tiredness (5115,19364,112830). Four children with cerebral palsy taking GABA had convulsions, and an unspecified number experienced motor restlessness. However, causality of these adverse effects was not clear, and the dose of GABA was not specified (19362). Intravenously, GABA 50 mg has been associated with a "lack of alertness" in healthy female volunteers (51159).
Psychiatric ...Intravenously, GABA 0. 1-1.0 mg/kg has been shown to induce anxiety, dysphoria, and mood disturbances in a dose-dependent manner (5116).
Other ...In one study, patients taking GABA experienced a slight warming of the body (19370).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally, MCTs can cause significant gastrointestinal upset, especially with higher doses.
Most Common Adverse Effects:
Abdominal discomfort, diarrhea, essential fatty acid deficiency, intestinal gas noises, irritability, nausea, reflux, vomiting. Gastrointestinal disturbances are thought to be associated with higher doses of MCT. Since MCTs are fats, excessive consumption can result in weight gain.
Cardiovascular ...There is some concern that MCTs may further increase the risk for hypertriglyceridemia in some preterm infants due to immature lipoprotein lipase activity in these infants. A case of extremely elevated triglyceride levels of 4,736 mg/dL and associated lipemia retinalis has been reported at 43 weeks post-menstrual age (PMA) for a preterm infant born at 30 weeks' gestational age. It was discovered that the baby had been receiving MCT supplements in addition to breast milk starting at 42 weeks' PMA. MCT supplements were discontinued. One month later triglycerides were reduced to 287 mg/dL, and the retinal vasculature had a normal hue. However, at 2-month follow-up, triglyceride levels were elevated to levels higher than normal for age despite MCT discontinuation. Investigators speculated that a genetic disorder of lipid metabolism may also have contributed to the elevated triglyceride levels in addition to use of MCTs (96330).
Gastrointestinal ...Orally, MCTs can cause significant gastrointestinal upset. Diarrhea is the most commonly reported side effect (11723,93737,93738,101967). Other reported side effects include vomiting, irritability, nausea, reflux, abdominal discomfort, intestinal gas noises, and essential fatty acid deficiency (11723,93738,101967). Taking MCTs with food can reduce these adverse effects (93737). Gastrointestinal disturbances are thought to be associated with higher doses of MCT, such as 85 grams (93731).
Other ...Excessive consumption of MCTs can result in weight gain. MCT oil contains 6-8.5 calories per gram. One tablespoon provides about 14 grams and about 115 calories (11724).
General
...Orally, pantothenic acid is generally well tolerated.
Topically and intramuscularly, dexpanthenol, a synthetic form of pantothenic acid, seems to be well tolerated.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, eczema, irritation, and itching related to dexpanthenol.
Cardiovascular ...There is one case of eosinophilic pleuropericardial effusion in a patient taking pantothenic acid 300 mg per day in combination with biotin 10 mg per day for 2 months (3914).
Dermatologic ...Topically, dexpanthenol has been associated with itching, burning, skin irritation, contact dermatitis, and eczema (67779,67781,67788,111258,111262). Three cases of allergic contact dermatitis have been reported (111260,111261).
Gastrointestinal ...Orally, pantothenic acid has been associated with diarrhea (67822,111258).
General
...Orally, passion flower is well tolerated.
Most Common Adverse Effects:
Orally: Confusion, dizziness, hypersensitivity, and sedation.
Cardiovascular ...There is a case report involving a 34-year-old female who was hospitalized with severe nausea, vomiting, drowsiness, prolonged QT interval, and episodes of nonsustained ventricular tachycardia following use of passion flower extract tablets (Sedacalm, Bioplus Healthcare), 1500 mg on day 1 and 2000 mg on day 2 to relieve stress. All symptoms resolved within one week after passion flower was discontinued (6251).
Genitourinary ...The alkaloids harman and harmaline, which are sometimes found in small amounts in passion flower, have been reported to have uterine stimulant activity (4,11020,95037).
Hematologic ...Orally, passion flower has been reported to cause epistaxis in one clinical trial (95038). Vasculitis has also been reported with use of a specific herbal product (Relaxir) produced mainly from the fruits of passion flower (6).
Hepatic ...There is debate about whether passion flower contains cyanogenic glycosides. Several related Passiflora species do contain these constituents (3), including Passiflora edulis, which is associated with liver and pancreatic toxicity (7).
Immunologic
...An idiosyncratic hypersensitivity reaction characterized by urticaria and cutaneous vasculitis has been reported in a 77-year-old male with rheumatoid arthritis after taking a specific combination product that included passion flower extract (Naturest) (68308).
It is unclear if these effects were caused by passion flower or other ingredients.
In clinical trials, passion flower has been reported to cause allergy symptoms including sinus irritation; however, the frequency of these events was statistically nonsignificant when compared to treatment with midazolam 15 mg (95038).
Musculoskeletal ...Orally, passion flower has been reported to cause muscle relaxation in a clinical trial (95038).
Neurologic/CNS ...Orally, sedation, dizziness, ataxia, and confusion have been reported in clinical trials. However, these events generally do not necessitate discontinuation (8007,15391,15392,95036,95038). Altered consciousness has been reported with use of a specific herbal product (Relaxir) produced mainly from the fruits of passion flower (6).
General
...Orally, L-theanine seems to be well tolerated.
Most Common Adverse Effects:
Orally: Drowsiness, headaches.
Neurologic/CNS
...Orally, L-theanine may cause headaches (36439).
Patients have also reported drowsiness, increased duration of sleep, and increased dream activity after oral L-theanine use (96331).
A case of subtle facial tic starting within 4 days of taking L-theanine 400 mg daily has been reported for a pediatric patient. Although the tics reportedly ceased once theanine was discontinued, the child had exhibited tics in the past. Therefore, the adverse effect was not thought to be related to L-theanine (91744).
General ...Orally, zizyphus fruit extract and powder seem to be well tolerated.
Gastrointestinal ...Orally, zizyphus fruit extract was associated with three cases of mild diarrhea in newborn infants (93306). Zizyphus seed extract was associated with one case of dry mouth and one case of increased bowel movements in a small clinical study (107921).
Neurologic/CNS ...Orally, zizyphus seed extract was associated with two cases of headache in a small clinical study (107921).