Ingredients | Amount Per Serving |
---|---|
(Pyridoxine Hydrochloride)
(Vitamin B-6 (Form: as Pyridoxine HCl) )
|
5 mg |
(Cyanocobalamin)
(Vitamin B-12 (Form: as Cyanocobalamin) )
|
10 mcg |
(leaf)
(standardized for 20% Oleuropein)
(Zinc (Form: as Zinc Monomethionine) )
|
10 mg |
(Hypericum perforatum )
(flower)
(standardized [0.9-1.5 mg] 0.3%- 0.5% Hypericin)
(St. John's Wort (Form: standardized [0.9-1.5 mg] 0.3%- 0.5% hypericin) PlantPart: flower Genus: Hypericum Species: perforatum )
|
300 mg |
(Schisandra chinensis )
(fruit)
(standardized [4.5 mg] 9% Schisandrins)
(Schisandra (Form: standardized [4.5 mg] 9% schisandrins) PlantPart: fruit Genus: Schisandra Species: chinensis )
|
50 mg |
(Eleutherococcus senticosus )
(root)
(standardized [0.4 mg] 0.8% Eleutherosides)
(Eleuthero (Form: standardized [0.4 mg] 0.8% Eleutherosides) PlantPart: root Genus: Eleutherococcus Species: senticosus )
|
50 mg |
(L-Tyrosine Note: pharmaceutical grade free form amino acid )
|
25 mg |
(Tanacetum parthenium )
(leaf)
(standardized [0.175 mg] 0.7% Parthenolide)
(Feverfew (Form: standardized [0.175 mg] 0.7% Parthenolide) PlantPart: leaf Genus: Tanacetum Species: parthenium )
|
25 mg |
(Pfaffia paniculata )
(root)
(standardized [0.25 mg] 5% beta-Ecdysterone)
(Suma (Form: standardized [0.25 mg] 5% beta-Ecdysterone) PlantPart: root Genus: Pfaffia Species: paniculata )
|
5 mg |
Di-Calcium Phosphate, Microcrystalline Cellulose, Stearic Acid (Alt. Name: C18:0), Silica, Magnesium Stearate, Pharmaceutical Glaze
Below is general information about the effectiveness of the known ingredients contained in the product Herbal Actives NutriZac. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of suma.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Herbal Actives NutriZac. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately, short-term. Eleuthero root extract 300-2000 mg has been used safely in clinical trials lasting up to 3 months (730,1427,2574,7522,11099,15586,91509). There is insufficient reliable information available about the safety of eleuthero when used long-term.
CHILDREN: POSSIBLY SAFE
when used orally in adolescents aged 12-17 years, short-term.
Eleuthero 750 mg three times daily was used for 6 weeks with apparent safety in one clinical trial (75028). There is insufficient reliable information available about the safety of eleuthero in children or adolescents when used long-term.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Feverfew has been used safely in studies lasting up to 4 months (6959,6960,6961,13239).
POSSIBLY UNSAFE ...when fresh feverfew leaves are chewed. Chewing raw or unprocessed feverfew leaves can cause oral inflammation, ulceration, swelling of the lips, and sometimes loss of taste (6959).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Feverfew might cause uterine contractions and abortion (12); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when olive fruit is used orally and appropriately in amounts commonly found in foods.
POSSIBLY SAFE ...when olive leaf extract is used orally and appropriately. Olive leaf extract providing 51-100 mg oleuropein daily has been used with apparent safety for 6-8 weeks (92245,92247,101860). There is insufficient reliable information available about the safety of olive fruit extract when used in amounts greater than those found in foods.
PREGNANCY AND LACTATION:
Insufficient reliable information available; stick with amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately. Schisandra extract up to 1 gram daily has been used for up to 12 weeks with apparent safety (12,96632,105562,105563,112887).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Some evidence suggests schisandra fruit is a uterine stimulant (11).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. St. John's wort extracts in doses up to 900 mg daily seem to be safe when used for up to 12 weeks (3547,3550,4835,5096,6400,6434,7047,13021,13156,13157)(14417,76143,76144,89666,89669,95510). Some evidence also shows that St. John's wort can be safely used for over one year (13156,13157,76140), and may have better tolerability than selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) (4897,76153,76143,104036).
POSSIBLY SAFE ...when used topically and appropriately. St. John's wort 0.5% extract seems to be safe when used once weekly for 4 weeks (110327). St. John's wort oil has been used with apparent safely twice daily for 6 weeks (110326). However, topical use of St. John's wort can cause photodermatitis with sun exposure (110318).
POSSIBLY UNSAFE ...when used orally in large doses. St. John's wort extract can be unsafe due to the risk of severe phototoxic skin reactions. Taking 2-4 grams of St. John's wort extract (containing hypericin 5-10 mg) daily appears to increase the risk of photosensitivity (758,4631,7808).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Preliminary population research has found that taking St. John's wort while pregnant is associated with offspring that develop neural tube, urinary, and cardiovascular malformations. Subgroup analyses suggest that these risks may be higher when taking St. John's wort during the first trimester when compared with the second or third trimester. However, more research is needed to confirm these findings (106052). Animal-model research also shows that constituents of St. John's wort might have teratogenic effects (9687,15122). Until more is known, St. John's wort should not be taken during pregnancy.
LACTATION: POSSIBLY UNSAFE
when used orally.
Nursing infants of mothers who take St. John's wort have a greater chance of experiencing colic, drowsiness, and lethargy (1377,15122,22418); avoid using.
CHILDREN: POSSIBLY SAFE
when used orally, and appropriately, short-term.
St. John's wort extracts in doses up to 300 mg three times daily seem to be safe when used for up to 8 weeks in children aged 6-17 years (4538,17986,76110).
POSSIBLY SAFE ...when used orally short-term (12). There is insufficient reliable information available about the safety of suma when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Tyrosine has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Tyrosine has been used safely in doses up to 150 mg/kg daily for up to 3 months (7210,7211,7215). ...when used topically and appropriately (6155).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of tyrosine during pregnancy and lactation when used in medicinal amounts.
Some pharmacokinetic research shows that taking a single dose of tyrosine 2-10 grams orally can modestly increase levels of free tyrosine in breast milk. However, total levels are not affected, and levels remain within the range found in infant formulas. Therefore, it is not clear if the increase in free tyrosine is a concern (91467).
LIKELY SAFE ...when used orally, topically, intravenously, intramuscularly, or intranasally and appropriately. Vitamin B12 is generally considered safe, even in large doses (15,1344,1345,1346,1347,1348,2909,6243,7289,7881)(9414,9416,10126,14392,15765,82832,82949,82860,82864,90386)(111334,111551).
PREGNANCY: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA for vitamin B12 during pregnancy is 2.6 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA of vitamin B12 during lactation is 2.8 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 while breastfeeding.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily in the form of pyridoxine for adults (15,6243). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 30 mg daily for children aged 1-3 years, 40 mg daily for 4-8 years, 60 mg daily for 9-13 years, and 80 mg daily for 14-18 years (6243).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (6243).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring. The tolerable upper intake level (UL) refers to vitamin B6 in the form of pyridoxine and is 80 mg daily for those aged 14-18 years and 100 mg daily for 19 years and older (6243).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 80 mg daily for those aged 14-18 years and 100 mg daily for those 19 years and older.
The recommended dietary allowance (RDA) in lactating women is 2 mg daily (6243). There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
Below is general information about the interactions of the known ingredients contained in the product Herbal Actives NutriZac. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, eleuthero may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, eleuthero might have additive effects when used with antidiabetes drugs.
Animal research suggests that certain constituents of eleuthero have hypoglycemic activity in both healthy and diabetic animals (7591,73535,74932,74956,74988,74990). A small study in adults with type 2 diabetes also shows that taking eleuthero for 3 months can lower blood glucose levels (91509). However, one very small study in healthy individuals shows that taking powdered eleuthero 3 grams, 40 minutes prior to a 75-gram oral glucose tolerance test, significantly increases postprandial blood glucose levels when compared with placebo (12536). These contradictory findings might be due to patient-specific variability and variability in active ingredient ratios.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP1A2.
In vitro and animal research suggest that standardized extracts of eleuthero inhibit CYP1A2 (7532). This effect has not been reported in humans.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP2C9.
In vitro and animal research suggest that standardized extracts of eleuthero might inhibit CYP2C9 (7532). This effect has not been reported in humans.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP2D6.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP3A4.
|
Eleuthero might increase serum digoxin levels and increase the risk of side effects.
In one case report, a 74-year-old male who was stabilized on digoxin presented with an elevated serum digoxin level after starting an eleuthero supplement, without symptoms of toxicity. After stopping the supplement, serum digoxin levels returned to normal (543). It is not clear whether this was due to a pharmacokinetic interaction or to interference with the digoxin assay (15585). Although the product was found to be free of digoxin and digitoxin (543), it was not tested for other contaminants (797).
|
Theoretically, eleuthero might interfere with immunosuppressive drugs because of its immunostimulant activity.
|
Theoretically, eleuthero might decrease levels of drugs metabolized by OATP.
In vitro research suggests that eleuthero inhibits OATP2B1, which might reduce the bioavailability of oral drugs that are substrates of OATP2B1 (35450). Due to the weak inhibitory effect identified in this study, this interaction is not likely to be clinically significant.
|
Theoretically, eleuthero might increase levels of P-glycoprotein substrates.
|
Theoretically, feverfew might have additive effects and increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
Laboratory research suggests that feverfew may inhibit platelet aggregation (6935,6936,6942,6943,6944,6945,6951). Additionally, in one case report, a 36-year-old patient taking feverfew 2400 mg daily for 3 months experienced vaginal bleeding and a prolonged menstrual cycle, with a modest increase in partial thromboplastin time (PTT) and prothrombin time (PT) (107472).
|
Theoretically, feverfew might increase levels of drugs metabolized by CYP1A2.
Laboratory research shows that feverfew might inhibit CYP1A2 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, feverfew might increase levels of drugs metabolized by CYP2C19.
Laboratory research shows that feverfew might inhibit CYP2C19 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, feverfew might increase levels of drugs metabolized by CYP2C8.
Laboratory research shows that feverfew might inhibit CYP2C8 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, feverfew might increase levels of drugs metabolized by CYP2C9.
Laboratory research shows that feverfew might inhibit CYP2C9 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, feverfew might increase levels of drugs metabolized by CYP2D6.
Laboratory research shows that feverfew might inhibit CYP2D6 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, feverfew might increase levels of drugs metabolized by CYP3A4.
|
Theoretically, schisandra might increase the levels and clinical effects of cyclophosphamide.
In vitro research shows that schisandra increases the concentration of cyclophosphamide, likely through inhibition of cytochrome P450 3A4. After multiple doses of the schisandra constituents schisandrin A and schisantherin A, the maximum concentration of cyclophosphamide was increased by 7% and 75%, respectively, while the overall exposure to cyclophosphamide was increased by 29% and 301%, respectively (109636).
|
Schisandra can increase the levels and clinical effects of cyclosporine.
A small observational study in children with aplastic anemia found that taking schisandra with cyclosporine increased cyclosporine trough levels by 93% without increasing the risk of adverse events. However, the dose of cyclosporine was reduced in 9% of children to maintain appropriate cyclosporine blood concentrations (109637).
|
Theoretically, schisandra might increase the levels and clinical effects of CYP2C19 substrates.
In vitro research shows that schisandra inhibits CYP2C19, and animal research shows that schisandra increases the concentration of voriconazole, a CYP2C19 substrate (105566). Theoretically, schisandra may also inhibit the metabolism of other CYP2C19 substrates. This effect has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of CYP2C9 substrates.
In vitro and animal research suggests that schisandra induces CYP2C9 enzymes (14441). This effect has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of drugs metabolized by CYP3A4.
Most clinical and laboratory research shows that schisandra, administered either as a single dose or up to twice daily for 14 days, inhibits CYP3A4 and increases the concentration of CYP3A4 substrates such as cyclophosphamide, midazolam, tacrolimus, and talinolol (13220,17414,23717,91386,91388,91387,96631,105564,109636,109638,109639,109640,109641). Although one in vitro and animal study shows that schisandra may induce CYP3A4 metabolism (14441), this effect appears to be overpowered by schisandra's CYP3A4 inhibitory activity and has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of midazolam.
A small pharmacokinetic study in healthy adults shows that taking schisandra extract (Hezheng Pharmaceutical Co.) containing deoxyschizandrin 33.75 mg twice daily for 8 days and a single dose of midazolam 15 mg on day 8 increases the overall exposure to midazolam by about 119%, increases the peak plasma level of midazolam by 86%, and decreases midazolam clearance by about 52%. This effect has been attributed to inhibition of CYP3A4 by schisandra (91388).
|
Schisandra might increase the levels and clinical effects of P-glycoprotein substrates.
In vitro research shows that schisandra extracts and constituents such as schisandrin B inhibit P-glycoprotein mediated efflux in intestinal cells and in P-glycoprotein over-expressing cell lines (17414,105643,105644). Additionally, a small clinical study shows that schisandra increases the peak concentration and overall exposure to talinolol, a P-glycoprotein probe substrate (91386). Theoretically, schisandra might inhibit the efflux of other P-glycoprotein substrates.
|
Schisandra can increase the levels and clinical effects of sirolimus.
A small pharmacokinetic study in healthy volunteers shows that taking 3 capsules of schisandra (Hezheng Pharmaceutical Company) containing a total of 33.75 mg deoxyschizandrin twice daily for 13 days and then taking a single dose of sirolimus 2 mg increases the overall exposure and peak level of sirolimus by two-fold. This effect is thought to be due to inhibition of cytochrome P450 3A4 by schisandra, as well as possible inhibition of the P-glycoprotein drug transporter (105643).
|
Schisandra can increase the levels and clinical effects of tacrolimus.
Clinical research in healthy children and adults, transplant patients, and patients with nephrotic syndrome and various rheumatic immunologic disorders shows that taking schisandra with tacrolimus increases tacrolimus peak levels by 183% to 268%, prolongs or delays time to peak tacrolimus concentrations, increases overall exposure to tacrolimus by 126% to 343%, and decreases tacrolimus clearance by 19% to 73% (17414,91387,15570,96631,105623,109638,109639,109640,109641,112889)(112890,112972,112973,112974). This effect is thought to be due to inhibition of P-glycoprotein drug transporter and CYP3A4 and CYP3A5 by schisandra (17414,96631,105623,105643,105644,112974). Some clinical and observational studies suggest that schisandra increases tacrolimus levels similarly in both expressors and non-expressors of CYP3A5, while other studies suggest it does so to a greater degree in CYP3A5 expressors than non-expressors (105623,109638,109639,109640,112889,112890,112973,112974). Animal research suggests that the greatest increase in tacrolimus levels occurs when schisandra is taken either concomitantly or up to 2 hours before tacrolimus (105564), and clinical and observational research in humans suggests that schisandra may increase whole blood levels of tacrolimus and decrease clearance of tacrolimus in a dose-dependent manner (109639,109640,112972).
|
Schisandra can increase the levels and clinical effects of talinolol.
A small pharmacokinetic study in healthy volunteers shows that taking schisandra extract 300 mg twice daily for 14 days with a single dose of talinolol 100 mg on day 14 increases the peak talinolol level by 51% and the overall exposure to talinolol by 47%. This effect is thought to be due to the possible inhibition of cytochrome P450 3A4 and P-glycoprotein by schisandra (91386).
tly.
|
Theoretically, schisandra might increase the levels and clinical effects of voriconazole.
Animal research shows that oral schisandra given daily for 1 or 14 days increases levels of intravenously administered voriconazole, a cytochrome P450 (CYP) 2C19 substrate. This effect is thought to be due to inhibition of CYP2C19 by schisandra (105566). However, this interaction has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of warfarin.
Animal research suggests that oral schisandra extract, given daily for 6 days, reduces levels of intravenously administered warfarin. This effect might be due to the induction of cytochrome P450 (CYP) 2C9 metabolism by schisandra (14441). However, this interaction has not been reported in humans.
|
St. John's wort increases the clearance of alprazolam and decreases its effects.
Alprazolam, which is used as a probe for cytochrome P450 3A4 (CYP3A4) activity, has a two-fold increase in clearance when given with St. John's wort. St. John's wort reduces the half-life of alprazolam from 12.4 hours to 6 hours (10830).
|
St. John's wort may increase the clearance of ambristentan and decrease its effects.
Clinical research in healthy volunteers shows that taking St. John's wort 900 mg daily decreases the area under the concentration-time curve of ambrisentan 5 mg by 17% to 26%. Ambrisentan clearance was increased by 20% to 35% depending on CYP2C19 genotype. However, these small changes are unlikely to be clinically significant (99511).
|
St. John's wort might have additive phototoxic effects with aminolevulinic acid.
Concomitant use with St. John's wort extract may cause synergistic phototoxicity. Delta-aminolevulinic acid can cause a burning erythematous rash and severe swelling of the face, neck, and hands when taken with St. John's wort (9474).
|
St. John's wort might decrease the levels and clinical effects of boceprevir.
Boceprevir increases the maximum concentration and concentration at 8 hours of the St. John's wort constituent, hypericin, by approximately 30%. However, St. John's wort does not significantly change the area under the concentration-time curve or maximum plasma concentration of boceprevir 800 mg three times daily in healthy adults (95507,96552).
|
St. John's wort might reduce the levels and effects of bupropion.
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20%. This effect is attributed to the induction of cytochrome P450 2B6 (CYP2B6) by St. John's wort (89662).
|
St. John's wort might increase the levels and effects of clopidogrel.
Taking St. John's wort with clopidogrel seems to increase the activity of clopidogrel. In clopidogrel non-responders, taking St. John's wort seems to induce metabolism of clopidogrel to its active metabolite by cytochrome P450 enzymes 3A4 and 2C19. This leads to increased antiplatelet activity (13038,89671,96552). Theoretically, this might lead to an increased risk of bleeding in clopidogrel responders.
|
St. John's wort might decrease the levels and clinical effects of clozapine.
A case report describes a female with schizophrenia controlled on clozapine who had a return of symptoms when she started taking St. John's wort. The plasma concentration of clozapine was reduced, likely because its clearance was increased due to induction of the cytochrome P450 enzymes 3A4, 1A2, 2C9, and 2C19 by St. John's wort (96552).
|
St. John's wort increases the clearance of contraceptive drugs and reduces their clinical effects.
Females taking St. John's wort and oral contraceptives concurrently should use an additional or alternative form of birth control. St. John's wort can decrease norethindrone and ethinyl estradiol levels by 13% to 15%, resulting in breakthrough bleeding, irregular menstrual bleeding, or unplanned pregnancy (11886,11887,13099). Bleeding irregularities usually occur within a week of starting St. John's wort and regular cycles usually return when St. John's wort is discontinued. Unplanned pregnancy has occurred with concurrent use of oral contraceptives and St. John's wort extract (9880). St. John's wort is thought to induce the cytochrome P450 1A2 (CYP1A2), 2C9 (CYP2C9), and 3A4 (CYP3A4) enzymes, which are responsible for metabolism of progestins and estrogens in contraceptives (1292,7809,9204).
|
St. John's wort reduces the levels and clinical effects of cyclosporine.
Concomitant use can decrease plasma cyclosporine levels by 30% to 70% (1234,4826,4831,4834,7808,9596,10628,96552). Using St. John's wort with cyclosporine in patients with heart, kidney, or liver transplants can cause subtherapeutic cyclosporine levels and acute transplant rejection (1234,1293,1301,6112,6435,7808,9596). This interaction has occurred with a St. John's wort extract standardized to 0.3% hypericin and dosed at 300-600 mg per day (6435,10628). Withdrawal of St. John's wort can result in a 64% increase in cyclosporine levels (1234,4513,4826,4831,4834). St. John's wort induces cytochrome P450 3A4 (CYP3A4) and the multi-drug transporter, P-glycoprotein/MDR-1, which increases cyclosporine clearance (1293,1340,9204,9596).
|
St. John's wort may increase the metabolism and reduce the levels of CYP1A2 substrates.
|
St. John's wort may increase the metabolism and reduce the levels of CYP2B6 substrates.
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion, a CYP2B6 substrate, reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20% (89662).
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C19 substrates.
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces CYP2C19 and increases metabolism of mephenytoin (Mesantoin). In patients with wild-type 2C19 (2C19*1/*1) metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405). Theoretically, St. John's wort might increase metabolism of other CYP2C19 substrates.
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C9 substrates.
There is contradictory research about the effect of St. John's wort on CYP2C9. Some in vitro research shows that St. John's wort induces CYP2C9, but to a lesser extent than CYP3A4 (9204,10848,11889). St. John's wort also induces metabolism of the S-warfarin isomer, which is a CYP2C9 substrate (11890). Other research shows that St. John's wort 300 mg three times daily for 21 days does not significantly affect the pharmacokinetics of a single 400 mg dose of ibuprofen, which is also a CYP2C9 substrate (15546). Until more is known, use St. John's wort cautiously in patients who are taking CYP2C9 substrates.
|
St. John's wort increases the metabolism and reduces the levels of CYP3A4 substrates.
|
St. John's wort reduces the levels and clinical effects of digoxin.
St. John's wort can reduce the bioavailability, serum levels, and therapeutic effects of digoxin. Taking an extract of St. John's wort 900 mg, containing hyperforin 7.5 mg or more, daily for 10-14 days, can reduce serum digoxin levels by 25% in healthy people. St. John's wort is thought to affect the multidrug transporter, P-glycoprotein, which mediates the absorption and elimination of digoxin and other drugs (382,6473,7808,7810,9204,96552,97171). St. John's wort products providing less than 7.5 mg of hyperforin daily do not appear to affect digoxin levels (97171).
|
St. John's wort reduces the levels and clinical effects of docetaxel.
Clinical research shows that taking a specific St. John's wort product (Hyperiplant, VSM) 300 mg three times daily for 14 days increases docetaxel clearance by about 14%, resulting in decreased plasma concentrations of docetaxel in cancer patients. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89661).
|
Theoretically, St. John's wort may reduce the levels and clinical effects of fentanyl.
Given that St. John's wort induces cytochrome P450 3A4 (CYP3A4) and P-glycoprotein, it is possible that concomitant use of St. John's wort with fentanyl will reduce plasma levels and analgesic activity of fentanyl (96552). However, some clinical research in healthy adults shows that taking St. John's wort (LI-160, Lichtwer Pharma) 300 mg daily for 21 days does not alter the pharmacokinetics or clinical effects of intravenous fentanyl (102868). It is unclear if these findings can be generalized to oral, intranasal, or transdermal fentanyl.
|
St. John's wort may increase the levels and clinical effects of fexofenadine.
A single dose of St. John's wort decreases the clearance of fexofenadine and increases its plasma levels. However, the effect of St. John's wort on plasma levels of fexofenadine seems to be lost if dosing is continued for more than 2 weeks (9685). Patients taking fexofenadine and St. John's wort concurrently should be monitored for possible fexofenadine toxicity.
|
St. John's wort may reduce the levels and clinical effects of finasteride.
St. John's wort reduces plasma levels of finasteride in healthy male volunteers due to induction of finasteride metabolism via cytochrome P450 3A4 (CYP3A4). The clinical significance of this interaction is not known (96552).
|
St. John's wort may reduce the levels and clinical effects of gliclazide.
Taking St. John's wort decreases the half-life and increases clearance of gliclazide in healthy people (22431).
|
St. John's wort may increase the metabolism and reduce the effectiveness of atorvastatin, lovastatin, and rosuvastatin. However, it does not seem to affect pravastatin, pitavastatin, or fluvastatin.
Concomitant use of St. John's wort can reduce plasma concentrations of the active simvastatin metabolite, simvastatin hydroxy acid, by 28%. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter. This increases simvastatin clearance. It also increases the clearance of atorvastatin (Lipitor), lovastatin (Mevacor), and rosuvastatin (Crestor). St. John's wort does not seem to affect the plasma concentrations of pravastatin (Pravachol), pitavastatin (Livalo) or fluvastatin (Lescol), which are not substrates of CYP3A4 or P-glycoprotein (10627,96552,97171).
|
St. John's wort reduces the levels and clinical effects of imatinib.
Taking St. John's wort 900 mg daily for 2 weeks reduces the bioavailability and half-life of a single dose of imatinib and decreases its serum levels by 30% in healthy volunteers. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, which increases clearance of imatinib (11888,96552).
|
St. John's wort may reduce the levels and clinical effects of indinavir.
In healthy volunteers, taking St. John's wort concurrently with indinavir reduces plasma concentrations of indinavir by inducing metabolism via cytochrome P450 3A4 (CYP3A4) (96552). Theoretically, this could result in treatment failure and viral resistance.
|
St. John's wort reduces the levels and clinical effects of irinotecan.
St. John's wort 900 mg daily for 18 days decreases serum levels of irinotecan by at least 50%. Clearance of the active metabolite of irinotecan, SN-38, is also increased, resulting in a 42% decrease in the area under the concentration-time curve (9206,97171). This is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (7092,96552).
|
St. John's wort might reduce the levels and clinical effects of ivabradine.
Taking St. John's wort 900 mg containing 7.5 mg of hyperforin daily for 14 days with a single dose of ivabradine causes a 62% reduction in plasma levels of ivabradine. This interaction is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, increasing the metabolism of ivabradine (96552,97171).
|
St. John's wort reduces the levels and clinical effects of ketamine.
Taking St. John's wort 300 mg three times daily for 14 days can decrease maximum serum levels of ketamine by around 66% and area under the concentration-time curve of ketamine by 58%. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89663).
|
St. John's wort reduces the levels and clinical effects of mephenytoin.
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces cytochrome P450 2C19 (CYP2C19) and significantly increases metabolism of mephenytoin (Mesantoin). In people with wild-type 2C19, metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405).
|
St. John's wort might reduce the levels and clinical effects of methadone.
St. John's wort might decrease the effectiveness of methadone by reducing its blood concentrations. In one report, two out of four patients on methadone maintenance therapy for addiction experienced methadone withdrawal symptoms after taking St. John's wort 900 mg daily for a median of 31 days. There was a median decrease in blood methadone concentration of 47% (range: 19% to 60%) when compared to baseline (22419).
|
St. John's wort might reduce the levels and clinical effects of methylphenidate.
St. John's wort might decrease the effectiveness of methylphenidate. In one report, an adult male, stabilized on methylphenidate for attention deficit-hyperactivity disorder (ADHD), experienced increased attention problems and ADHD symptoms after taking St. John's wort 600 mg daily for 4 months. ADHD symptoms improved when St. John's wort was discontinued (15544). The mechanism of this interaction is unknown.
|
St. John's wort decreases the levels and clinical effects of NNRTIs.
St. John's wort increases the oral clearance of nevirapine (Viramune) by 35%. Subtherapeutic concentrations are associated with therapeutic failure, development of viral resistance, and development of drug class resistance. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter (1290,1340,4837,96552).
|
St. John's wort decreases the levels and clinical effects of omeprazole.
Taking St. John's wort, 300 mg orally three times daily for 14 days, reduces serum concentrations of omeprazole by inducing its metabolism via cytochrome P450 (CYP) 2C19 and 3A4. The reduction of omeprazole serum levels is dependent on CYP2C19 genotype, with reductions up to 50% in extensive metabolizers and 38% in poor metabolizers (22440,96552).
|
St. John's wort decreases the levels and clinical effects of oxycodone.
St. John's wort can increase oxycodone metabolism by inducing cytochrome P450 3A4 (CYP3A4), reducing plasma levels and analgesic activity (96552).
|
St. John's wort decreases the levels and clinical effects of P-glycoprotein substrates.
St. John's wort induces P-glycoprotein. P-glycoprotein is a carrier mechanism responsible for transporting drugs and other substances across cell membranes. When P-glycoprotein is induced in the gastrointestinal (GI) tract, it can prevent the absorption of some medications. In addition, induction of p-glycoprotein can decrease entry of drugs into the central nervous system (CNS) and decrease access to other sites of action (382,1340,7810,11722).
|
St. John's wort decreases the levels and clinical effects of phenobarbital.
St. John's wort may increase the metabolism of phenobarbital. Plasma concentrations of phenobarbital should be monitored carefully. The dose of phenobarbital may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
St. John's wort decreases the levels and clinical effects of phenprocoumon.
St. John's wort appears to increase the metabolism of phenprocoumon (an anticoagulant that is not available in the US) by increasing the activity of the cytochrome P450 2C9 (CYP2C9) enzyme. This may result in decreases in the anticoagulant effect and international normalized ratio (INR) (9204).
|
St. John's wort decreases the levels and clinical effects of phenytoin.
St. John's wort may increase the metabolism of phenytoin. Plasma concentrations of phenytoin should be monitored closely. The dose of phenytoin may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
Theoretically, St. John's wort might increase the likelihood for photosensitivity reactions when used in combination with photosensitizing drugs.
|
Theoretically, St. John's wort might decrease the levels and clinical effects of procainamide.
Animal research shows that taking St. John's wort extract increases the bioavailability of procainamide, but does not increase its metabolism (14865). Whether this interaction is clinically significant in humans is not known.
|
St. John's wort reduces the levels and clinical effects of PIs.
In healthy volunteers, St. John's wort can reduce the plasma concentrations of indinavir (Crixivan) by inducing cytochrome P450 3A4 (CYP3A4). This might result in treatment failure and viral resistance (1290,7808,96552). St. John's wort also induces P-glycoprotein, which can result in decreased intracellular protease inhibitor concentrations and increased elimination (9204).
|
Theoretically, St. John's wort might decrease the effectiveness of reserpine.
Animal research shows that St. John's wort can antagonize the effects of reserpine (758).
|
St. John's wort decreases the levels and clinical effects of rivaroxaban.
A small pharmacokinetic study in healthy volunteers shows that taking a single dose of rivaroxaban 20 mg after using a specific St. John's wort extract (Jarsin, Vifor SA) 450 mg orally twice daily for 14 days reduces the bioavailability of rivaroxaban by 24% and reduces rivaroxaban's therapeutic inhibition of factor Xa by 20% (104038).
|
Theoretically, St. John's wort might inhibit reuptake and increase levels of serotonin, resulting in additive effects with serotonergic drugs.
|
St. John's wort decreases the levels and clinical effects of tacrolimus.
Taking a St. John's wort extract (Jarsin) 600 mg daily significantly decreases tacrolimus serum levels. Dose increases of 60% may be required to maintain therapeutic tacrolimus levels in patients taking St. John's wort. St. John's wort is thought to lower tacrolimus levels by inducing cytochrome P450 3A4 (CYP3A4) enzymes (7095,10329). A small clinical study in healthy adults also shows that taking St. John's wort 300 mg three times daily for 10 days decreases the total systemic exposure to tacrolimus by 27% and 33% after taking a single 5 mg dose of immediate-release or prolonged-release tacrolimus, respectively (113094).
|
St. John's wort might decrease the levels of theophylline, although this effect might not be clinically relevant.
St. John's wort does not seem to significantly affect theophylline pharmacokinetics (11802). There is a single case report of a possible interaction with theophylline. A patient who smoked and was taking 11 other drugs experienced an increase in theophylline levels after discontinuation of St. John's wort. This increase has been attributed to a rebounding of theophylline serum levels after St. John's wort was no longer present to induce metabolism via cytochrome P450 1A2 (CYP1A2) (3556,7808,9204). However, studies in healthy volunteers show that St. John's wort is unlikely to affect theophylline to any clinically significant degree (11802).
|
St. John's wort might decrease the levels and clinical effects of tramadol.
|
St. John's wort might decrease the levels and clinical effects of voriconazole.
Clinical research shows that taking St. John's wort with voriconazole reduces voriconazole exposure and increases voriconazole metabolism by approximately 107%. Voriconazole is primarily metabolized by cytochrome P450 (CYP) 2C19, with CYP3A4 and CYP2C9 also involved (89660). St. John's wort induces CYP2C19, CYP3A4, and CYP2C9 (9204,10830,10847,10848,11889,11890,17405,22423,22424,22425)(22427,48603).
|
St. John's wort decreases the levels and clinical effects of warfarin.
Taking St. John's wort significantly increases clearance of warfarin, including both its R- and S-isomers (11890,15176). This is likely due to induction of cytochrome P450 (CYP) 1A2 and CYP3A4 (11890). St. John's wort can also significantly decrease International Normalized Ratio (INR) in people taking warfarin (1292). In addition, taking warfarin at the same time as St. John's wort might reduce warfarin bioavailability. When a dried extract is mixed with warfarin in an aqueous medium, up to 30% of warfarin is bound to particles, reducing its absorption (10448).
|
St. John's wort might decrease the levels and clinical effects of zolpidem.
|
Theoretically, tyrosine might decrease the effectiveness of levodopa.
Tyrosine and levodopa compete for absorption in the proximal duodenum by the large neutral amino acid (LNAA) transport system (2719). Advise patients to separate doses of tyrosine and levodopa by at least 2 hours.
|
Theoretically, tyrosine might have additive effects with thyroid hormone medications.
Tyrosine is a precursor to thyroxine and might increase levels of thyroid hormones (7212).
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Herbal Actives NutriZac. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, eleuthero root is generally well tolerated when used short-term.
Most Common Adverse Effects:
Orally: Diarrhea, dyspepsia, gastrointestinal upset, headache, nausea, and urticaria.
Cardiovascular ...Orally, increased blood pressure has been reported in children with hypotension taking eleuthero in one clinical study (74980). Eleuthero has been reported to cause tachycardia, hypertension, and pericardial pain in patients with rheumatic heart disease or atherosclerosis. It is unclear if these effects were caused by eleuthero, or by the cardioglycoside-containing herb, silk vine (Periploca sepium), which is a common adulterant found in eleuthero products (12,797,6500).
Dermatologic ...Orally, eleuthero has been reported to cause rash in some clinical studies (75013,75028).
Gastrointestinal ...Orally, eleuthero has been reported to cause dyspepsia, nausea, diarrhea, and gastrointestinal upset in some patients (74938,75028,91510).
Genitourinary ...Orally, mastalgia and uterine bleeding were reported in 7. 3% of females taking eleuthero 2 grams daily in one clinical study (6500,11099). These adverse effects seem to be more likely with higher doses.
Neurologic/CNS
...Orally, headaches have been reported in 9.
8% of people taking eleuthero in one clinical study (11099).
In one case report, a 53-year-old female developed spontaneous subarachnoid hemorrhage associated with the use of an herbal supplement containing red clover, dong quai, and eleuthero (70419). It is unclear if this event was related to the use of eleuthero, the other ingredients, the combination, or another cause entirely.
Psychiatric ...Orally, nervousness has been reported in 7. 3% of people taking eleuthero in one clinical study (11099). Eleuthero has also been reported to cause slight anxiety, irritability, and melancholy in some patients (6500,11099). These adverse effects seem to be more likely to occur with higher doses.
General
...Orally, feverfew is generally well tolerated.
Chewing fresh feverfew leaves is more likely to cause mouth ulceration and other adverse effects of the mouth, lips, and tongue when compared with commercial feverfew preparations.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, constipation, diarrhea, flatulence, heartburn, and nausea. Skin rash may occur in sensitive individuals.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, feverfew has been associated with palpitations in one patient in a clinical study (6959).
Dermatologic ...Orally, feverfew can cause skin rash (12383). Topically, allergic contact dermatitis can occur (6958,42856,42891). Allergic reactions to feverfew may be more likely in individuals sensitive to the Asteraceae/Compositae family. Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Gastrointestinal ...Orally, feverfew can cause gastrointestinal symptoms such as heartburn, nausea, diarrhea, constipation, abdominal pain and bloating, and flatulence (6938,6959,12383,22602). Oral numbness has also been reported when feverfew has been taken sublingually in combination with ginger (22602). The traditional method of feverfew administration-chewing fresh feverfew leaves-can result in mouth ulceration, inflamed oral mucosa and tongue, swelling of the lips, and occasionally, loss of taste (6935,6959). Mouth ulceration might result from direct contact with feverfew leaves during chewing, possibly attributable to the sesquiterpene lactone constituent (6959). Some researchers suggest that mouth ulceration is a systemic effect, but one study using dried feverfew capsules reported a higher incidence of mouth ulcers in subjects taking placebo than feverfew (6935,6959,6960).
Genitourinary ...Orally, feverfew has been associated with menstrual changes in one patient in a clinical study (6959) and in one case report involving a 36-year-old patient taking 800 mg of feverfew three times daily for 3 months (107472).
Immunologic ...Orally and topically, feverfew may cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family. Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Musculoskeletal ...Orally, feverfew has been associated with joint stiffness in two patients in a clinical study (6959). Discontinuation of oral feverfew after long-term use may cause "post-feverfew syndrome", which includes symptoms such as muscle and joint stiffness (6959,12153).
Neurologic/CNS ...Discontinuation of oral feverfew after long-term use may cause "post-feverfew syndrome", which includes symptoms such as anxiety, headaches, and insomnia (6959,12153).
Other ...Orally, feverfew may cause weight gain (12383).
General
...Orally, olive fruit is well tolerated when used in typical food amounts.
Olive leaf extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Headache and stomach discomfort.
Dermatologic ...Orally, one patient in one clinical trial reported bad skin and acne after using olive leaf extract (101860).
Gastrointestinal ...Orally, three patients in one clinical trial reported stomach ache after using olive leaf extract (101860).
Neurologic/CNS ...Orally, three patients in one clinical trial reported headache after using olive leaf extract (101860).
Psychiatric ...In one case report, a 67-year-old female experienced irritability, anger, a lack of control, and feelings of sadness and negativity after consuming a multi-ingredient product containing olive leaf extract 5 grams, horseradish root, and eyebright daily for 38 days. All psychiatric symptoms disappeared within days of stopping the combined product. It is hypothesized that the hydroxytyrosol component of olive leaf extract contributed to these symptoms due to its chemical similarity to dopamine; however, it is not clear if these symptoms were due to the olive leaf extract or to the other ingredients (96245).
Pulmonary/Respiratory ...Olive tree pollen can cause seasonal respiratory allergy (1543).
General
...Orally, schisandra seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Decreased appetite, heartburn, stomach upset, and urticaria.
Dermatologic ...Orally, schisandra can cause urticaria in some patients (11).
Gastrointestinal ...Orally, schisandra can cause heartburn, decreased appetite, and stomach upset (11).
General
...Orally, St.
John's wort is generally well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, dizziness, dry mouth, gastrointestinal discomfort (mild), fatigue, headache, insomnia, restlessness, and sedation.
Topically: Skin rash and photodermatitis.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of suicidal ideation and psychosis after taking St. John's wort.
Cardiovascular
...In clinical research, palpitations have been reported for patients taking St.
John's wort orally, although the number of these events was higher for the patients taking sertraline (76070). In one case report, an adult female developed recurrent palpitations and supraventricular tachycardia (SVT) within 3 weeks of initiating St. John's wort 300 mg daily. SVT and related symptoms responded to Valsalva maneuvers and did not recur after discontinuing therapy (106051).
Edema has also been reported in clinical research for some patients treated with St. John's wort 900-1500 mg daily for 8 weeks (10843). Cardiovascular collapse following induction of anesthesia has been reported in an otherwise healthy patient who had been taking St. John's wort for 6 months (8931). A case of St. John's wort-induced hypertension has been reported for a 56-year-old patient who used St. John's wort extract 250 mg twice daily for 5 weeks. Blood pressure normalized after discontinuation of treatment (76073). A case of new-onset orthostatic hypotension and light-headedness has been reported for a 70 year-old homebound patient who was taking multiple prescription medications and herbal products, including St. John's wort (76128). When all herbal products were discontinued, these symptoms improved, and the patient experienced improvement in pain control.
Dermatologic
...Both topical and chronic oral use of St.
John's wort can cause photodermatitis (206,620,758,4628,4631,6477,13156,17986,76072,76148)(95506,110318). The average threshold dose range for an increased risk of photosensitivity appears to be 1.8-4 grams St. John's wort extract or 5-10 mg hypericin, daily. Lower doses might not cause this effect (4542,7808). For example, a single dose of St. John's wort extract 1800 mg (5.4 mg hypericin) followed by 900 mg (2.7 mg hypericin) daily does not seem to produce skin hypericin concentrations thought to be high enough to cause phototoxicity (3900,4542,76266). Females appear to have a higher risk of dose-related photosensitivity. In a dose-ranging, small clinical trial, almost all of the female participants experienced mild to moderate photosensitivity with paresthesia in sun-exposed skin areas after administration of St. John's wort (Jarsin, Casella Med) 1800 mg daily for 3-6 days. Symptoms resolved about 12-16 days after discontinuation (95506). Male participants reported no adverse effects at this dose, and both genders reported no adverse effects at lower doses. Light or fair-skinned people should employ protective measures against direct sunlight when using St. John's wort either topically or orally (628).
Total body erythroderma without exposure to sunlight, accompanied by burning sensation of the skin, has also been reported (8930). Orally, St. John's wort may cause pruritus or skin rash, although these events seem to occur infrequently (76140,76148,76245). A case of persistent scalp and eyebrow hair loss has been reported for a 24-year-old schizophrenic female who was taking olanzapine plus St. John's wort 900 mg/day orally (7811). Also, a case of surgical site irritation has been reported for a patient who applied ointment containing St. John's wort (17225).
Endocrine ...A case of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in a 67-year-old male with depression has been reported. During a 3-month period, the patient was taking St. John's wort 300 mg daily then increased to 600-900 mg daily with no adverse effects despite a low serum sodium level of 122mEq/L, elevated levels of urine sodium, and urine osmolality suggestive of SIADH. St. John's wort appeared to be the only contributing factor. The patient's sodium level normalized 3 weeks after discontinuation of St. John's wort (95508).
Gastrointestinal ...Orally, St. John's wort may cause dyspepsia, anorexia, diarrhea, nausea, vomiting, and constipation, although these events seems to occur infrequently (4897,13021,17986,76070,76071,76113,76146,76150,76271).
Genitourinary
...Orally, St.
John's wort can cause intermenstrual or abnormal menstrual bleeding (1292,76056). However, this effect has occurred in patients who were also taking an oral contraceptive. Changes in menstrual bleeding might be the result of a drug interaction (1292,76056). Also, St. John's wort has been associated with anorgasmia and frequent urination when used orally (10843,76070).
Sexual dysfunction can occur with St. John's wort, but less frequently than with SSRIs (10843). A case of erectile dysfunction and orgasmic delay has been reported for a 49-year-old male after taking St. John's wort orally for one week. Co-administration of sildenafil 25-50 mg prior to sexual activity reversed the sexual dysfunction. Previously, the patient had experienced orgasmic delay, erectile dysfunction, and inhibited sexual desire when taking a selective serotonin reuptake inhibitor (sertraline) (4836).
Hepatic ...A case of acute hepatitis with prolonged cholestasis and features of vanishing bile duct syndrome has been reported for a patient who used tibolone and St. John's wort orally for 10 weeks (76135). A case of jaundice with transaminitis and hyperbilirubinemia has been reported for a 79 year-old female who used St. John's wort and copaiba (95505). Laboratory values normalized 7 weeks after discontinuation of both products.
Musculoskeletal ...Orally, St. John's wort may cause muscle or joint stiffness, tremor, muscle spasms, or pain, although these events appear to occur rarely (76070).
Neurologic/CNS ...St. John's wort may cause headache, dizziness, fatigue, lethargy, or insomnia (5096,13021,76070,76071,76113,76132,76133,76150,89666). Isolated cases of paresthesia have been reported for patients taking St. John's wort (5073). A case of subacute toxic neuropathy has been reported for a 35-year-old female who took St. John's wort 500 mg daily orally for 4 weeks (621).
Ocular/Otic ...There is concern that taking St. John's wort might increase the risk of cataracts. The hypericin constituent of St. John's wort is photoactive and, in the presence of light, may damage lens proteins, leading to cataracts (1296,17088). In population research, people with cataracts were significantly more likely to have used St. John's wort compared to people without cataracts (17088). Ear and labyrinth disorders have been possibly attributed to use of St. John's wort in clinical research, although these events rarely occur (76120).
Psychiatric
...St.
John's wort can induce hypomania in depressed patients and mania in depressed patients with occult bipolar disorder (325,3524,3555,3568,10845,76047,76064,76137,110318). Cases of first-episode psychosis have been reported for females who used St. John's wort orally. In both cases, symptoms resolved following discontinuation of St. John's wort and treatment with antipsychotics for several weeks (13015,89664). Also, psychosis and delirium have been reported for a 76-year-old female patient who used St. John's wort for 3 weeks. The patient may have been predisposed to this effect due to undiagnosed dementia (76270). Restlessness, insomnia, panic, and anxiety have been noted for some patients taking St. John's wort orally (5073,13156,76070,76132,76268,76269,89665).
In isolated cases, St. John's wort has been associated with a syndrome consisting of extreme anxiety, confusion, nausea, hypertension, and tachycardia. These symptoms may occur within 2-3 weeks after it is started, in patients with no other predisposing factors. This syndrome has been diagnosed as the serotonin syndrome (6201,7811,110318). In one case, the symptoms began after consuming tyramine-containing foods, including aged cheese and red wine (7812). In an isolated case, a 51-year-old female reported having had suicidal and homicidal thoughts for 9 months while taking vitamin C and a St. John's wort extract. Symptoms disappeared within 3 weeks of discontinuing treatment (76111). A case of decreased libido has been reported for a 42-year-old male with mood and anxiety disorders who had taken St. John's wort orally for 9 months (7312).
St. John's wort has been associated with withdrawal effects similar to those found with conventional antidepressants. Headache, nausea, anorexia, dry mouth, thirst, cold chills, weight loss, dizziness, insomnia, paresthesia, confusion, and fatigue have been reported. Withdrawal effects are most likely to occur within two days after discontinuation but can occur one week or more after stopping treatment in some people. Occurrence of withdrawal symptoms may not be related to dose or duration of use (3569,11801).
Pulmonary/Respiratory ...Orally, St. John's wort may cause sore throat, swollen glands, laryngitis, sinus ache, sweating, and hot flashes, although the frequency of these events appears to be similar to placebo (76150).
Renal ...Orally, St. John's wort has been associated with a case report of acute kidney failure in a 46-year-old female after one dose of homemade St. John's wort tea. Three sessions of hemodialysis were required before there was full recovery (106741). However, causality is unclear since the patient had also been taking diclofenac intermittently for a month prior to developing kidney failure.
Other ...Sjogren's syndrome has been reported in a patient taking herbal supplements including St. John's wort, echinacea, and kava. Echinacea may have been the primary cause, because Sjogren's syndrome is an autoimmune disorder. The role of St. John's wort in causing this syndrome is unclear (10319).
General ...Orally, suma seems to be well tolerated (12). No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted. When inhaled, powdered suma root can cause occupational asthma (515,76647).
Immunologic ...When inhaled, suma root powder has caused allergic asthma symptoms in a single patient (76647).
General
...Orally, tyrosine seems to be well tolerated.
No serious adverse effects have been documented; however, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Fatigue, headache, heartburn, and nausea.
Gastrointestinal ...Orally, tyrosine can cause nausea and heartburn when taken at a dose of 150 mg/kg (7211). Taking tyrosine 4 grams daily in combination with 5-hydroxytryptophan 800 mg and carbidopa 100 mg can cause diarrhea, nausea, and vomiting. These effects can be mitigated by lowering the dosage (918).
Musculoskeletal ...Orally, larger doses of tyrosine (150 mg/kg) can cause arthralgia, but this is uncommon (7211).
Neurologic/CNS ...Orally, larger doses of tyrosine (150 mg/kg) can cause headache and fatigue (7211). Taking a combination of tyrosine 4 grams, 5-hydroxytryptophan 800 mg, and carbidopa 100 mg can cause drowsiness and agitation. These effects can be mitigated by lowering the dosage (918).
General
...Orally, intramuscularly, and topically, vitamin B12 is generally well-tolerated.
Most Common Adverse Effects:
Intramuscular: Injection site reactions.
Serious Adverse Effects (Rare):
Intramuscularly: Severe hypokalemia has been rarely linked with correction of megaloblastic anemia with vitamin B12.
Cardiovascular ...In human clinical research, an intravenous loading dose of folic acid, vitamin B6, and vitamin B12, followed by daily oral administration after coronary stenting, increased restenosis rates (12150). Hypertension following intravenous administration of hydroxocobalamin has been reported in human research (82870,82864).
Dermatologic
...Orally or intramuscularly, vitamin B12 can cause allergic reactions such as rash, pruritus, erythema, and urticaria.
Theoretically, allergic reactions might be caused by the cobalt within the vitamin B12 molecule (82864,90373,90381,103974). In one case report, oral methylcobalamin resulted in contact dermatitis in a 59-year-old Japanese female with a cobalt allergy (103974). In another case report, a 69-year-old female developed a symmetrical erythematous-squamous rash for 5 years after oral vitamin B12 supplementation for 10 years. A patch test confirmed that the systemic allergic dermatitis was due to vitamin B12 supplementation, which resolved 3 months after discontinuation (114578).
Vitamin B12 (intramuscular or oral) has also been associated with at least 19 cases of acneiform eruptions which resolved upon discontinuation of vitamin B12 (90365,90369,90388). High-dose vitamin B12 (20 mcg daily) and vitamin B6 (80 mg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may last up to four months after the supplement is stopped and can be treated with systemic corticosteroids and topical therapy (10998,82870,82871).
Gastrointestinal ...Intravenously, vitamin B12 (hydroxocobalamin) 2. 5-10 grams can cause nausea and dysphagia (82864).
Genitourinary ...Intravenously, vitamin B12 (hydroxocobalamin) 5-15 grams has been associated with chromaturia in clinical research (82870,82871,112282,112264).
Hematologic ...According to case report data, the correction of megaloblastic anemia with vitamin B12 may result in fatal hypokalemia (82914).
Musculoskeletal ...According to case report data, correction of megaloblastic anemia with vitamin B12 has precipitated gout in susceptible individuals (82879).
Neurologic/CNS ...Treatment with vitamin B12 has been rarely associated with involuntary movements in infants with vitamin B12 deficiency (90370,90385,90397). In some cases these adverse reactions were misdiagnosed as seizures or infantile tremor syndrome (90370,90385). These adverse reactions presented 2-5 days after treatment with vitamin B12 and resolved once vitamin B12 was discontinued (90370,90385,90397).
Oncologic ...Although some epidemiological research disagrees (9454), most research has found that elevated plasma levels of vitamin B12 are associated with an increased risk of various types of cancer, including lung and prostate cancers and solid tumors (50411,102383,107743). One study found, when compared with blood levels of vitamin B12 less than 1000 ng/mL, plasma vitamin B12 levels of at least 1000 ng/mL was strongly associated with the occurrence of solid cancer (107743). It is unclear if increased intake of vitamin B12, either through the diet or supplementation, directly affects the risk of cancer. It is possible that having cancer increases the risk of vitamin B12 elevation. However, one observational study has found that the highest quintile of dietary intake of vitamin B12 is associated with a 75% increased incidence of developing esophageal cancer when compared with the lowest quintile in never drinkers, but not drinkers (107147).
Renal ...There is a case report of oxalate nephropathy in a 54-year-old male which was determined to be related to the use of intravenous hydroxocobalamin as treatment for cyanide poisoning. Intermittent hemodialysis was started 5 days after admission, along with a low-oxalate diet, oral calcium acetate, and pyridoxine 5 mg/kg daily (107148). A review of the use of intravenous hydroxocobalamin for suspected cyanide poisoning in 21 intensive care units in France between 2011 and 2017 resulted in a 60% increased odds of acute kidney injury and a 77% increased odds of severe acute kidney injury in the first week. However, biopsies were not conducted and a direct link with use of hydroxocobalamin could not be made (107139).
Other ...Several studies have found that higher vitamin B12 levels may be associated with increased mortality or decreased survival rates in hospitalized elderly patients (82889,82812,82857,82895). Human research has also found a positive correlation between vitamin B12 status and all-cause mortality in Pima Indians with diabetes (82863).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Daily doses of 100 mg or less are unlikely to cause these problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).