Burdock • Rosehip • Peppermint leaf • Uva Ursi (bearberry) • Senna • Ginger root • fennel • Dandelion • Chamomile flower • Alder Buckthorn .
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Senna Cleansing Formula Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Senna Cleansing Formula Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Tea prepared with alder buckthorn bark 2 grams has been used with apparent safety for up to 8 days (12). Only properly aged bark should be used, and the recommended dose should not be exceeded (12).
POSSIBLY UNSAFE ...when used orally for more than 8 to 10 days (12). In 1993 the FDA removed Generally Recognized As Safe (GRAS) status from alder buckthorn due to lack of safety data. Chronic use of anthraquinone laxatives, such as alder buckthorn, for 9 months or longer is associated with damage to gastrointestinal epithelial cells and pigmentation of the colonic mucosa, known as pseudomelanosis coli (30743,37266). There is some data linking this condition to an increased risk of colorectal cancer (30743,37266,37269), although there is also contradictory evidence that does not show a link (6138).
CHILDREN: LIKELY UNSAFE
when used orally in children younger than 12 years of age (12); avoid using.
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally (12); avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods (12659,12660). Burdock root is commonly eaten as a vegetable (37422,92153,92154)
POSSIBLY SAFE ...when used topically, short-term. An emulsion containing burdock fruit extract 1.2% has been safely applied to the face twice daily for 4 weeks (37420). There is insufficient reliable information available about the safety of burdock when used orally in supplemental doses.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dandelion has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dandelion when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fennel has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when fennel essential oil or extract is used orally and appropriately, short-term. Twenty-five drops (about 1.25 mL) of fennel fruit extract standardized to fennel 2% essential oil has been safely used four times daily for 5 days (49422). Also, two 100 mg capsules each containing fennel 30% essential oil standardized to 71-90 mg of anethole has been safely used daily for 8 weeks (97498). Powdered fennel extract has been used with apparent safety at a dose of 800 mg daily for 2 weeks (104199). ...when creams containing fennel 2% to 5% are applied topically (49429,92509).
CHILDREN: POSSIBLY SAFE
when combination products containing fennel are used to treat colic in infants for up to one week.
Studied products include up to 20 mL of a fennel seed oil emulsion; a specific product (ColiMil) containing fennel 164 mg, lemon balm 97 mg, and German chamomile 178 mg; and up to 450 mL of a specific tea (Calma-Bebi, Bonomelli) containing fennel, chamomile, vervain, licorice, and lemon balm (16735,19715,49428).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Observational research has found that regular use of fennel during pregnancy is associated with shortened gestation (100513).
LACTATION: POSSIBLY UNSAFE
when used orally.
Case reports have linked consumption of an herbal tea containing extracts of fennel, licorice, anise, and goat's rue to neurotoxicity in two breast-feeding infants. The adverse effect was attributed to anethole, a constituent of fennel and anise (16744). However, levels of anethole were not measured in breastmilk, and the herbal tea was not tested for contaminants. Furthermore, other adverse effects related to use of fennel during lactation have not been reported. However, until more is known, avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when peppermint oil is used orally, topically, or rectally in medicinal doses. Peppermint oil has been safely used in multiple clinical trials (3801,3804,6190,6740,6741,10075,12009,13413,14467,17681)(17682,68522,96344,96360,96361,96362,96363,96364,96365,99493).
POSSIBLY SAFE ...when peppermint leaf is used orally and appropriately, short-term. There is some clinical research showing that peppermint leaf can be used safely for up to 8 weeks (12724,13413). The long-term safety of peppermint leaf in medicinal doses is unknown. ...when peppermint oil is used by inhalation as aromatherapy (7107). There is insufficient reliable information available about the safety of using intranasal peppermint oil.
CHILDREN: POSSIBLY SAFE
when used orally for medicinal purposes.
Enteric-coated peppermint oil capsules have been used with apparent safety under medical supervision in children 8 years of age and older (4469).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (96361).
There is insufficient information available about the safety of using peppermint in medicinal amounts during pregnancy or lactation; avoid using.
LIKELY SAFE ...when rose hip extract is used orally in the amounts found in foods. Rose hip extract has Generally Recognized as Safe (GRAS) status in the US (4912). ...when rose hip from Rosa canina is used orally and appropriately in medicinal amounts. A specific formulation of rose hip powder from Rosa canina (LitoZin/i-flex, Hyben Vital), taken in doses of up to 2.5 grams (5 capsules) twice daily, has been safely used for up to 6 months (17416,71641,71646,71658,71660,71661,104557). Rose hip powder from Rosa canina, 40 grams daily mixed in apple juice, has been used safely for up to 6 weeks (18104). Rose hip powder from Rosa canina, 500 mg twice daily for 20 days, has also been safely used (97938).
POSSIBLY SAFE ...when rose hip from Rosa damascena is used orally and appropriately in medicinal amounts. Rose hip extract from Rosa damascena has been used safely in doses of 200 mg every 6 hours for 3 days (104555). There is insufficient reliable information available about the safety of medicinal amounts of rose hip from other Rosa species. There is also insufficient reliable information available about the safety of rose hip when used topically.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of rose hip when used orally or topically in medicinal amounts; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately, short-term. Senna is an FDA-approved nonprescription drug (8424,15429,15431,15442,40086,40088,74535,74545,74548,74562)(74567,74570,74583,74585,74586,74587,74593,74603,74606,74607)(74609,74613,74615,74624,74636,74639,74644,74650,74653,92711)(92712).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095).
CHILDREN: LIKELY SAFE
when used orally and appropriately, short-term.
Senna is an FDA-approved nonprescription drug for use in children 2 years and older. (15429,15434,15435).
CHILDREN: POSSIBLY UNSAFE
when used orally long-term or in high doses.
Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095,105956).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term (15429,24480).
POSSIBLY UNSAFE...when used orally long-term or in high doses. Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095).
LACTATION: POSSIBLY SAFE
when used orally and appropriately, short term.
Although small amounts of constituents of senna cross into breast milk, senna has been taken while breast-feeding with apparent safety. Senna does not cause changes in the frequency or consistency of infants' stools. (6026,15429,15436,15437,24482,24484,24485,24486,24487,74545).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Uva ursi has been used with apparent safety in doses of up to 3600 mg daily for 3-5 days (101815).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. There is concern about the safety of long-term or high-dose use because of the hydroquinone content of uva ursi. Hydroquinone is thought to have mutagenic and carcinogenic effects (7). At high doses (around 20 grams of dried herb) it can cause convulsions, cyanosis, delirium, shortness of breath, and collapse. At very high doses (30 grams of dried herb or more) it can be fatal (4).
CHILDREN: POSSIBLY UNSAFE
when used orally by children.
Uva ursi contains hydroquinone and high tannin levels, which can cause severe liver problems in children (4,18); avoid using.
PREGNANCY: LIKELY UNSAFE
when used orally.
Uva ursi can have oxytocic effects, increasing the speed of labor (4,7,19); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Senna Cleansing Formula Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Alder buckthorn has stimulant laxative effects. Theoretically, concomitant use of corticosteroids with alder buckthorn can increase the risk of potassium depletion (2).
|
Alder buckthorn has stimulant laxative effects. Theoretically, potassium depletion associated with alder buckthorn might increase the risk of digoxin toxicity (19).
|
Alder buckthorn has stimulant laxative effects. Theoretically, overuse of alder buckthorn might compound diuretic-induced potassium loss (19). There is some concern that people taking alder buckthorn along with potassium depleting diuretics might have an increased risk for hypokalemia.
Some diuretics that can deplete potassium include chlorothiazide (Diuril), chlorthalidone (Thalitone), furosemide (Lasix), and hydrochlorothiazide (HCTZ, HydroDIURIL, Microzide), and others.
|
Alder buckthorn has stimulant laxative effects. Concomitant use with stimulant laxative medications might compound fluid and electrolyte loss (19).
|
Alder buckthorn has stimulant laxative effects. In some people alder buckthorn can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Advise patients who take warfarin not to take excessive amounts of alder buckthorn.
|
Theoretically, taking burdock with anticoagulant or antiplatelet drugs might increase the risk of bleeding.
In vitro research shows that lignans from burdock reduce rabbit platelet aggregation by inhibiting platelet activating factor (12619). This interaction has not been reported in humans. |
Theoretically, taking dandelion root along with anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
In vitro research suggests that dandelion root inhibits platelet aggregation (18291).
|
Theoretically, dandelion might increase the risk for hypoglycemia when used with antidiabetes drugs.
Laboratory research suggests that dandelion extract may have moderate alpha-glucosidase inhibitor activity and might also increase insulin secretion (13474,90926). Also, in a case report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemia 2 weeks after beginning to eat salads containing dandelion (46960).
|
Theoretically, dandelion might increase levels of drugs metabolized by CYP1A2.
Laboratory research suggests that dandelion might inhibit CYP1A2 (12734). So far, this interaction has not been reported in humans. However, until more is known, watch for an increase in the levels of drugs metabolized by CYP1A2 in patients taking dandelion.
|
Theoretically, dandelion might increase the clearance of drugs that are UDP-glucuronosyltransferase substrates.
There is some preliminary evidence that dandelion might induce UDP-glucuronosyltransferase, a phase II enzyme (12734).
|
Theoretically, through diuretic effects, dandelion might reduce excretion and increase levels of lithium.
Animal research suggests that dandelion has diuretic properties (13475). As diuretics can increase serum lithium levels, the dose of lithium might need to be decreased when taken with dandelion.
|
Theoretically, dandelion might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Dandelion contains significant amounts of potassium (13465).
|
Theoretically, dandelion might lower fluoroquinolone levels.
Animal research shows that dandelion reduces absorption of ciprofloxacin and can lower levels by 73% (13477). However, this effect has not been reported in humans.
|
Theoretically, fennel might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
|
Theoretically, fennel might decrease the levels and clinical effects of ciprofloxacin.
Animal research shows that fennel reduces ciprofloxacin bioavailability by nearly 50%, possibly due to the metal cations such as calcium, iron, and magnesium contained in fennel. This study also found that fennel increased tissue distribution and slowed elimination of ciprofloxacin (6135). |
Theoretically, taking large amounts of fennel might decrease the effects of contraceptive drugs due to competition for estrogen receptors.
|
Theoretically, fennel might increase levels of drugs metabolized by CYP3A4.
|
Theoretically, taking large amounts of fennel might interfere with hormone replacement therapy due to competition for estrogen receptors.
|
Theoretically, taking large amounts of fennel might decrease the antiestrogenic effect of tamoxifen.
Some constituents of fennel have estrogenic activity (11), which may interfere with the antiestrogenic activity of tamoxifen. |
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, peppermint oil might increase the levels and adverse effects of cyclosporine.
In animal research, peppermint oil inhibits cyclosporine metabolism and increases cyclosporine levels. Inhibition of cytochrome P450 3A4 (CYP3A4) may be partially responsible for this interaction (11784). An interaction between peppermint oil and cyclosporine has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP1A2 substrates.
In vitro and animal research shows that peppermint oil and peppermint leaf inhibit CYP1A2 (12479,12734). However, in clinical research, peppermint tea did not significantly affect the metabolism of caffeine, a CYP1A2 substrate. It is possible that the 6-day duration of treatment may have been too short to identify a difference (96359).
|
Theoretically, peppermint might increase the levels of CYP2C19 substrates.
In vitro research shows that peppermint oil inhibits CYP2C19 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP2C9 substrates.
In vitro research shows that peppermint oil inhibits CYP2C9 (12479). So far, this interaction has not been reported in humans.
|
Theoretically, peppermint might increase the levels of CYP3A4 substrates.
|
Theoretically, the antioxidant effects of rose hip might reduce the effectiveness of alkylating agents but might also reduce the oxidative damage caused by certain alkylating agents.
Rose hip contains vitamin C. The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). Further, some animal research suggests that the antioxidant effects of rose hip might attenuate cyclophosphamide-induced testicular toxicity (111413). More evidence is needed to determine what effect, if any, antioxidants found in rose hip, such as vitamin C, have on the effectiveness and adverse effects of chemotherapy.
|
Theoretically, rose hip might increase the amount of aluminum absorbed from aluminum compounds.
Rose hip contains vitamin C. Theoretically, vitamin C increases the absorption of aluminum. Concomitant use might increase aluminum absorption, but the clinical significance of this is unknown (3046). Administer rose hip two hours before or four hours after antacids.
|
Theoretically, rose hip might reduce the effectiveness of anticoagulant or antiplatelet drugs.
In vitro and animal research suggests that a constituent of rose hip, rugosin E, can induce platelet aggregation (71653). This has not been shown in humans. Theoretically, concomitant use of rose hip might reduce the effectiveness of antiplatelet or anticoagulant drugs.
|
Theoretically, the antioxidant effects of rose hip might reduce the effectiveness of antitumor antibiotics.
Rose hip contains the antioxidant vitamin C. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as antitumor antibiotics (391). In contrast, other researchers theorize that antioxidants might make antitumor antibiotic chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on antitumor antibiotic chemotherapy.
|
Theoretically, rose hip might reduce the clearance of aspirin; however, its vitamin C content is likely too low to produce clinically significant effects.
Rose hip contains vitamin C. It has been suggested that acidification of the urine by vitamin C can decrease the urinary excretion of salicylates, increasing plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589). The vitamin C content of rose hip is typically about 500 mg per 100 grams. Thus, a clinically significant interaction between rose hip and aspirin is unlikely.
|
Theoretically, rose hip might increase blood levels of estrogens.
Rose hip contains vitamin C. Increases in plasma estrogen levels of up to 55% have occured under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. However, increases in plasma estrogen levels may occur when women who are deficient in vitamin C take supplements (11161).
|
Theoretically, rose hip might increase blood levels of lithium.
|
Theoretically, rose hip might reduce the effectiveness of warfarin; however, its vitamin C content is likely too low to produce clinically significant effects.
Rose hip contains vitamin C. High doses of vitamin C may reduce the response to warfarin, possibly by causing diarrhea and reducing warfarin absorption (11566). This occurred in two people who took up to 16 grams daily of vitamin C, and resulted in decreased prothrombin time (9804,9806). Lower doses of 5-10 grams daily of vitamin C can also reduce warfarin absorption, but this does not seem to be clinically significant (9805,9806,11566,11567). The vitamin C content of rose hip is typically about 500 mg per 100 grams. Thus, a clinically significant interaction between rose hip and warfarin is unlikely.
|
Theoretically, senna might increase the risk of adverse effects when taken with digoxin.
Overuse/abuse of senna increases the risk of adverse effects from cardiac glycosides, such as digoxin, due to potassium depletion (15425).
|
Theoretically, senna might increase the risk of hypokalemia when taken with diuretic drugs.
Overuse of senna might compound diuretic-induced potassium loss and increase the risk for hypokalemia (15425).
|
Theoretically, taking senna may interfere with the absorption of exogenous estrogens.
|
Theoretically, senna might increase the risk for fluid and electrolyte loss when taken with other stimulant laxatives.
|
Theoretically, excessive use of senna might increase the effects of warfarin.
Senna has stimulant laxative effects and can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. In one case report, excessive use of senna for 3 weeks resulted in diarrhea, bloody stools, and an elevated INR of 11.9 (16530).
|
Theoretically, uva ursi may decrease the metabolism of CYP2C19 substrates.
In vitro, uva ursi appears to inhibit cytochrome CYP2C19 (98550). This effect has not been reported in humans.
|
Theoretically, uva ursi may decrease the metabolism of CYP3A4 substrates.
In vitro, uva ursi appears to inhibit CYP3A4 (98550). This effect has not been reported in humans.
|
Theoretically, uva ursi may increase levels of drugs metabolized by glucuronidation.
In vitro, uva ursi extract appears to strongly inhibit UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1). However, uva ursi extract does not appear to inhibit UGT1A1 in animal models (98549). This effect has not been reported in humans.
|
Theoretically, uva ursi may increase lithium levels, necessitating a decrease in dose.
Uva ursi may have diuretic properties (81637). Diuretics may increase lithium reabsorption with sodium in the proximal tubule of the kidney. Theoretically, uva ursi might reduce excretion and increase levels of lithium.
|
Theoretically, uva ursi may alter the levels of drugs transported by P-glycoprotein.
In vitro, uva ursi appears to inhibit the multi-drug transporter protein, P-glycoprotein (98550). This effect has not been reported in humans.
|
Effects of uva ursi in the urinary tract may be reduced by urinary acidifying agents.
Uva ursi seems to work best in alkaline urine. Theoretically, taking uva ursi with medications known to acidify the urine may decrease any effects of uva ursi on the urinary tract (19).
|
Below is general information about the adverse effects of the known ingredients contained in the product Senna Cleansing Formula Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, alder buckthorn seems to be well tolerated when properly aged bark is used appropriately for no more than 8 to 10 days (12). Adverse effects include cramp-like discomfort (2). Chronic use, especially for 9 months or longer, is associated with damage to gastrointestinal epithelial cells and pigmentation of the colonic mucosa, known as pseudomelanosis coli (30743,37266). There is some data linking this condition to an increased risk of colorectal cancer (30743,37266,37269), although there is also contradictory evidence which does not show a link (6138). Alder buckthorn has also been associated with potassium depletion, albuminuria, and hematuria when used orally (2).
Gastrointestinal ...Orally, adverse effects include cramp-like discomfort (2). Chronic use, especially for 9 months or longer, is associated with damage to gastrointestinal epithelial cells and pigmentation of the colonic mucosa, known as pseudomelanosis coli (30743,37266). The fresh bark contains free anthrone, which can cause severe vomiting. This constituent is destroyed by aging the bark naturally for one year or artificially with heat and aeration (2).
Genitourinary ...Orally, adverse effects to alder buckthorn include albuminuria and hematuria (2).
Oncologic ...Orally, there is also some data linking pseudomelanosis coli to an increased risk of colorectal cancer (30743,37266,37269), although there is also contradictory evidence which does not show a link (6138).
General
...Orally, burdock is well tolerated when consumed as a food.
Although a thorough evaluation of safety outcomes is lacking, there has been long-standing historical use of burdock with few noted adverse effects.
Serious Adverse Effects (Rare):
All ROAs: Allergic reactions, including contact dermatitis and anaphylaxis.
Dermatologic ...Contact dermatitis has been reported secondary to burdock, especially after prolonged use of the root oil (37422). There are cases of allergic dermatitis secondary to using burdock plasters. Two males and a 14 year-old female developed erythematous and vesicular, pruritic, and exudative reactions in areas corresponding to the application of burdock root plasters (12667). Reactions occurred up to 7 days after initial use. Patch testing was positive for burdock sensitivity in all three patients and was nonreactive in matched controls.
Hematologic ...In one case report, a 38-year-old female developed immune-mediated thrombocytopenia after consuming a "cleansing" tea containing unknown amounts of burdock and yellow dock. The patient presented with bruising, mild weakness, and fatigue, which started 2-3 days after consuming the tea, and was found to have a platelet count of 5,000 per mcL. Symptoms resolved after platelet transfusion and treatment with oral dexamethasone (108971). It is unclear if these effects were caused by burdock, yellow dock, the combination, or other contributing factors.
Hepatic ...A case of idiosyncratic drug-induced liver disease (DILI) is reported in a 36-year-old female who presented with abdominal pain after 1 month of taking an herbal liver detox tea containing burdock and other ingredients. Remarkable laboratory values included elevated liver enzymes, alkaline phosphatase, and total bilirubin. The patient received a loading dose of N-acetylcysteine and was hospitalized for 12 days (112178). However, it is unclear if the adverse effect was due to burdock, other ingredients, or the combination.
Immunologic ...There is one case of anaphylactic shock secondary to eating boiled burdock. One hour after eating boiled burdock the patient presented with redness over the entire body and dyspnea. He was found to have low blood pressure and was treated with subcutaneous epinephrine 1 mg and intravenous lactated ringer's solution containing hydrocortisone 100 mg and dexamethasone 8 mg. The cause of anaphylactic shock was attributed to allergenicity to burdock based on positive skin prick test results. Previously, the patient had experienced urticaria after eating boiled burdock (12660).
Neurologic/CNS ...Anticholinergic reactions including dry mouth, dizziness, blurred vision, weakness, dilated pupils, inability to urinate, and bradycardia have been reported following the consumption of burdock products (12662,37421,37431,37434,37435). However, these anticholinergic reactions are believed result from contamination of burdock with belladonna alkaloids. Burdock itself does not contain atropine or other constituents that would be responsible for these reactions.
General
...Orally, dandelion seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, heartburn, and stomach discomfort.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...In one report, a 39-year-old obese woman developed palpitations and syncope after taking a weight loss supplement containing a combination of dandelion, bladderwrack, and boldo for 3 weeks. The patient was found to have prolonged QT-interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether dandelion, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Dermatologic ...Topically, dandelion can cause contact dermatitis and erythema multiforme in sensitive individuals. Dandelion can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family (13478,13481,42893,46945,46977). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Endocrine ...In one report, a 56-year-old man with renal impairment developed hyperoxalaemia and peripheral gangrene after ingesting large amounts of dandelion tea (10 to 15 cups daily for 6 months). The adverse effect was attributed to the high oxalate content of dandelion tea (258 mcmol/L) and reduced renal oxalate clearance caused by renal impairment (90639). In another report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemic symptoms 2 weeks after beginning to eat salads containing dandelion (46960). The hypoglycemic effect was attributed to the potential alpha-glucosidase inhibitory activity of dandelion.
Gastrointestinal ...Gastrointestinal symptoms, including stomach discomfort, diarrhea, and heartburn, have been reported following oral use of dandelion (19146,36931). A case of intestinal blockage has been reported for a patient who ingested a large amount of dandelion greens three weeks after undergoing a stomach operation (46981). Also, a case of hemorrhagic cystitis has been reported for a 33-year-old woman who took a specific herbal product (Slim-Kombu, Balestra and Mech, Vicenza, Italy) containing 20 herbal extracts, including dandelion extract. Symptoms resolved after the patient discontinued using the product, and symptoms resumed when the patient began taking the supplement again four months later. While various ingredients in the supplement may have contributed to the symptoms, it is possible that dandelion extract may have contributed to the effect due to its diuretic, laxative, cholagogue, and antirheumatic properties (46959).
Other ...Orally, products containing dandelion pollen can cause allergic reactions, including anaphylaxis (13479,13480). Also, rhinoconjunctivitis and asthma have been reported after handling products such as bird feed containing dandelion and other herbs, with reported positive skin tests for dandelion hypersensitivity (46948). Dandelion pollen may cause pollinosis, such as allergic rhinitis and conjunctivitis (18065,46951,46964,46966,46972).
General
...Orally and topically, fennel seems to be well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal discomfort, photosensitivity, and allergic reactions in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Seizures.
Dermatologic ...Advise patients to avoid excessive sunlight or ultraviolet light exposure while using fennel (19). Allergic reactions affecting the skin such as atopic dermatitis and photosensitivity may occur in patients who consume fennel (6178,49507).
Gastrointestinal ...Orally, fennel may cause gastrointestinal complaints, including nausea and vomiting (19146,104196).
Hematologic ...Methemoglobinemia has been reported in four infants following intoxication related to ingestion of a homemade fennel puree that may have been made from improperly stored fennel (49444).
Immunologic ...A case report describes an 11-year-old male who developed an allergy to fennel-containing toothpaste. Immediately after using the toothpaste, the patient experienced sneezing, coughing, itchy mouth, rhinorrhea, nasal congestion, wheezing, difficulty breathing, and palpitations, which resolved within 10 minutes of spitting out the toothpaste and rinsing the mouth. In challenge tests, the patient reacted to chewing fresh fennel root, but not ground fennel seeds (103822).
Neurologic/CNS ...Orally, fennel oil has been associated with tonic clonic and generalized seizures (12868). New-onset cluster headaches are reported in a 24-year-old female while using a toothpaste containing fennel and camphor for 3 months. The headaches resolved upon stopping the toothpaste (112368). It is unclear if this adverse effect can be attributed to fennel, camphor, or the combination.
Pulmonary/Respiratory ...Orally, fennel and fennel seed have been reported to cause bronchial asthma (49478).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, topically, or rectally, peppermint oil is generally well tolerated.
Inhaled,
peppermint oil seems to be well tolerated. Intranasally, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted. Orally, peppermint leaf seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, anal burning, belching, diarrhea, dry mouth, heartburn, nausea, and vomiting.
Topically: Burning, dermatitis, irritation, and redness.
Dermatologic
...Topically, peppermint oil can cause skin irritation, burning, erythema, and contact dermatitis (3802,11781,31528,43338,68473,68457,68509,96361,96362).
Also, a case of severe mucosal injury has been reported for a patient who misused an undiluted over the counter mouthwash that contained peppermint and arnica oil in 70% alcohol (19106).
In large amounts, peppermint oil may cause chemical burns when used topically or orally. A case of multiple burns in the oral cavity and pharynx, along with edema of the lips, tongue, uvula, and soft palate, has been reported for a 49-year-old female who ingested 40 drops of pure peppermint oil. Following treatment with intravenous steroids and antibiotics, the patient's symptoms resolved over the course of 2 weeks (68432). Also, a case of chemical burns on the skin and skin necrosis has been reported for a 35-year-old male who spilled undiluted peppermint oil on a previous skin graft (68572). Oral peppermint oil has also been associated with burning mouth syndrome and chronic mouth ulceration in people with contact sensitivity to peppermint (6743). Also, excessive consumption of mint candies containing peppermint oil has been linked to cases of stomatitis (13114).
Gastrointestinal ...Orally, peppermint oil can cause heartburn, nausea and vomiting, anal or perianal burning, abdominal pain, belching, dry mouth, diarrhea, and increased appetite (3803,6740,6741,6742,10075,11779,11789,17682,68497,68514)(68532,68544,96344,96360,102602,107955). Enteric-coated capsules might help to reduce the incidence of heartburn (3802,4469,6740,11777). However, in one clinical study, a specific enteric-coated formulation of peppermint oil (Pepogest; Nature's Way) taken as 180 mg three times daily was associated with a higher rate of adverse effects when compared with placebo (48% versus 31%, respectively). Specifically, of the patients consuming this product, 11% experienced belching and 26% experienced heartburn, compared to 2% and 12%, respectively, in the placebo group (107955). A meta-analysis of eight small clinical studies in patients with irritable bowel syndrome shows that taking enteric-coated formulations of peppermint oil increases the risk of gastroesophageal reflux symptoms by 67% when compared with a control group (109980). Enteric-coated capsules can also cause anal burning in people with reduced bowel transit time (11782,11789).
Genitourinary ...Orally, a sensitive urethra has been reported rarely (102602).
Hepatic ...One case of hepatocellular liver injury has been reported following the oral use of peppermint. Symptoms included elevated liver enzymes, fatigue, jaundice, dark urine, and signs of hypersensitivity. Details on the dosage and type of peppermint consumed were unavailable (96358).
Immunologic ...One case of IgE-mediated anaphylaxis, characterized by sudden onset of lip and tongue swelling, tightness of throat, and shortness of breath, has been reported in a 69-year-old male who consumed peppermint candy (89479). An allergic reaction after use of peppermint oil in combination with caraway oil has been reported in a patient with a history of bronchial asthma (96344). It is not clear if this reaction occurred in response to the peppermint or caraway components.
Neurologic/CNS ...Orally, headache has been reported rarely (102602).
Ocular/Otic ...Orally, peppermint has been reported to cause blurry vision (3803).
General
...Orally, rose hip from Rosa canina is well tolerated.
Rose hip from Rosa damascena also seems to be well tolerated. A thorough evaluation of safety outcomes has not been conducted for rose hip derived from other species.
Most Common Adverse Effects:
Orally: Flatulence, loose stools.
Dermatologic ...Orally, one case of mild urticaria has been reported in a clinical trial for a patient taking a specific rose hip powder product (LitoZin/i-flex, Hyben Vital) 2. 5 grams twice daily (71646).
Gastrointestinal
...Orally, gastrointestinal reactions have been reported.
These include abdominal cramps, acid reflux, constipation, diarrhea, flatulence, nausea, vomiting, gastrointestinal obstruction, esophagitis, heartburn, acid reflux, and water brash. However, in most cases, these adverse effects occurred at the same frequency in patients taking placebo (15,18104,71641,71646,97938).
Rose hip powder is a source of vitamin C. Osmotic diarrhea and gastrointestinal upset have been reported with doses of vitamin C greater than the tolerable upper intake level (UL) of 2000 mg daily (4844). However, most rose hip products contain only 500 mg of vitamin C per 100 grams.
Genitourinary ...Orally, a few mild cases of frequent voiding have been reported in clinical trials. However, the frequency of occurrence does not seem to differ from those taking placebo (71641,71646).
Immunologic ...When inhaled in the workplace, rose hip dust has caused mild to moderate anaphylaxis (6).
Neurologic/CNS ...Orally, vertigo and headache have been reported rarely (97938).
Ocular/Otic ...A case of keratoconjunctivitis secondary to contact with rose hip has been reported. The adverse effect was attributed to irritant hairs found on the fruit of rose hip. Symptoms resolved after treatment with topical prednisolone 1% eye drops (71642).
General
...Orally, senna is generally well-tolerated when used short-term in appropriate doses.
Most Common Adverse Effects:
Orally: Abdominal pain and discomfort, cramps, diarrhea, flatulence, nausea, fecal urgency, and urine discoloration.
Serious Adverse Effects (Rare):
Orally: Skin eruptions.
Cardiovascular ...Excessive use can cause potassium depletion and other electrolyte abnormalities (15425). In theory, this could cause potentially dangerous changes in heart rhythm. A small decrease in heart rate was seen in one clinical study (74587).
Dermatologic ...In adults, there are rare case reports of skin eruptions associated with senna, including erythema multiforme, fixed drug eruption, lichenoid reaction, toxic epidermal necrolysis, urticaria, photosensitivity, and contact dermatitis (96558). Infants and young children given senna products have experienced contact reactions on the buttocks due to prolonged exposure to stool while wearing a diaper overnight. These reactions range from erythema with small blisters, to large fluid-filled blisters with skin sloughing, as occurs with second degree burns (96559). In a case series of children treated with senna for chronic constipation, burn-like reactions occurred in 2.2%, typically with higher doses (mean 60 mg/day, range 35.2 to 150 mg/day) (96558,96559). These reactions can be avoided by giving senna early in the day, so that bowel movements occur at a time when diapers can be changed quickly (96559).
Gastrointestinal ...Orally, senna can cause abdominal pain and discomfort, cramps, bloating, flatulence, nausea, fecal urgency, and diarrhea (15427,15434,15435,15436,15439,15440,15441,105955). Chronic use has also been associated with "cathartic colon," radiographically diagnosed anatomical changes to the colon such as benign narrowing, colonic dilation, and loss of colonic folds (15428). The clinical relevance of these findings is unclear. Chronic use can also cause pseudomelanosis coli (pigment spots in intestinal mucosa) which is harmless, usually reverses with discontinuation, and is not associated with an increased risk of developing colorectal adenoma or carcinoma (6138). The cathartic properties of senna leaf are greater than the fruit (15430). Thus, the American Herbal Products Association only warns against long-term use of senna leaf (12).
Hepatic ...Chronic liver damage, portal vein thrombosis, and hepatitis have been reported following oral use of senna alkaloids, such as in tea made from senna leaves (13057,13095,41431,74560,74564,74584,105956). There is a case report of hepatitis in a female who consumed moderate amounts of senna tea. The patient was a poor metabolizer of cytochrome P450 2D6 (CYP2D6). It's thought that moderate doses of senna in this patient led to toxic hepatitis due to the patient's reduced ability to metabolize and eliminate the rhein anthrone metabolites of senna, which are thought to cause systemic toxicity (13057). There is also a case of liver failure, encephalopathy, and renal insufficiency in a female who consumed 1 liter/day of senna tea, prepared from 70 grams of dried senna fruit, over 3 years (13095). In another case report, a 3-year-old female presented with hepatitis that led to pancytopenia after drinking tea made from 2-3 grams dry senna leaves three times or more weekly for over one year (105956).
Immunologic ...In one case report, a 19-year-old male developed anaphylaxis with dyspnea, facial edema, and hives. This reaction was determined to be caused by the senna content in a specific combination product (Delgaxan Plus, Pompadour Ibérica) that the patient ingested (105957).
Musculoskeletal ...Hypertrophic osteoarthropathy, finger clubbing, cachexia, and tetany have been reported from excessive oral senna use in humans (15426,74580,74582,74620,74625).
Renal ...Nephrocalcinosis has been reported as a result of oral senna overuse (74582).
General
...Uva ursi is generally well tolerated in low doses, short-term.
Most Common Adverse Effects:
Orally: Diarrhea, nausea, stomach upset, and vomiting.
Serious Adverse Effects (Rare):
Orally: At high doses (20 grams of dried herb), uva ursi has been reported to cause collapse, convulsions, cyanosis, delirium, shortness of breath, and tinnitus. Very high doses of 30 grams or more may be fatal.
Gastrointestinal ...Orally, uva ursi may cause nausea, vomiting, diarrhea, and stomach upset (92148). It can also irritate the gastrointestinal tract (19).
Genitourinary ...Orally, uva ursi may cause the urine to be greenish-brown. It may also cause irritation and inflammation of the urinary tract mucous membranes (18).
Hepatic ...Uva ursi may be hepatotoxic. Theoretically, chronic use, especially in children, can cause liver impairment due its hydroquinone and high tannin content (4,18).
Neurologic/CNS ...Orally, around 20 grams of uva ursi is reported to supply up to one gram of hydroquinone, which can theoretically cause convulsions and delirium (4).
Ocular/Otic
...Orally, uva ursi may potentially cause retinal toxicity due to its hydroquinone content, which reduces melanin synthesis.
A 56-year-old female developed bilateral bull's-eye maculopathy, paracentral scotomas, and retinal thinning after 3 years of uva ursi tea ingestion (16900).
Taking around 20 grams of uva ursi orally is reported to supply up to one gram of hydroquinone, which can theoretically cause tinnitus (4).
Pulmonary/Respiratory ...Orally, around 20 grams of uva ursi is reported to supply up to one gram of hydroquinone, which can theoretically cause shortness of breath and cyanosis (4).