Each 1/4 tsp (1.25 mL) serving contains: Proprietary Blend: Black Walnut hulls (juglans nigra), Wormwood aerial parts (artemisia absinthium), Centaury aerial parts (centaurium erythrea), Male Fern root (dryopteris filix-mas), Citrus aurantium peel (orange), Cloves bud (szygium aromaticum), Butternut root bark (juglans cinerea). Other Ingredients: Base: 20% Ethyl Alcohol, Purified Water.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Verma Plus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of butternut.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Verma Plus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912,35751).
POSSIBLY SAFE ...when bitter orange essential oil is used topically or by inhalation as aromatherapy (6972,7107,98331,104186,104187,108642).
POSSIBLY UNSAFE ...when used orally for medicinal purposes. Although single doses of synephrine, or low daily doses used short-term, may be safe in healthy adults (2040,11269,15381,35757,35759,91681,97256,98332), laboratory analyses raise concerns that many marketed bitter orange products contain higher amounts of synephrine and other natural and synthetic amines than on the label, increasing the risk for serious stimulant-related adverse effects (104185). Additionally, there is a lack of agreement regarding a safe daily dose of synephrine. Health Canada has approved 50 mg of p-synephrine daily when used alone, or 40 mg of p-synephrine in combination with up to 320 mg of caffeine daily in healthy adults (91684). The Federal Institute for Risk Assessment in Germany recommends that supplements should provide no more than 6.7 mg of synephrine daily. This recommendation is meant to ensure that patients who frequently consume synephrine in conventional foods will receive no more than 25.7 mg daily (91290). These limits are intended to reduce the risk for serious adverse effects. There have been several case reports of ischemic stroke and cardiotoxicity including tachyarrhythmia, cardiac arrest, syncope, angina, myocardial infarction, ventricular arrhythmia, and death in otherwise healthy patients who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts found in foods.
Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally for medicinal purposes.
There are case reports of cardiotoxicity including tachyarrhythmia, syncope, and myocardial infarction in otherwise healthy adults who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680). The effects of bitter orange during lactation are unknown; avoid use.
LIKELY SAFE ...when the fruit (nut) is consumed in amounts normally found in food.
POSSIBLY UNSAFE ...when the bark is used orally or topically, due to its juglone content (2). When applied topically, juglone-containing bark can cause skin irritation. When used orally on a daily basis, the juglone-containing bark of a related species (English walnut) is associated with increased risk of tongue cancer and lip leukoplakia (2,12). There is insufficient reliable information available about the safety of the leaf or hull when used orally as a medicine or when applied topically.
PREGNANCY AND LACTATION: LIKELY SAFE
when the fruit (nut) is consumed in amounts normally found in foods.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when the bark is used orally or topically (12); avoid using.
There is insufficient reliable information available about the safety of black walnut leaf or hull when used orally in medicinal amounts during pregnancy or lactation; avoid using.
POSSIBLY SAFE ...when used orally and appropriately (12).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally in large amounts, it can be cathartic (12); avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Centaury has Generally Recognized As Safe status (GRAS) for use in foods and beverages in the US (4912). The maximum permitted concentration of centaury for use in beverages in the US is 0.0008% (4).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term (12). Centaury herb 36 mg daily, in combination with lovage and rosemary (Canephron N, Bionorica), has been used with apparent safety for 6 months (91726).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using centaury in amounts greater than those commonly found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when clove oil is applied topically (272). A clove oil 1% cream has been applied to the anus with apparent safety for up to 6 weeks (43487). A liposome-based product containing clove oil 45% has been applied to the palms with apparent safety for up to 2 weeks (100596).
LIKELY UNSAFE ...when clove smoke is inhaled. Smoking clove cigarettes can cause respiratory injury (17,43599). ...when clove oil is injected intravenously. This can cause pulmonary edema, hypoxemia, and acute dyspnea (16384). There is insufficient reliable information available about the safety of using clove orally in medicinal amounts.
CHILDREN: LIKELY UNSAFE
when clove oil is taken orally.
Ingesting 5-10 mL of undiluted clove oil has been linked to reports of coagulopathy, liver damage, and other serious side effects in infants and children up to 3 years of age (6,17,43385,43395,43419,43457,43652).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts found in foods (4912).
Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of using clove in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY UNSAFE ...when used orally. Male fern can be a violent poison (2,11). For this reason, it should not be used internally (2). Canada requires that it be labeled "For external use only" (12). There is insufficient reliable information available about the safety of male fern when used topically.
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally (12); contraindicated.
There is insufficient reliable information available about the safety of male fern used topically; avoid using.
LIKELY SAFE ...when used orally in the amounts commonly found in foods. Wormwood extracts are included in bitters, vermouth, absinthe, and other food or drink products (12814,15007). Wormwood products that are thujone-free have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912); however, products containing thujone might not be safe. Wormwood is described in the pharmacopoeia of various European countries. After being banned for a period of time, it is now allowed in European Union countries; however, beverages must not contain thujone in concentrations greater than 35 mg/kg (12814,15007,86551).
POSSIBLY SAFE ...when wormwood products not containing thujone are used orally in medicinal amounts, short-term (93468,93469). A specific product
POSSIBLY UNSAFE ...when wormwood products containing thujone are used orally. Thujone is a neurotoxin that is present in wormwood oil (12617). Seizures, rhabdomyolysis, and acute kidney failure can occur when as little as 10 mL of wormwood oil is ingested (662,12817).
PREGNANCY:
LIKELY UNSAFE .
.when used orally in amounts greater than those found in foods (662,12817). Some wormwood products contain thujone, a neurotoxin. Theoretically, thujone also has potential uterine and menstrual stimulant effects (12617). There is insufficient reliable information available about the safety of wormwood when used topically during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Verma Plus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, bitter orange might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Some clinical research shows that drinking a tea containing bitter orange and Indian snakeroot reduces fasting and postprandial glucose levels in patients with type 2 diabetes who are using antidiabetes drugs (35751). However, it is unclear if these effects are due to bitter orange, Indian snakeroot, or the combination. An animal study also shows that p-synephrine in combination with gliclazide , a sulfonylurea, causes an additional 20% to 44% decrease in glucose levels when compared with gliclazide alone (95658).
|
Bitter orange might increase blood pressure and heart rate when taken with caffeine.
|
Bitter orange might affect colchicine levels.
Colchicine is a substrate of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Bitter orange has been reported to inhibit CYP3A4 and increase levels of CYP3A4 substrates (7029,11362,93470). However, one small clinical study in healthy adults shows that drinking bitter orange juice 240 mL twice daily for 4 days and taking a single dose of colchicine 0.6 mg on the 4th day decreases colchicine peak serum levels by 24%, time to peak serum level by 1 hour, and overall exposure to colchicine by 20% (35762). The clinical significance of this finding is unclear.
|
Theoretically, bitter orange might increase levels of drug metabolized by CYP2D6.
In vitro research shows that octopamine, a constituent of bitter orange, weakly inhibits CYP2D6 enzymes (91878). This effect has not been reported in humans.
|
Bitter orange might increase levels of drugs metabolized by CYP3A4.
Small clinical studies suggest that single or multiple doses of freshly squeezed bitter orange juice 200-240 mL can inhibit CYP3A4 metabolism of drugs (7029,11362,93470), causing increased drug levels and potentially increasing the risk of adverse effects. However, the extent of the effect of bitter orange on CYP3A4-mediated drug interactions is unknown. Some evidence suggests that bitter orange selectively inhibits intestinal CYP3A4, but not hepatic CYP3A4. Its effect on P-glycoprotein, which strongly overlaps with CYP3A4 interactions, is unclear (7029,11269,11270,11362). One small clinical study shows that drinking 8 ounces of freshly squeezed bitter orange juice has no effect on cyclosporine, which seems to be more dependent on hepatic CYP3A4 and P-glycoprotein than intestinal CYP3A4 (11270).
|
Bitter orange might increase blood levels of dextromethorphan.
One small clinical study shows that bitter orange juice increases dextromethorphan levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (11362). Theoretically, bitter orange might increase the risk for dextromethorphan-related adverse effects.
|
Bitter orange might increase blood levels of felodipine.
One small clinical study shows that bitter orange juice increases felodipine levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (7029). Theoretically, bitter orange might increase the risk for felodipine-related adverse effects.
|
Bitter orange might increase blood levels of indinavir.
One small clinical study shows that bitter orange juice slightly increases indinavir levels, but this effect is likely to be clinically insignificant. Bitter orange selectively inhibits intestinal cytochrome P450 3A4 (CYP3A4); however, the metabolism of indinavir seems to be more dependent on hepatic CYP3A4 (11269). The effect of bitter orange on other protease inhibitors has not been studied.
|
Bitter orange might increase blood levels of midazolam.
One small clinical study shows that bitter orange juice can increase midazolam levels, likely through inhibition of cytochrome P450 3A4 (CYP3A4) (7029). Theoretically, bitter orange might increase the risk of midazolam-related adverse effects.
|
Theoretically, taking MAOIs with synephrine-containing bitter orange preparations might increase the hypertensive effects of synephrine, potentially leading to hypertensive crisis.
|
Theoretically, bitter orange might have an additive effect when combined with drugs that prolong the QT interval, potentially increasing the risk of ventricular arrhythmias.
One case report suggests that taking bitter orange in combination with other stimulants such as caffeine might prolong the QT interval in some patients (13039).
|
Bitter orange juice might increase blood levels of sildenafil.
A small clinical study in healthy adult males shows that drinking freshly squeezed bitter orange juice 250 mL daily for 3 days and taking a single dose of sildenafil 50 mg on the 3rd day increases the peak plasma concentration of sildenafil by 18% and the overall exposure to sildenafil by 44%. Theoretically, this may be due to inhibition of cytochrome P450 3A4 by bitter orange (93470).
|
Theoretically, bitter orange might increase the risk of hypertension and adverse cardiovascular effects when taken with stimulant drugs.
|
Butternut has stimulant laxative effects. Theoretically, concomitant use of corticosteroids with butternut can increase the risk of potassium depletion (2).
|
Butternut has stimulant laxative effects. Theoretically, potassium depletion associated with butternut might increase the risk of digoxin toxicity (19).
|
Butternut has stimulant laxative effects. Theoretically, overuse of butternut might compound diuretic-induced potassium loss (19). There is some concern that people receiving butternut along with potassium-depleting diuretics might be at an increased risk for hypokalemia.
Some diuretics that can deplete potassium include chlorothiazide (Diuril), chlorthalidone (Thalitone), furosemide (Lasix), hydrochlorothiazide (HCTZ, Hydrodiuril, Microzide), and others.
|
Butternut has stimulant laxative effects. Concomitant use with stimulant laxative medications might compound fluid and electrolyte loss (19).
|
Butternut has stimulant laxative effects. In some people butternut can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Advise patients who take warfarin not to take excessive amounts of butternut.
|
Theoretically, clove oil may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, concomitant use of clove extracts with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical and laboratory research suggest that polyphenol extracts from clove flower buds might lower blood glucose levels (100595). Dosing adjustments for insulin or oral hypoglycemic agents may be necessary when taken with clove. Monitor blood glucose levels closely.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP1A2.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP1A2 in a dose-dependent manner, (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2C9.
In vitro research shows that eugenol, the principal constituent of clove, inhibits CYP2C9 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2D6.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP2D6 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP3A4.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP3A4 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, topical application of clove oil with ibuprofen might increase the absorption and side effects of topical ibuprofen.
Laboratory research shows that topical application of clove oil increases the absorption of topical ibuprofen (98854). This interaction has not been reported in humans.
|
Theoretically, taking wormwood might interfere with the effects of anticonvulsant drugs.
Thujone, a constituent of wormwood, has convulsant effects (12816).
|
Below is general information about the adverse effects of the known ingredients contained in the product Verma Plus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, bitter orange might be unsafe when used in medicinal amounts.
Topically and when inhaled as aromatherapy, bitter orange seems to be well tolerated.
Most Common Adverse Effects:
Orally: Hypertension and tachycardia, particularly when used in combination with caffeine and/or other stimulant ingredients.
Topically: Skin irritation.
Serious Adverse Effects (Rare):
Orally: Myocardial infarction, QT prolongation, seizures, stroke, syncope, tachyarrhythmia, and ventricular fibrillation have been reported in patients taking bitter orange in combination with other ingredients. It is unclear if these effects are due to bitter orange, other ingredients, or the combination.
Cardiovascular
...Bitter orange, which contains adrenergic agonists synephrine and octopamine, may cause hypertension and cardiovascular toxicity when taken orally (2040,6969,6979).
Studies evaluating the effect of bitter orange on cardiovascular parameters have been mixed. Several studies show that taking bitter orange alone or in combination with caffeine increases blood pressure and heart rate. In one clinical study, bitter orange in combination with caffeine increased systolic and diastolic blood pressure and heart rate in otherwise healthy normotensive adults (13657). In another study, a single dose of bitter orange 900 mg, standardized to 6% synephrine (54 mg), also increased systolic and diastolic blood pressure and heart rate for up to 5 hours in young, healthy adults (13774). Using half that dose of bitter orange and providing half as much synephrine, did not seem to significantly increase blood pressure or QT interval in healthy adults (14311). Increased diastolic, but not systolic, blood pressure or heart rate also occurred in a clinical trial involving a specific supplement containing synephrine 21 mg and caffeine 304 mg (Ripped Fuel Extreme Cut, Twinlab) (35743). Synephrine given intravenously to males increased systolic blood pressure, but lacked an effect on diastolic blood pressure or heart rate (12193).
In clinical research and case reports, tachycardia, tachyarrhythmia, QT prolongation, ischemic stroke, variant angina, and myocardial infarction have occurred with use of bitter orange or synephrine-containing multi-ingredient products (12030,13039,13067,13091,13657,14326,35749,91680). In one case report, a combination product containing bitter orange may have masked bradycardia and hypotension while exacerbating weight loss in a 16 year-old female with an eating disorder taking the product for weight loss (35740). From 1998 to 2004, Health Canada received 16 reports of serious adverse cardiovascular reactions such as tachycardia, cardiac arrest, ventricular fibrillation, blackout, and collapse. In two of these cases, the patient died. In almost all of these cases, bitter orange was combined with another stimulant such as caffeine, ephedrine, or both (14342).
Other research has found no significant effect of bitter orange on blood pressure or heart rate. Several clinical studies have reported that, when taken as a single dose or in divided doses ranging from 20-100 mg for one day, p-synephrine had no significant effect on blood pressure, heart rate, electrocardiogram results or adverse cardiovascular events in healthy adults (35772,91681,91681,95659,101708) Similarly, no difference in blood pressure, heart rate or electrocardiogram results were reported when p-synephrine from bitter orange (Advantra Z/Kinetic; Nutratech/Novel Ingredients Inc.) was taken for 6 weeks in healthy patients (11268). Another clinical study showed no significant effect of bitter orange (Nutratech Inc.), standardized to synephrine 20 mg, on blood pressure or heart rate when taken daily for 8 weeks in healthy males (95656). In other research, changes in blood pressure, heart rate, or QTc interval were lacking when bitter orange was given alone or in combination with caffeine and green tea (14311,35753,35755,35764,35769,35770). In one study of healthy adults, taking a single dose of p-synephrine 103 mg actually reduced mean diastolic blood pressure by 0.4-4 mmHg at 1 and 2 hours after administration when compared with placebo (95659).
A meta-analysis of clinical trials in adults with or without obesity suggests that taking p-synephrine 6-214 mg orally daily does not affect blood pressure or heart rate when used short-term, but modestly increases blood pressure and heart rate when taken for 56-60 days (109950).
The effect of bitter orange on blood pressure, heart rate, and electrocardiogram results in patients with underlying conditions, particularly cardiovascular disease, is unknown and requires further study.
Dermatologic ...Photosensitivity may occur, particularly in fair-skinned people (11909). In a clinical trial, topical application with bitter orange essential oil resulted in irritation (6972).
Endocrine ...Some clinical research shows that taking a specific supplement containing 21 mg of synephrine and 304 mg of caffeine (Ripped Fuel Extreme Cut, Twinlab) increases levels of postprandial glucose (35743). Other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.) 30 minutes once before exercise causes a significant 12% increase in glucose (95657); however, there is no difference in blood glucose when compared with placebo when this combination is taken daily for 8 weeks (95656). The effect of bitter orange itself is unclear.
Gastrointestinal ...Bitter orange has been linked to a report of ischemic colitis. In one case, a 52-year-old female developed ischemic colitis after taking a bitter orange-containing supplement (NaturalMax Skinny Fast, Nutraceutical Corporation) for a week. Symptoms resolved within 48 hours after discontinuing the supplement (15186). As this product contains various ingredients, the effect of bitter orange itself is unclear.
Musculoskeletal ...Unsteady gait has been noted in one case report of a patient taking bitter orange (13091). In another case, an otherwise healthy, Black male with sickle cell trait, developed severe rhabdomyolysis following ingestion of a specific weight loss product (Lipo 6, Nutrex Research Inc.), which contained synephrine and caffeine (16054). However, other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.), taken 30 minutes once before exercise (95657) or daily for 8 weeks, does not affect creatine kinase or serum creatinine levels when compared with placebo (95656). As these products contain various ingredients, the effect of bitter orange itself is unclear.
Neurologic/CNS ...Dizziness, difficulty in concentrating, memory loss, syncope, seizure, and stroke have been noted in case reports following bitter orange administration (13091,13039). Theoretically, bitter orange may trigger a migraine or cluster headache due to its synephrine and octopamine content (35768). When used as aromatherapy, bitter orange essential oil has also been reported to cause headache in some patients (104187). Sprint athletes taking the bitter orange constituent p-synephrine 3 mg/kg (Synephrine HCL 99%, Nutrition Power) 60 minutes before exercises and sprinting reported more nervousness (mean difference 0.9) when compared with placebo on a Likert scale. Although statistically significant, this difference is not considered clinically significant (95655).
General
...Orally, black walnut fruit (nut) is well tolerated.
However, the leaf, bark, and hull of black walnut contain high quantities of tannins, which may cause adverse effects when used orally or topically.
Most Common Adverse Effects:
Orally: The leaf, bark, and hull can cause gastrointestinal upset.
Topically: Hull preparations may cause a temporary yellow or brown discoloration at the site of application. The leaf, bark, and hull can cause skin irritation.
Serious Adverse Effects (Rare):
Orally: The bark may increase the risk for tongue cancer or lip leukoplakia when used long-term.
All routes of administration: Allergic reactions, including anaphylaxis.
Dermatologic ...Topically, black walnut leaf, bark, or hull may have an irritating effect on the skin due to tannin content. Black walnut hull preparations might cause a temporary yellow or brown discoloration of the skin at the site of application (12).
Gastrointestinal ...Orally, black walnut leaf, bark, or hull may cause gastrointestinal upset due to tannin content (12). Also, daily use of the juglone-containing bark of a related species (English walnut) is associated with increased risk of tongue cancer and lip leukoplakia (2,12).
Hepatic ...Orally, black walnut leaf, bark, or hull may cause liver damage if taken for extended periods of time due to tannin content (12).
Immunologic ...Tree nuts, which include black walnuts, can cause allergic reactions in sensitive individuals. Due to the prevalence of this allergy in the general population, tree nuts are classified as a major food allergen in the United States (105410).
Renal ...Orally, black walnut leaf, bark, or hull may cause kidney damage if taken for extended periods of time due to tannin content (12).
General ...No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, clove is well tolerated when consumed as a spice; however, clove oil in doses of only 5-10 mL can be toxic in children.
Topically, clove is generally well tolerated. When inhaled or used intravenously, clove may be unsafe.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, dental decay, itching, mucous membrane irritation, tingling, ulcers.
Inhaled: Dental decay, hypertension, itching, tachycardia.
Serious Adverse Effects (Rare):
Orally: Liver failure, respiratory distress.
Inhaled: Pneumonitis, pulmonary edema, respiratory distress.
Cardiovascular ...Smoking clove cigarettes increases heart rate and systolic blood pressure (12892).
Dental ...Population research has found that the risk of dental decay is increased in clove cigarette smokers (43332). Repeated topical application of clove in the mouth can cause gingival damage and skin and mucous membrane irritation (4,272,512). Eugenol, a constituent of clove and a material commonly found in dentistry, has been associated with side effects including gum inflammation and irritation (43365,43373,43522).
Dermatologic ...The American Dental Association has accepted clove for professional use, but not nonprescription use, due to potential damage to soft tissue that may be induced by clove application. In clinical research, small aphthous-like ulcers appeared in the area of the mouth where clove gel was applied in four participants (43448). Skin irritation and stinging have been reported with clove oil application (43338,43626). In a 24-year-old, exposure to a clove oil spill resulted in permanent local anesthesia and anhidrosis, or lack of sweating, at the affected area (43626).
Endocrine ...A case of hypoglycemia and metabolic acidosis have been reported after administration of one teaspoon of clove oil to a seven-month-old infant (43457). A case of electrolyte imbalance following accidental ingestion by a seven-month-old has also been reported (6).
Hematologic ...A case of disseminated intravascular coagulation has been reported in a 2-year-old patient after consuming between 5-10 mL of clove oil. The patient was treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III. On the fifth day, the patient started to improve and made a full recovery (43652).
Hepatic ...There are three cases of hepatic failure occurring in children after ingestion of 5-10 mL of clove oil (43395,43419,43652). Liver injury also occurred in a 3-year-old male (96949). These patients were successfully treated with N-acetylcysteine. The course of liver injury seems to be milder and shorter with early N-acetylcysteine treatment (43395,43419,96949). Another patient, who also presented with disseminated intravascular coagulation, was successfully treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III (43652).
Immunologic ...Contact dermatitis and urticaria has been reported following topical exposure to clove oil or eugenol, a constituent of clove oil (12635,43339,43606,43346).
Neurologic/CNS ...CNS depression has been reported in a 7-month-old who was given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457). A case of confusion and inability to speak has been reported secondary to oral exposure to clove oil and alcohol. The patient required intubation and was successfully treated with thiamine and normal saline (43580). Seizure and coma have been reported in a two-year-old male after ingesting 5-10 mL of clove oil (43652).
Pulmonary/Respiratory
...Clove cigarettes have been associated with throat and chest tightness (43337), pulmonary edema (43618), and fatal aspiration pneumonitis (43599).
The causative factor may be clove alone or clove along with other substances found in cigarettes. Clove cigarettes contain significant amounts of nicotine, tar, and carbon monoxide and increase plasma levels of nicotine and exhaled carbon monoxide, which might cause long-term health effects similar to tobacco smoking (12892). According to the American Medical Association, inhaling clove cigarette smoke has been associated with severe lung injury in a few susceptible individuals with prodromal respiratory infection. Also, some individuals with normal respiratory tracts have apparently suffered aspiration pneumonitis as the result of a diminished gag reflex induced by a local anesthetic action of eugenol, which is volatilized into the smoke (43602).
Intravenous injection of clove oil in a 32-year-old female resulted in hypoxia, acute dyspnea, interstitial and alveolar infiltrates, and non-cardiogenic pulmonary edema. The patient was managed with supplemental oxygen and recovered over the next seven days (16384).
Occupational exposure to eugenol, a constituent of clove, has also been reported to cause asthma and rhinitis (43492).
Renal ...Proteinuria and other urinary abnormalities were observed in a seven-month-old infant given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457).
General
...When used orally, male fern may be unsafe.
Most Common Adverse Effects:
Orally: Diarrhea, dyspnea, headaches, nausea, optic neuritis, tremors, and vertigo.
Serious Adverse Effects (Rare):
Orally: Symptoms of toxicity include cardiac and respiratory failure, coma, muscular weakness, seizures, and temporary or permanent blindness. Death has occurred with severe poisoning.
Cardiovascular ...Orally, male fern can cause cardiac failure (6).
Gastrointestinal ...Orally, male fern can cause nausea and diarrhea (6).
Neurologic/CNS ...Orally, male fern can cause coma, headaches, muscle weakness, seizures, tremors, and vertigo (6,11).
Ocular/Otic ...Orally, male fern can cause optic neuritis and temporary or permanent blindness (6,11).
Pulmonary/Respiratory ...Orally, male fern can cause dyspnea and respiratory failure (6).
General
...Wormwood contains thujone, a neurotoxin.
When products containing thujone are used orally in medicinal amounts, wormwood may be unsafe.
Most Common Adverse Effects:
Orally: The oil from wormwood leaves can cause diffuse muscle aches, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: The oil from wormwood leaves can cause acute kidney toxicity, rhabdomyolysis, and seizures.
Dermatologic ...Topically, a single case report describes a sensitivity or first degree chemical burn reaction, with facial pain and erythema, after a 50-year-old adult applied a homemade poultice containing wormwood to the face for an unreported length of time (93466).
Gastrointestinal ...Orally, the oil from wormwood leaves can cause nausea and vomiting (662). Use of a home-prepared wormwood extract has been associated with vomiting and severe diarrhea in an infant (93467).
Hematologic ...Orally, use of a home-prepared wormwood extract has been associated with severe metabolic acidosis in an infant (93467).
Immunologic ...Theoretically, wormwood might cause an allergic reaction in people sensitive to the Asteraceae/Compositae family (12815). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Musculoskeletal ...Orally, the oil from wormwood leaves can cause diffuse muscle aches and rhabdomyolysis (662).
Neurologic/CNS ...Orally, the oil from wormwood leaves can cause seizures (662).
Renal ...Orally, the oil from wormwood leaves can cause acute kidney toxicity and acute kidney failure (662).
Other ...Chronic ingestion of absinthe, an alcoholic beverage that contains wormwood extract, has been linked to absinthism. Absinthism was first described in the 1800s when absinthe was at its peak levels of consumption. It has been characterized by addiction, gastrointestinal adverse effects, insomnia, auditory and visual hallucinations, tremors, paralysis, epilepsy, and brain damage. There is also increased risk of psychiatric disease and suicide (662,12814,15008). Increasing thujone concentrations of absinthe increases anxiety and decreases attention in healthy individuals (86541). A case of bradyarrhythmias associated with absinthe intoxication has also been reported (86543). However, there is speculation that some of the symptoms of absinthism originally described might be attributed to adulteration with metals or toxic plants such as calamus and tansy, rather than the ingredients usually used in absinthe drinks (15007). Some researchers also suggest that absinthism is not a unique condition and is indistinguishable from alcohol use disorder. In fact, some evidence suggests that the thujone concentrations in the absinthe formulations from the 1800s were too low to cause significant thujone-related toxicities (15008,15009).