Ingredients | Amount Per Serving |
---|---|
(Beta-Carotene, Retinyl Palmitate)
(Vitamin A (Form: as 50% natural Beta-Carotene, and 50% Retinyl Palmitate) )
|
1000 IU |
(Ascorbic Acid)
|
113 mg |
(as Riboflavin 5'-Phosphate Sodium)
(Riboflavin (Form: as Riboflavin 5'-Phosphate Sodium) )
|
5 mg |
500 mcg | |
(as Ferrochel)
(Iron (Form: as Ferrochel (Alt. Name: Ferrous Bisglycinate Chelate)) )
|
29 mg |
(as TRAACS Copper Bisglycinate Chelate)
(Copper (Form: as TRAACS Copper Bisglycinate Chelate) )
|
0.5 mg |
75 mg | |
(Aspergillus niger, Candida rugosa)
(Lipase (Form: from Aspergillus niger Genus: Aspergillus Species: niger, or Candida rugosa Genus: Candida Species: rugosa) Note: 10 LU/mg )
|
5 mg |
HPMC Note: capsule, Ascorbyl Palmitate, L-Leucine, Silica
Below is general information about the effectiveness of the known ingredients contained in the product Optimal Iron Plus Cofactors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Optimal Iron Plus Cofactors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when taken orally as a single dose of up to 1500 mg (93328,93329). There is insufficient reliable information available about the safety of betaine hydrochloride when used in multiple doses.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Biotin has been safely used in doses up to 300 mg daily for up to 6 months. A tolerable upper intake level (UL) has not been established (1900,6243,95662,102965). ...when applied topically as cosmetic products at concentrations of 0.0001% to 0.6% biotin (19344).
POSSIBLY SAFE ...when used intramuscularly and appropriately (8468,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at adequate intake doses of 5-25 mcg daily for up to 6 months (173,6243,19347,19348,111365). A tolerable upper intake level (UL) has not been established.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at the adequate intake (AI) dose of 30 mcg daily during pregnancy and 35 mcg daily during lactation. It has also been used in supplemental doses of up to 300 mcg daily (6243,7878). A tolerable upper intake level (UL) has not been established.
LIKELY SAFE ...when used orally and appropriately. Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 10 mg daily (7135).
POSSIBLY SAFE ...when copper oxide is used topically. A wound dressing impregnated with copper oxide in concentrations of 3% by weight has been used with apparent safety in one clinical trial (105363).
POSSIBLY UNSAFE ...when used orally in doses exceeding the UL of 10 mg daily. Higher intake can cause liver damage (7135,45865). Kidney failure and death can occur with ingestion of as little as 1 gram of copper sulfate (17).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1 mg daily for 1-3 years of age, 3 mg daily for 4-8 years of age, 5 mg daily for 9-13 years of age, and 8 mg daily for 14-18 years of age (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the UL (7135).
Higher intake can cause liver damage (7135).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
LIKELY SAFE ...when used orally and appropriately. For people age 14 and older with adequate iron stores, iron supplements are safe when used in doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron. The UL is not meant to apply to those who receive iron under medical supervision (7135,96621). To treat iron deficiency, most people can safely take up to 300 mg elemental iron per day (15). ...when used intravenously and appropriately. Ferric carboxymaltose 200 mg and iron sucrose 200 mg have been given intravenously for up to 10 doses with no reported serious adverse effects (91179). A meta-analysis of clinical studies of hemodialysis patients shows that administering high-dose intravenous (IV) iron does not increase the risk of hospitalization, infection, cardiovascular events, or death when compared with low-dose IV iron, oral iron, or no iron treatment (102861). A more recent meta-analysis of clinical studies of all patient populations shows that administering IV iron does not increase the risk of hospital length of stay or mortality, although the risk of infection is increased by 16% when compared with oral iron or no iron (110186). Despite these findings, there are rare reports of hypophosphatemia and/or osteomalacia (112603,112608,112609,112610).
LIKELY UNSAFE ...when used orally in excessive doses. Doses of 30 mg/kg are associated with acute toxicity. Long-term use of high doses of iron can cause hemosiderosis and multiple organ damage. The estimated lethal dose of iron is 180-300 mg/kg; however, doses as low as 60 mg/kg have also been lethal (15).
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135,91183,112601).
CHILDREN: LIKELY UNSAFE
when used orally in excessive amounts.
Tell patients who are not iron-deficient not to use doses above the tolerable upper intake level (UL) of 40 mg per day of elemental iron for infants and children. Higher doses frequently cause gastrointestinal side effects such as constipation and nausea (7135,20097). Iron is the most common cause of pediatric poisoning deaths. Doses as low as 60 mg/kg can be fatal (15).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Iron is safe during pregnancy and breast-feeding in patients with adequate iron stores when used in doses below the tolerable upper intake level (UL) of 45 mg daily of elemental iron (7135,96625,110180).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally in high doses.
Tell patients who are not iron deficient to avoid exceeding the tolerable upper intake level (UL) of 45 mg daily of elemental iron. Higher doses frequently cause gastrointestinal side effects such as nausea and vomiting (7135) and might increase the risk of preterm labor (100969). High hemoglobin concentrations at the time of delivery are associated with adverse pregnancy outcomes (7135,20109).
There is insufficient reliable information available about the safety of lipase.
CHILDREN: POSSIBLY UNSAFE
when recombinant human bile salt-stimulated lipase (rhBSSL) is used orally by premature infants.
Adding rhBSSL to infant formula or pasteurized breast milk increases the risk for serious gastrointestinal adverse effects in premature infants (101940).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Riboflavin 400 mg daily has been taken for up to 3 months, and 10 mg daily has been taken safely for up to 6 months (4912,91752,105480). A tolerable upper intake level (UL) has not been established (3094,91752,94089).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089). ...when used orally in higher doses for up to 1 year. Doses of 100-200 mg daily have been used safely for 4-12 months in children ages 9-13 years (71483,105484).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089).
LIKELY SAFE ...when used orally or intramuscularly and appropriately. Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe in adults when taken in doses below the tolerable upper intake level (UL) of 10,000 IU (3000 mcg) daily (7135). Higher doses increase the risk of side effects. In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake refer to pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
POSSIBLY SAFE ...when used topically and appropriately, short-term. Retinol up to 0.5% has been used on the skin daily for up to 12 weeks with apparent safety. No serious adverse effects have been reported in clinical trials (103671,103680,114500).
POSSIBLY UNSAFE ...when used orally in high doses. Doses higher than the UL of 10,000 IU (3000 mcg) per day of pre-formed vitamin A (retinol or retinyl ester) might increase the risk of side effects (7135). While vitamin A 25,000 IU (as retinyl palmitate) daily for 6 months followed by 10,000 IU daily for 6 months has been used with apparent safety in one clinical trial (95052), prolonged use of excessive doses of vitamin A can cause hypervitaminosis A (7135). The risk for developing hypervitaminosis A is related to total cumulative dose of vitamin A rather than a specific daily dose (1467,1469). In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). There is insufficient reliable information available about the safety of using sublingual formulations of vitamin A.
CHILDREN: LIKELY SAFE
when used orally or intramuscularly and appropriately.
The amount of pre-formed vitamin A (retinol or retinyl ester) that is safe depends on age. For children up to 3 years of age, doses less than 2000 IU (600 mcg) per day seem to be safe. For children ages 4 to 8, doses less than 3000 IU (900 mcg) per day seem to be safe. For children ages 9 to 13, doses less than 5667 IU (1700 mcg) per day seem to be safe. For children 14 to 18, doses less than 9333 IU (2800 mcg) per day seem to be safe (7135). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount for determining safety.
CHILDREN: POSSIBLY UNSAFE
when pre-formed vitamin A (retinol or retinyl ester) is used orally in excessive doses.
For children up to 3 years of age, avoid doses greater than 2000 IU (600 mcg) per day. For children ages 4 to 8, avoid doses greater than 3000 IU (900 mcg) per day. For children ages 9 to 13, avoid doses greater than 5667 IU (1700 mcg) per day. For children ages 14 to 18, avoid doses greater than 9333 IU (2800 mcg) per day (7135). Higher doses of vitamin A supplementation have been associated with increased risk of side effects such as pneumonia, bone pain, and diarrhea (319,95051). Long-term supplementation with low to moderate doses on a regular basis can cause severe, but usually reversible, liver damage (11978).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally or intramuscularly and appropriately.
Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe during pregnancy and lactation when used in doses less than 10,000 IU (3000 mcg) per day in adults 19 years of age and older and 2800 mcg daily in those 14-18 years of age (7135,16823,107293). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally or intramuscularly in excessive doses.
Daily intake of greater than 10,000 IU (3000 mcg) can cause fetal malformations (3066,7135). Excessive dietary intake of vitamin A has also been associated with teratogenicity (11978). The first trimester of pregnancy seems to be the critical period for susceptibility to vitamin A-associated birth defects such as craniofacial abnormalities and abnormalities of the central nervous system (7135). Pregnant patients should monitor their intake of pre-formed vitamin A (retinol or retinyl ester). This form of vitamin A is found in several foods including animal products, particularly fish and animal liver, some fortified breakfast cereals, and dietary supplements (3066).
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product Optimal Iron Plus Cofactors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Betaine hydrochloride increases stomach acidity and could decrease the effects of antacids.
Details
|
Betaine hydrochloride increases stomach acidity and could decrease the effects of H2-blockers.
Details
|
Betaine hydrochloride increases stomach acidity and could decrease the effects of PPIs.
Details
|
Theoretically, taking copper with contraceptive drugs might increase the levels and toxic effects of copper.
Details
A meta-analysis of clinical studies suggests that chronic use of oral contraceptives increases serum copper levels by a mean of 57 mcg/dL. In most people, this resulted in levels above the normal reference range for copper (92395).
|
Theoretically, taking copper with penicillamine might decrease the absorption of penicillamine; separate dosing by at least 2 hours.
Details
|
Iron reduces the absorption of bisphosphonates.
Details
Advise patients that doses of bisphosphonates should be separated by at least two hours from doses of all other medications, including supplements such as iron. Divalent cations, including iron, can decrease absorption of bisphosphonates by forming insoluble complexes in the gastrointestinal tract (15).
|
Theoretically, taking chloramphenicol with iron might reduce the response to iron therapy in iron deficiency anemia.
Details
|
Iron might decrease dolutegravir levels by reducing its absorption.
Details
Advise patients to take dolutegravir at least 2 hours before or 6 hours after taking iron. Pharmacokinetic research shows that iron can decrease the absorption of dolutegravir from the gastrointestinal tract through chelation (93578). When taken under fasting conditions, a single dose of ferrous fumarate 324 mg orally along with dolutegravir 50 mg reduces overall exposure to dolutegravir by 54% (94190).
|
Theoretically, taking iron along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
Details
Iron is a divalent cation. There is concern that iron may decrease the absorption of integrase inhibitors from the gastrointestinal tract through chelation (93578). One pharmacokinetic study shows that iron can decrease blood levels of the specific integrase inhibitor dolutegravir through chelation (94190). Also, other pharmacokinetic research shows that other divalent cations such as calcium can decrease the absorption and levels of some integrase inhibitors through chelation (93578,93579).
|
Iron might decrease levodopa levels by reducing its absorption.
Details
Advise patients to separate doses of levodopa and iron as much as possible. There is some evidence in healthy people that iron forms chelates with levodopa, reducing the amount of levodopa absorbed by around 50% (9567). The clinical significance of this hasn't been determined.
|
Iron might decrease levothyroxine levels by reducing its absorption.
Details
Advise patients to separate levothyroxine and iron doses by at least 2 hours. Iron can decrease the absorption and efficacy of levothyroxine by forming insoluble complexes in the gastrointestinal tract (9568).
|
Iron might decrease methyldopa levels by reducing its absorption.
Details
|
Theoretically, iron might decrease mycophenolate mofetil levels by reducing its absorption.
Details
Advise patients to take iron 4-6 hours before, or 2 hours after, mycophenolate mofetil. It has been suggested that a decrease of absorption is possible, probably by forming nonabsorbable chelates. However, mycophenolate pharmacokinetics are not affected by iron supplementation in available clinical research (3046,20152,20153,20154,20155).
|
Iron might decrease penicillamine levels by reducing its absorption.
Details
Advise patients to separate penicillamine and iron doses by at least 2 hours. Oral iron supplements can reduce absorption of penicillamine by 30% to 70%, probably due to chelate formation. In people with Wilson's disease, this interaction has led to reduced efficacy of penicillamine (3046,3072,20156).
|
Iron might decrease levels of quinolone antibiotics by reducing their absorption.
Details
|
Iron might decrease levels of tetracycline antibiotics by reducing their absorption.
Details
Advise patients to take iron at least 2 hours before or 4 hours after tetracycline antibiotics. Concomitant use can decrease absorption of tetracycline antibiotics from the gastrointestinal tract by 50% to 90% (15).
|
Theoretically, taking riboflavin with tetracycline antibiotics may decrease the potency of these antibiotics.
Details
In vitro research suggests that riboflavin may inhibit the potency of tetracycline antibiotics (23372). It is not clear if this effect is clinically significant, as this interaction has not been reported in humans.
|
Theoretically, taking high doses of vitamin A in combination with other potentially hepatotoxic drugs might increase the risk of liver disease.
Details
|
Concomitant use of retinoids with vitamin A supplements might produce supratherapeutic vitamin A levels.
Details
Retinoids, which are vitamin A derivatives, could have additive toxic effects when taken with vitamin A supplements (3046).
|
Theoretically, taking tetracycline antibiotics with high doses of vitamin A can increase the risk of pseudotumor cerebri.
Details
Benign intracranial hypertension (pseudotumor cerebri) can occur with tetracyclines and with acute or chronic vitamin A toxicity. Case reports suggest that taking tetracyclines and vitamin A concurrently can increase the risk of this condition (10545,10546,10547). Avoid high doses of vitamin A in people taking tetracyclines chronically.
|
Theoretically, high doses of vitamin A could increase the risk of bleeding with warfarin.
Details
Vitamin A toxicity is associated with hemorrhage and hypoprothrombinemia, possibly due to vitamin K antagonism (505). Advise patients taking warfarin to avoid doses of vitamin A above the tolerable upper intake level of 10,000 IU/day for adults.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product Optimal Iron Plus Cofactors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, betaine hydrochloride is generally well tolerated when taken as a single dose.
Gastrointestinal ...Theoretically, the hydrochloric acid produced from betaine hydrochloride might irritate gastric or duodenal ulcers or impede ulcer healing. It might also cause heartburn.
General
...Orally and topically, biotin is generally well tolerated.
Most Common Adverse Effects: None.
Gastrointestinal ...Orally, high-dose biotin has been rarely associated with mild diarrhea. Transient mild diarrhea was reported by 2 patients taking biotin 300 mg daily (95662).
Pulmonary/Respiratory ...In one case report in France, a 76-year-old female frequent traveler developed eosinophilic pleuropericarditis after taking biotin 10 mg and pantothenic acid 300 mg daily for 2 months. She had also been taking trimetazidine for 6 years (3914). Whether eosinophilia in this case was related to biotin, pantothenic acid, other substances, or patient-specific conditions is unknown. There have been no other similar reports.
General ...Orally, copper is generally well tolerated when consumed in doses below the tolerable upper intake level (UL).
Dermatologic
...Contact dermatitis caused by copper has been reported rarely.
A case report describes a 5-year-old male who developed recurrent fingertip dermatitis and a positive skin test to copper after playing with toy cars made with a copper-containing alloy (95538). Also, in a small clinical trial in children 1-3 months of age with umbilical granuloma, 3 of 33 children receiving a single topical application of copper sulfate developed superficial burns, whereas no superficial burns occurred in those receiving topical sodium chloride (109403).
In one case report, a 68-year-old male with type 2 diabetes and peripheral neuropathy developed second- and third-degree burns after wearing a copper-containing compression sock on the right leg for 3 hours while sitting in the sun. The patient received treatment with topical silver sulfadiazine and oral clindamycin. After 6 weeks, the patient was found to have multiple persistent wounds containing necrotic tissue which required debridement, daily dressing changes, and tubular compression. It is thought that the heat conductance of copper magnified the effects of sun exposure in this case (109402).
Endocrine ...There is evidence from observational studies that people with diabetes (type 1 or type 2) have higher copper levels in their blood than people without diabetes, although not all studies have shown this (95537). It is not known if elevated copper levels contribute to development or worsening of diabetes.
Hematologic ...A case report of copper overdose in a 28-year-old male resulted in hemolysis exacerbated by glucose-6-phosphate dehydrogenase deficiency. The patient was hospitalized, received D-penicillamine chelation, blood transfusion, and ultimately, 4 cycles of plasmapheresis which led to clinical recovery (112378).
General
...Orally or intravenously, iron is generally well tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, gastrointestinal irritation, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about oral or gastric ulcerations.
Intravenously: Case reports have raised concerns about hypophosphatemia and osteomalacia.
Cardiovascular
...There is debate regarding the association between coronary heart disease (CHD) or myocardial infarction (MI) and high iron intake or high body iron stores.
Some observational studies have reported that high body iron stores are associated with increased risk of MI and CHD (1492,9542,9544,9545,15175). Some observational studies reported that only high heme iron intake from dietary sources such as red meat are associated with increased risk of MI and CHD (1492,9546,15174,15205,15206,91180). However, the majority of research has found no association between serum iron levels and cardiovascular disease (1097,1099,9543,9547,9548,9549,9550,56469,56683).
There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
Dermatologic ...Cutaneous hemosiderosis, or skin staining, has been reported following intravenous iron infusion in various case reports. Most of these cases are due to extravasation following iron infusion (112605,112611). In one case, extravasation has occurred following iron derisomaltose infusion in a 41-year-old female with chronic kidney disease (112605). Rarely, diffuse cutaneous hermosiderosis has occurred. In one case, a 31-year-old female with excessive sweating developed cutaneous hemosiderosis in the armpits following an intravenous iron polymaltose infusion (112611).
Endocrine ...Population research in females shows that higher ferritin levels are associated with an approximately 1. 5-fold higher odds of developing gestational diabetes. Increased dietary intake of heme-iron, but not non-heme iron, is also associated with an increased risk for gestational diabetes. The effects of iron supplementation could not be determined from the evaluated research (96618). However, in a sub-analysis of a large clinical trial in pregnant adults, daily supplementation with iron 100 mg from 14 weeks gestation until delivery did not affect the frequency or severity of glucose intolerance or gestational weight gain (96619).
Gastrointestinal
...Orally, iron can cause dry mouth, gastrointestinal irritation, heartburn, abdominal pain, constipation, diarrhea, nausea, or vomiting (96621,102864,104680,104684,110179,110185,110188,110189,110192).
These adverse effects are uncommon at doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron in adults with normal iron stores (7135). Higher doses can be taken safely in adults with iron deficiency, but gastrointestinal side effects may occur (1095,20118,20119,56698,102864). Taking iron supplements with food seems to reduce gastrointestinal side effects (7135). However, food can also significantly reduce iron absorption. Iron should be taken on an empty stomach, unless it cannot be tolerated.
There are several formulations of iron products such as ferrous sulfate, ferrous gluconate, ferrous fumarate, and others. Manufacturers of some formulations, such as polysaccharide-iron complex products (Niferex-150, etc), claim to be better tolerated than other formulations; however, there is no reliable evidence to support this claim. Gastrointestinal tolerability relates mostly to the elemental iron dose rather than the formulation (17500).
Enteric-coated or controlled-release iron formulations might reduce nausea for some patients, however, these products also have lower absorption rates (17500).
Liquid oral preparations can blacken and stain teeth (20118).
Iron can also cause oral ulcerations and ulcerations of the gastric mucosa (56684,91182,96622,110179). In one case report, an 87-year-old female with Alzheimer disease experienced a mucosal ulceration, possibly due to holding a crushed ferrous sulfate 80 mg tablet in the mouth for too long prior to swallowing (91182). The ulceration was resolved after discontinuing iron supplementation. In another case report, a 76-year old male suffered gastric mucosal injury after taking a ferrous sulfate tablet daily for 4 years (56684). In a third case report, a 14-year-old female developed gastritis involving symptoms of upper digestive hemorrhage, nausea, melena, and stomach pain. The hemorrhage was attributed to supplementation with ferrous sulfate 2 hours after meals for the prior 2 weeks (96622). In one case report, a 43-year old female developed atrophic gastritis with non-bleeding ulcerations five days after starting oral ferrous sulfate 325 mg twice daily (110179).
Intravenously, iron can cause gastrointestinal symptoms sch as nausea (104684,110192).
Immunologic
...Although there is some clinical research associating iron supplementation with an increased rate of malaria infection (56796,95432), the strongest evidence to date does not support this association, at least for areas where antimalarial treatment is available (95433,96623).
In an analysis of 14 trials, iron supplementation was not associated with an increased risk of malaria (96623). In a sub-analysis of 7 preliminary clinical studies, the effect of iron supplementation was dependent upon the access to services for antimalarial treatment. In areas where anemia is common and services are available, iron supplementation is associated with a 9% reduced risk of clinical malaria. In an area where services are unavailable, iron supplementation was associated with a 16% increased risk in malaria incidence (96623). The difference in these findings is likely associated with the use of malaria prevention methods.
A meta-analysis of clinical studies of all patient populations shows that administering IV iron, usually iron sucrose and ferric carboxymaltose, increases the risk of infection by 16% when compared with oral iron or no iron. However, sub-analyses suggest this increased risk is limited to patients with inflammatory bowel disease (IBD) (110186).
Intravenously, iron has rarely resulted in allergic reactions, including anaphylactoid reactions (110185,110192,112606,112607). There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
Musculoskeletal ...Intravenously, iron rarely results in osteomalacia related to hypophosphatemia (112609). At least 2 cases exist of hypophosphatemic osteomalacia. In one case, a 70-year-old male with a genetic hemorrhagic disorder infused with ferric carboxymaltose developed lower limb pain with hypophosphatemia and diffuse bone demineralization in the feet (112609). In a second case, a 61-year-old male developed femoral neck insufficiency fractures following repeated ferric carboxymaltose transfusions for anemia related to vascular malformation in the bowel (112603). Severe hypophosphatemia requiring intravenous phosphate in the absence of osteomalacia has also occurred following intravenous ferric carboxymaltose (112608,112610).
Oncologic
...There is a debate regarding the association between high levels of iron stores and cancer.
Data are conflicting and inconclusive (1098,1099,1100,1102). Epidemiological studies suggest that increased body iron stores may increase the risk of cancer or general mortality (56703).
Occupational exposure to iron may be carcinogenic (56691). Oral exposure to iron may also be carcinogenic. Pooled analyses of population studies suggest that increasing the intake of heme iron increases the risk of colorectal cancer. For example, increasing heme iron intake by 1 mg/day is associated with an 11% increase in risk (56699,91185).
Other ...Intravenously, sodium ferric gluconate complex (SFGC) caused drug intolerance reactions in 0. 4% of hemodialysis patients including 2 patients with pruritus and one patient each with anaphylactoid reaction, hypotension, chills, back pain, dyspnea/chest pain, facial flushing, rash and cutaneous symptoms of porphyria (56527).
General
...No adverse effects have been reported in adults.
However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Gastrointestinal adverse effects, such as necrotizing enterocolitis, when recombinant human bile salt-stimulated lipase is used in premature infants.
Gastrointestinal ...Orally, when added to the formula or pasteurized breast milk consumed by premature infants, recombinant human bile salt-stimulated lipase (rhBSSL) can cause gastrointestinal adverse effects, including abdominal distension, flatulence, constipation, colic, abdominal pain, gastroenteritis, vomiting, regurgitation, and rectal bleeding (101940). Premature infants receiving rhBSSL also had a slightly higher rate of necrotizing enterocolitis (NEC) when compared with those receiving placebo. After review by a panel of experts, it was determined that the rate of confirmed or suspected NEC in infants consuming rhBSSL was 3.3%, compared with 0.5% in those receiving placebo. Although this rate of NEC is lower than the historical rate of occurrence in premature infants (11%), a possible increased risk for NEC cannot be ruled out (101940).
General
...Orally, riboflavin is generally well tolerated.
Most Common Adverse Effects:
Orally: Dose-related nausea and urine discoloration.
Gastrointestinal ...Orally, riboflavin has been associated with rare diarrhea and dose-related nausea (1398,71483). In one clinical study, one subject out of 28 reported having diarrhea two weeks after starting riboflavin 400 mg daily (1398).
Genitourinary ...Orally, high doses of riboflavin can cause bright yellow urine. Furthermore, in one clinical study, one subject out of 28 reported polyuria two weeks after starting riboflavin 400 mg daily (1398,3094).
General
...Orally, vitamin A is generally well-tolerated at doses below the tolerable upper intake level (UL).
Serious Adverse Effects (Rare):
Orally: In very high doses, vitamin A can cause pseudotumor cerebri, pain, liver toxicity, coma, and even death.
Dermatologic ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity including dry skin and lips; cracking, scaling, and itchy skin; skin redness and rash; hyperpigmentation; shiny skin, and massive skin peeling (7135,95051). Hypervitaminosis A can cause brittle nails, cheilitis, gingivitis, and hair loss (15,95051). Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause skin redness and generalized peeling of the skin a few days later and may last for several weeks (15).
Gastrointestinal ...There is some evidence that oral vitamin A supplementation might increase the risk of diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with diarrhea in well-nourished children (319). Diarrhea (82326,82389), nausea (7135,100329), abdominal pain (95051), abdominal fullness (100329), and vomiting (7135,82559,95051,95055,109755) have been reported following use of large doses of oral vitamin A. Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause vomiting and diarrhea (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including anorexia, abdominal discomfort, and nausea and vomiting (7135).
Genitourinary ...Hypervitaminosis A can cause reduced menstrual flow (15). Intravaginally, all-trans retinoic acid can cause vaginal discharge, itching, irritation, and burning (9199).
Hematologic ...Hypervitaminosis A can cause spider angiomas, anemia, leukopenia, leukocytosis, and thrombocytopenia (15,95051).
Hepatic ...Since the liver is the main storage site for vitamin A, hypervitaminosis A can cause hepatotoxicity, with elevated liver enzymes such as alanine aminotransferase (ALT, formerly SGPT) and aspartate aminotransferase (AST, formerly SGOT), as well as fibrosis, cirrhosis, hepatomegaly, portal hypertension, and death (6377,7135,95051).
Musculoskeletal
...Vitamin A can increase the risk for osteoporosis and fractures.
Observational research has found that chronic, high intake of vitamin A 10,000 IU or more per day is associated with an increased risk of osteoporosis and hip fracture in postmenopausal adults, as well as overall risk of fracture in middle-aged males (7712,7713,9190). A meta-analysis of these and other large observational studies shows that high dietary intake of vitamin A or retinol is associated with a 23% to 29% greater risk of hip fracture when compared with low dietary intake (107294). High serum levels of vitamin A as retinol also increase the risk of fracture in males. Males with high serum retinol levels are seven times more likely to fracture a hip than those with lower serum retinol levels (9190). Vitamin A damage to bone can occur subclinically, without signs or symptoms of hypervitaminosis A. Some researchers are concerned that consumption of vitamin A fortified foods such as margarine and low-fat dairy products in addition to vitamin A or multivitamin supplements might cause excessive serum retinol levels. Older people have higher levels of vitamin A and might be at increased risk for vitamin A-induced osteoporosis.
Vitamin A's effects on bone resorption could lead to hypercalcemia (95051).
Hypervitaminosis can cause slow growth, premature epiphyseal closure, painful hyperostosis of the long bones, general joint pain, osteosclerosis, muscle pain, and calcium loss from the bones (15,95051). One child experienced severe bone pain after taking vitamin A 600,000 IU daily for more than 3 months (95051). Vitamin A was discontinued and symptoms lessened over a period of 2 weeks. The patient made a full recovery 2 months later.
Neurologic/CNS
...Orally, adverse effects from a single large dose of vitamin A are more common in young children than adults (15).
Headache, increased cerebrospinal fluid pressure, vertigo, and blurred vision have been reported following an acute oral dose of vitamin A 500,000 IU (7135). In children, approximately 25,000 IU/kg can cause headache, irritability, drowsiness, dizziness, delirium, and coma (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including fatigue, malaise, lethargy, and irritability (7135).
There are reports of bulging of the anterior fontanelle associated with an acute high oral dose of vitamin A in infants (7135,90784,95053,95054). In children, approximately 25,000 IU/kg can cause increased intracranial pressure with bulging fontanelles in infants (15). Also, muscular incoordination has been reported following short-term high doses of vitamin A (7135).
A case of intracranial hypertension involving diffuse headaches and brief loss of vision has been reported secondary to topical use of vitamin A. The patient was using over-the-counter vitamin A preparations twice daily including Avotin 0.05% cream, Retin-A gel 0.01%, and Isotrexin gel containing isotretinoin 0.05% and erythromycin 2%, for treatment of facial acne. Upon exam, the patient was noted to have bilateral optic disc edema. The patient discontinued use of topical vitamin A products. Two months later, the patient reported decreased headaches and an improvement in bilateral optic disc edema was seen (95056).
Ocular/Otic ...In children, oral vitamin A approximately 25,000 IU/kg can cause swelling of the optic disk, bulging eyeballs, and visual disturbances (15). Adverse effects from a single ingestion of a large dose of vitamin A are more common in young children than adults (15).
Oncologic ...There is concern that high intake of vitamin A might increase some forms of cancer. Population research suggests high vitamin A intake might increase the risk of gastric carcinoma (9194).
Psychiatric ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity, which can include symptoms that mimic severe depression or schizophrenic disorder (7135).
Pulmonary/Respiratory ...There is some evidence that oral vitamin A supplementation might increase the risk of pneumonia and diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with pneumonia and diarrhea in well-nourished children (319). In preschool children, high-dose vitamin A also increases the risk of respiratory infection (82288).
Other ...Chronic use of large amounts of vitamin A (>25,000 IU daily for more than 6 years or 100,000 IU daily for more than 6 months) can cause symptoms of vitamin A toxicity including mild fever and excessive sweating (7135). High intakes of vitamin A may result in a failure to gain weight normally in children and weight loss in adults (15).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).