Ingredients | Amount Per Serving |
---|---|
Calories
|
16 {Calories} |
Calories from Fat
|
13 {Calories} |
Total Fat
|
1.5 g |
Saturated Fat
|
0 g |
(D-Alpha-Tocopherol)
|
10 IU |
(as Magnesium Oxide)
(Magnesium (Form: as Magnesium Oxide) )
|
12 mg |
(from Soy Lecithin)
(Phosphatidyl Choline (Form: from Soy Lecithin) )
|
175 mg |
Phosphatidyl Inositol
(from Soy Lecithin)
(Phosphatidyl Inositol (Form: from Soy Lecithin) )
|
100 mg |
Gelatin, Glycerin, Soybean Oil, yellow Beeswax, Water, Natural color, Wheat Germ Oil
Below is general information about the effectiveness of the known ingredients contained in the product Lecithin. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Lecithin. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
POSSIBLY SAFE ...when used orally and appropriately. Large doses up to 30 grams per day for 6 weeks (5223) and smaller doses of up to 6 grams daily for up to 24 months have been well tolerated (68839,68843,105728). ...when used subcutaneously and appropriately, short-term. Some research suggests that subcutaneous injections of 0.2 mL to 5 mL of a 5% phosphatidylcholine solution do not cause significant serious adverse effects when doses are administered up to five times and spaced apart by 2-4 weeks (15621,15623,15624,15625). ...when used topically as an emulsion also containing niacinamide for up to 12 weeks (93388).
PREGNANCY: POSSIBLY SAFE
when used orally from 18 weeks of gestation at doses of up to 5 grams daily (93386)
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally or topically and appropriately. Vitamin E is generally considered safe, even at doses exceeding the recommended dietary allowance (RDA); however, adverse effects are more likely to occur with higher doses. The tolerable upper intake level (UL) in healthy people is 1000 mg daily, equivalent to 1100 IU of synthetic vitamin E (all-rac-alpha-tocopherol) or 1500 IU of natural vitamin E (RRR-alpha-tocopherol) (4668,4681,4713,4714,4844,89234,90067,90069,90072,19206)(63244,97075). Although there is some concern that taking vitamin E in doses of 400 IU (form unspecified) per day or higher might increase the risk of adverse outcomes and mortality from all causes (12212,13036,15305,16709,83339), most of this evidence comes from studies that included middle-aged or older patients with chronic diseases or patients from developing countries in which nutritional deficiencies are prevalent.
POSSIBLY UNSAFE ...when used orally in high doses. Repeated doses exceeding the tolerable upper intake level (UL) of 1000 mg daily are associated with significant side effects in otherwise healthy people (4844). ...when used intravenously in large doses. Large repeated intravenous doses of all-rac-alpha-tocopherol (synthetic vitamin E) were associated with decreased activity of clotting factors and bleeding in one report (3074). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adults who use e-cigarette, or vaping, products, which often contain vitamin E acetate. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Vitamin E acetate has been detected in most bronchoalveolar lavage samples taken from patients with EVALI. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. While this association shows a correlation between vitamin E acetate inhalation and lung injury, a causal link has not yet been determined, and it is not clear if other toxic compounds are also involved (101061,101062,102970).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Vitamin E has been safely used in children in amounts below the tolerable upper intake level (UL). The UL for healthy children is: 200 mg in children aged 1-3 years, 300 mg in children aged 4-8 years, 600 mg in children aged 9-13 years, and 800 mg in children aged 14-18 years. A UL has not been established for infants up to 12 months of age (23388).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL due to increased risk of adverse effects (23388).
...when alpha-tocopherol is used intravenously in large doses in premature infants. Large intravenous doses of vitamin E are associated with an increased risk of necrotizing enterocolitis and sepsis in this population (85062,85083). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adolescents and teenagers who use e-cigarette, or vaping, products. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Constituents in E-cigarette or vaping products with the potential to cause lung injury or impaired lung function include lipids, such as vitamin E acetate. Vitamin E acetate has been detected in all bronchoalveolar lavage samples taken from patients with EVALI. No other ingredient, including THC or nicotine, was found in all samples, and other ingredients, including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable This shows that vitamin E acetate is at the primary site of lung injury. A causal link has not yet been described and it is not clear if other compounds are also involved (101061,101062).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
The tolerable upper intake level (UL) during pregnancy is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older. However, maternal supplementation is not generally recommended unless dietary vitamin E falls below the RDA (4260). No serious adverse effects were reported with oral intake of 400 IU per day starting at weeks 9-22 of pregnancy in healthy patients or those at high risk for pre-eclampsia (3236,97075), or with 600-900 IU daily during the last two months of pregnancy (4260). However, some preliminary evidence suggests that taking vitamin E supplements might be harmful when taken in early pregnancy. A case-control study found that taking a vitamin E supplement during the first 8 weeks of pregnancy is associated with a 1.7-9-fold increase in odds of congenital heart defects (16823). However, the exact amount of vitamin E consumed during pregnancy in this study is unclear. Until more is known, advise patients to avoid taking a vitamin E supplement in early pregnancy unless needed for an appropriate medical indication.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL during lactation is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older (4844).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts that exceed the UL due to increased risk of adverse effects (4844).
Below is general information about the interactions of the known ingredients contained in the product Lecithin. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of alkylating agents.
Details
There's concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
Concomitant use of vitamin E and anticoagulant or antiplatelet agents might increase the risk of bleeding.
Details
Vitamin E seems to inhibit of platelet aggregation and antagonize the effects of vitamin K-dependent clotting factors (4733,4844,11580,11582,11583,11584,11586,112162). These effects appear to be dose-dependent, and are probably only likely to be clinically significant with doses of at least 800 units daily (11582,11585). Mixed tocopherols, such as those found in food, might have a greater antiplatelet effect than alpha-tocopherol (10364). RRR alpha-tocopherol (natural vitamin E) 1000 IU daily antagonizes vitamin K-dependent clotting factors (11999). Advise patients to avoid high doses of vitamin E, especially in people with low vitamin K intake or other risk factors for bleeding.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of antitumor antibiotics.
Details
There's concern that antioxidants could reduce the activity of antitumor antibiotic drugs such as doxorubicin, which generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
A specific form of vitamin E might increase absorption and levels of cyclosporine.
Details
There is some evidence that one specific formulation of vitamin E (D-alpha-tocopheryl-polyethylene glycol-1000 succinate, TPGS, tocophersolan, Liqui-E) might increase absorption of cyclosporine. This vitamin E formulation forms micelles which seems to increase absorption of cyclosporine by 40% to 72% in some patients (624,625,10368). However, this interaction is unlikely to occur with the usual forms of vitamin E.
|
Theoretically, vitamin E might induce metabolism of CYP3A4, possibly reducing the levels CYP3A4 substrates.
Details
Vitamin E appears to bind with the nuclear receptor, pregnane X receptor (PXR), which results in increased expression of CYP3A4 (13499,13500). Although the clinical significance of this is not known, use caution when considering concomitant use of vitamin E and other drugs affected by these enzymes.
|
Vitamin E might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises high-density lipoprotein (HDL) cholesterol levels in people with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% (7388,11537). Vitamin E alone combined with a statin does not seem to decrease HDL levels (11286,11287). It is not known whether the adverse effect on HDL is due to one of the other antioxidants or to the combination. It also is not known whether it will occur in other patient populations.
|
Taking selumetinib with vitamin E can result in a total daily dose of vitamin E that exceeds safe limits and therefore might increase the risk of bleeding.
Details
Selumetinib contains 48-54 IU vitamin E per capsule (102971). The increased risk of bleeding with vitamin E appears to be dose-dependent (11582,11585,34577). Be cautious when using selumetinib in combination with supplemental vitamin E, especially in patients at higher risk of bleed, such as those with chronic conditions and those taking antiplatelet drugs (102971).
|
Using vitamin E with warfarin might increase the risk of bleeding.
Details
Due to interference with production of vitamin K-dependent clotting factors, use of more than 400 IU of vitamin E daily with warfarin might increase prothrombin time (PT), INR, and the risk of bleeding, (91,92,93). At a dose of 1000 IU per day, vitamin E can antagonize vitamin K-dependent clotting factors even in people not taking warfarin (11999). Limited clinical evidence suggests that doses up to 1200 IU daily may be used safely by patients taking warfarin, but this may not be applicable in all patient populations (90).
|
Below is general information about the adverse effects of the known ingredients contained in the product Lecithin. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466). Antenatal magnesium sulfate may also cause nausea and vomiting (60915). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Phosphatidylcholine is generally well tolerated when used orally, subcutaneously, or topically.
Most Common Adverse Effects:
Orally: Altered taste, bloating, diarrhea, itching, nausea, sweating, vomiting.
Subcutaneously: Bruising, burning, edema, erythema, hematoma, itching, pain at the injection site.
Serious Adverse Effects (Rare):
Subcutaneously: Lipoma.
Dermatologic ...When taken orally, phosphatidylcholine may increase sweating (5229) and itching (63244). When given subcutaneously, phosphatidylcholine can cause pain, burning, itching, tenderness to touch, bruising, edema, and erythema at the injection site. The pain, itching and erythema usually resolve within 2 days of treatment; however localized tenderness can last longer (15623,15624,15626,15627,15628). Edema and bruising usually resolve within 10 days of treatment (15621,15623,15625). Some people can also develop nodules or hematoma at the injection site. This usually resolves within 30 days (15627).
Gastrointestinal ...Ingesting large amounts of phosphatidylcholine (30 grams per day) can cause gastrointestinal upset and diarrhea (5223). However, bloating, diarrhea, altered taste, nausea, and vomiting have been reported with smaller doses (63244,68843,93389,93390,105728). Although moderate subcutaneous doses do not usually cause systemic side effects, high doses exceeding 1.2 grams of phosphatidylcholine can cause nausea and abdominal pain in some people (15624).
Musculoskeletal ...Injecting phosphatidylcholine directly into a lipoma can result in a significant inflammatory response and undesirable fibrotic tissue changes (15622).
General
...Orally and topically, vitamin E is generally well-tolerated.
Serious Adverse Effects (Rare):
Orally: Bleeding, hemorrhagic stroke, cardiovascular complications.
Inhaled: Vitamin E acetate is thought to be responsible for e-cigarette, or vaping, product-use associated lung injury (EVALI).
Cardiovascular
...Some evidence suggests that taking vitamin E supplements, especially greater than or equal to 400 IU taken by mouth daily for over one year, might also increase the risk of mortality in non-healthy patients (12212,13036,15305,16709,83339).
A population study shows that vitamin E use is associated with a significantly increased risk of mortality in people with a history of severe cardiovascular disease such as stroke or myocardial infarction (16709). In an analysis of clinical trials, patients who took either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) in doses of 400 IU/day or higher had an increased risk of mortality from all causes. The risk of mortality seems to increase when higher doses are used (12212). A large-scale study also suggests that patients with diabetes or cardiovascular disease who take RRR-alpha-tocopherol (natural vitamin E) 400 IU daily have an increased risk of heart failure and heart failure-related hospitalization (13036). However, in another large scale study, taking 600 IU vitamin E every other day for 10 years did not increase the risk of heart failure in healthy females over 45 years of age (90068). There is speculation that high-dose vitamin E might disrupt the normal antioxidant balance and result in pro-oxidant rather than antioxidant effects.
There is some evidence that vitamin E in combination with simvastatin (Zocor), niacin, selenium, vitamin C, and beta-carotene might lower high density lipoprotein-2 (HDL-2) by 15%. HDL-2 is considered to be the most cardioprotective component of HDL (7388). However, vitamin E and a statin alone don't seem to negatively affect HDL (11286,11287). In addition, vitamin E has been associated with increased triglycerides (85215). Although only certain isomers of vitamin E are included for determination of dietary requirements, all isomers are considered for determining safe intake levels. All the isomers are thought to potentially contribute to toxicity.
Dermatologic
...Topically, vitamin E has been associated with contact dermatitis, inflammatory reactions, and eczematous lesions (11998,85066,85285).
Dermatitis, often associated with moisturizers containing vitamin E, has a scattered generalized distribution, is more common on the face than the hands, and is more common in females with a history of atopic dermatitis. In a retrospective analysis of results of patch tests for DL-alpha-tocopherol sensitivity, 0.9% of patients had a definite positive reaction, while over 50% had a weakly positive, non-vesicular erythematous reaction (107869).
Orally, vitamin E has been associated with pruritus in one clinical trial (34596).
Subcutaneously, vitamin E has been associated with reports of lipogranuloma (85188,112331). In one case, subcutaneous injection of a specific supplement (1Super Extenze), containing mineral oil and tocopherol acetate, into the penile tissue resulted in penile disfigurement due to sclerosing lipogranuloma (85188). In another case, a 50-year-old Iranian female presented with lipogranuloma of the face, characterized by severe facial erythema, edema, and tenderness, 3 months after receiving subcutaneous injections of vitamin E to the cheeks for "facial rejuvenation." The patient had noticed initial symptoms within 3 days, and her symptoms progressively worsened over time (112331).
Gastrointestinal ...Orally, vitamin E supplementation has been associated with abdominal pain, nausea, diarrhea, or flu-like symptoms (85040,85323). Intravenously, large doses of vitamin E in premature infants are associated with an increased risk of necrotizing enterocolitis and sepsis (85083,85231).
Genitourinary ...There is contradictory evidence about the effect of vitamin E on prostate cancer risk. One large-scale population study shows that males who take a multivitamin more than 7 times per week and who also take a separate vitamin E supplement have a significantly increased risk of developing prostate cancer (15607). In a large-scale clinical trial (The SELECT trial) in males over the age of 50 years, taking all-rac-alpha-tocopherol (synthetic vitamin E) 400 IU daily increased the risk of developing prostate cancer by 17% when compared with placebo. However, the difference in prostate cancer risk between vitamin E and placebo became significant only 3 years after patients stopped taking supplementation and were followed in an unblinded fashion. Interestingly, patients taking vitamin E plus selenium did not have a significantly increased risk of prostate cancer (17688).
Hematologic ...High doses of vitamin E might increase the risk of bleeding due to antagonism of vitamin K-dependent clotting factors and platelet aggregation. Patients with vitamin K deficiencies or taking anticoagulant or antiplatelet drugs are at a greater risk for bleeding (4098,4844,11999,34596,34538,34626,34594,112162).
Neurologic/CNS ...There is concern that vitamin E might increase the risk of hemorrhagic stroke (16708,34594,34596,108641). In one clinical study, there was a higher incidence of hemorrhagic stroke in male smokers taking all-rac-alpha-tocopherol (synthetic vitamin E) for 5-8 years compared to those not taking vitamin E (3949). Other studies lasting from 1.4-4.5 years and using either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) showed no significantly increased risk for stroke (2307,3896,3936). A meta-analysis of studies shows that vitamin E in doses of 300-800 IU daily, including both natural and synthetic forms, does not significantly affect total stroke risk. However, it significantly increases the risk of hemorrhagic stroke by 22%. This means that there will be one additional hemorrhagic stroke for every 1250 patients taking vitamin E. In contrast to this finding, the analysis also found that vitamin E significantly reduces the risk of ischemic stroke by 10%. This means that one ischemic stroke will be prevented for every 476 patients taking vitamin E (14621). In patients with moderately severe Alzheimer disease, taking vitamin E 2000 IU for 2 years has been associated with a modest, but significant, increase in falls and episodes of syncope when compared to placebo (4635).
Pulmonary/Respiratory ...When inhaled, vitamin E acetate is thought to play a role in the development of e-cigarette, or vaping, product-use associated lung injury (EVALI). Although a causal link has not yet been determined, in two case series, vitamin E acetate has been found in most bronchoalveolar lavage samples taken from the primary site of lung injury in patients with EVALI, whereas no vitamin E was found in healthy control samples. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. EVALI has resulted in death in some patients (101062,102970).
Other ...In an analysis of 3 trials, taking vitamin E 400 IU with vitamin C 1000 mg daily for 14-22 weeks during gestation appears to increase the risk of gestational hypertension by 30% compared to placebo in patients at risk of pre-eclampsia. However, the risk of pre-eclampsia itself was not increased (83450).