Ingredients | Amount Per Serving |
---|---|
Calories
|
15 Calorie(s) |
Total Carbohydrates
|
4 Gram(s) |
Total Sugars
|
2 Gram(s) |
(Inositol Hexanicotinate)
(Niacin (Form: as Inositol Hexanicotinate) )
|
75 mg |
(as DiMagnesium Malate, and Magnesium Creatine Chelate)
(Magnesium (Form: as DiMagnesium Malate, and Magnesium Creatine Chelate (Alt. Name: Creatine MagnaPower) Note: Albion) )
|
150 mg |
(Na)
(Sodium Bicarbonate)
(Sodium (Form: as Sodium Bicarbonate) )
|
140 mg |
(as Potassium Bicarbonate)
(Potassium (Form: as Potassium Bicarbonate) )
|
510 mg |
2 Gram(s) | |
250 mg | |
(as Magnesium Creatine Chelate)
(Creatine (Form: as Magnesium Creatine Chelate (Alt. Name: Albion, Creatine MagnaPower)) )
|
225 mg |
Citric Acid, Malic Acid
Below is general information about the effectiveness of the known ingredients contained in the product Optimal Electrolyte Plain. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Optimal Electrolyte Plain. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately, short-term. Creatine supplementation appears to be safe when used at loading doses of up to 25 grams daily or 0.3 grams/kg daily for up to 14 days in healthy adults (1367,2100,2101,3996,4569,10064,15354,15520,46570,46587)(46673,46688,46719,46753,46801,103278,103279,108336). Creatine supplementation also appears to be safe when used at maintenance doses of 4-5 grams daily for up to 18 months (2101,4578,15353,15354,15520,46587,46673,46690,46753,46838,102164,103278,108336).
POSSIBLY SAFE ...when used orally and appropriately, long-term. Creatine supplementation has been safely used at doses of up to 10 grams daily for up to 5 years in some preliminary clinical research (1367,3996). There is insufficient reliable information available about the safety of creatine when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Creatine supplementation appears to be safe when used in appropriate doses in infants and children. Creatine 3-5 grams daily for 2-6 months has been safely used in children 5-18 years of age (6182,46596,46739,46841). Creatine 2 grams daily for 6 months has been safely used in children 2-5 years of age (46841). Additionally, weight-based dosing of creatine 0.1-0.4 grams/kg daily in infants and children or 4.69 grams/m2 in children weighing over 40 kg has been used safely for up to 6 months (46623,46629,46694,46759,104672).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when niacin is taken in food or as a supplement in amounts below the tolerable upper intake level (UL) of 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243). ...when prescription products are used orally and appropriately in doses of up to 2 grams daily (12033). CHILDREN:
LIKELY SAFE ...when used orally in amounts that do not exceed the tolerable upper intake level (UL). The ULs of niacin for children are: 1-3 years of age, 10 mg daily; 4-8 years of age, 15 mg daily; 9-13 years of age, 20 mg daily; 14-18 years of age, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL of niacin during pregnancy and lactation is 30 mg daily for 14-18 years of age and 35 mg daily for 19 years and older (6243).
There is insufficient reliable information available about the safety of larger oral doses of niacin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
LIKELY SAFE ...when used in amounts commonly found in food. Consuming ribose up to 36 mg/kg daily from food sources is considered safe by the European Food Safety Authority (103292). ...when used orally and appropriately, short-term (15218,15723,15724,15725,15726,15727,15728,15729,15730). Ribose has been used safely at doses up to 15 grams daily for up to 12 weeks (15218,15725,15727,15730,71601,100680,103291,108959). ...when used intravenously and appropriately, short-term (5662,5663,5676,5680,71603). There is insufficient reliable information available about the safety of ribose when used long-term.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when used in amounts found in foods. Typical daily intakes for adults range from 40-400 mg (101471).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Taurine 2-4 grams daily in two or three divided doses has been used safely in studies lasting up to 3 months (5248,5271,8217,8221,10454,77147,95612,98337,104165,104167). Higher doses of taurine 6 grams daily have been used safely in studies lasting up to 4 weeks (98336,98337). A risk assessment of orally administered taurine has identified an Observed Safe Level (OSL) of up to 3 grams daily for healthy adults (31996).
CHILDREN: LIKELY SAFE
when used in amounts found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in medicinal amounts.
Taurine 2.4-4.8 grams daily in three divided doses has been safely used in children 6-16 years of age for up to 12 weeks (103210).
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts found in foods.
There is insufficient reliable information available about the safety of taurine when used in medicinal amounts during pregnancy and lactation; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Optimal Electrolyte Plain. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Concomitant use of alcohol and niacin might increase the risk of flushing and hepatotoxicity.
Details
Alcohol can exacerbate the flushing and pruritus associated with niacin (4458,11689). Large doses of niacin might also exacerbate liver dysfunction associated with chronic alcohol use. A case report describes delirium and lactic acidosis in a patient taking niacin 3 grams daily who ingested 1 liter of wine (14510). Advise patients to avoid large amounts of alcohol while taking niacin.
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as allopurinol.
Details
Large doses of niacin can reduce urinary excretion of uric acid, potentially resulting in hyperuricemia (4860,4863,12033). Doses of uricosurics such as allopurinol might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin may have additive effects when used with anticoagulant or antiplatelet drugs.
Details
|
Niacin can increase blood glucose levels and may diminish the effects of antidiabetes drugs.
Details
Niacin impairs glucose tolerance in a dose-dependent manner, probably by causing or aggravating insulin resistance and increasing hepatic production of glucose (4860,4863,11692,11693). In diabetes patients, niacin 4.5 grams daily for 5 weeks can increase plasma glucose by an average of 16% and glycated hemoglobin (HbA1c) by 21% (4860). However, lower doses of 1.5 grams daily or less appear to have minimal effects on blood glucose (12033). In some patients, glucose levels increase when niacin is started, but then return to baseline when a stable dose is reached (12033,93344). Up to 35% of patients with diabetes may need adjustments in hypoglycemic therapy when niacin is added (4458,4860,4863,11689,12033).
|
Theoretically, niacin may increase the risk of hypotension when used with antihypertensive drugs.
Details
The vasodilating effects of niacin can cause hypotension (4863,12033,93341). Furthermore, some clinical evidence suggests that a one-hour infusion of niacin can reduce systolic, diastolic, and mean blood pressure in hypertensive patients. This effect is not observed in normotensive patients (25917).
|
Large doses of aspirin might alter the clearance of niacin.
Details
Aspirin is often used with niacin to reduce niacin-induced flushing (4458,11689). Doses of 80-975 mg aspirin have been used, but 325 mg appears to be optimal (4458,4852,4853,11689). Aspirin also seems to reduce the clearance of niacin by competing for glycine conjugation. Taking aspirin 1 gram seems to reduce niacin clearance by 45% (14524). This is probably a dose-related effect and not clinically significant with the more common aspirin dose of 325 mg (11689,14524).
|
Bile acid sequestrants can bind niacin and decrease absorption. Separate administration by 4-6 hours to avoid an interaction.
Details
In vitro studies show that colestipol (Colestid) binds about 98% of available niacin and cholestyramine (Questran) binds 10% to 30% (14511).
|
Theoretically, concomitant use of niacin and gemfibrozil might increase the risk of myopathy in some patients.
Details
|
Theoretically, concomitant use of niacin and hepatotoxic drugs might increase the risk of hepatotoxicity.
Details
|
Theoretically, concomitant use of niacin and statins might increase the risk of myopathy and rhabdomyolysis in some patients.
Details
Some case reports have raised concerns that niacin might increase the risk of myopathy and rhabdomyolysis when combined with statins (14508,25918). However, a significantly increased risk of myopathy has not been demonstrated in clinical trials, including those using an FDA-approved combination of lovastatin and niacin (Advicor) (7388,11689,12033,14509).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as probenecid.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as probenecid might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as sulfinpyrazone.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as sulfinpyrazone might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of thyroid hormones.
Details
Clinical research and case reports suggests that taking niacin can reduce serum levels of thyroxine-binding globulin by up to 25% and moderately reduce levels of thyroxine (T4) (25916,25925,25926,25928). Patients taking thyroid hormone for hypothyroidism might need dose adjustments when using niacin.
|
Theoretically, concomitant use of niacin and transdermal nicotine might increase the risk of flushing and dizziness.
Details
|
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
Details
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
Details
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Details
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Theoretically, taking ribose in combination with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ribose with insulin could increase the hypoglycemic effect of insulin.
Details
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Theoretically, taurine might increase the risk of hypotension when taken with antihypertensive drugs.
Details
|
Theoretically, taurine might reduce excretion and increase plasma levels of lithium.
Details
Taurine is thought to have diuretic properties (3647), which might reduce the excretion of lithium.
|
Below is general information about the adverse effects of the known ingredients contained in the product Optimal Electrolyte Plain. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, creatine is generally well-tolerated.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dehydration, diarrhea, gastrointestinal upset, muscle cramps, and water retention.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about interstitial nephritis, renal insufficiency, rhabdomyolysis, and venous thrombosis.
Cardiovascular
...Some research suggests that creatine supplementation can cause edema.
In a randomized controlled trial, 26% of patients with amyotrophic lateral sclerosis (ALS) receiving creatine 10 grams daily reported edema after 2 months of treatment compared to 9% with placebo. The difference between groups was statistically significant at 2 months but not at month 4 and beyond. Creatine is believed to cause slight water retention, which may have been more apparent in patients who were immobilized due to ALS (46647). While this adverse drug reaction did not lead to worsening cardiac function in these patients, theoretically, creatine-related water retention could worsen congestive heart failure or hypertension.
There is one case report of lone atrial fibrillation in a 30-year-old male vegetarian. He started powdered creatine 20 grams daily for 5 days, followed by 2.5 grams daily for a month. However, he discontinued powdered creatine due to severe cramping and diarrhea, and reinitiated creatine supplementation a month later with an encapsulated formulation. Aside from gelatin in the capsule, creatine was the only ingredient listed in both formulations. During the loading dose phase, the patient developed dyspnea and palpitations and was diagnosed with lone atrial fibrillation in the emergency department. Symptoms resolved with treatment and supplement discontinuation (13187). Theoretically, alterations in electrolyte balance due to dehydration or diarrhea could lead to conduction abnormalities and arrhythmia; however, in this case, the patient had normal electrolyte levels. Contaminants in dietary supplements might also be responsible for adverse reactions; this specific creatine product was not tested for contaminants. It remains unclear whether creatine was associated with this event.
Theoretically, taking creatine nitrate might reduce blood pressure and heart rate due to its nitrate component. However, clinical research shows that creatine nitrate 12 grams daily for 7 days followed by 3 grams daily for 21 days does not lower blood pressure or heart rate acutely or chronically when compared to creatine monohydrate or placebo (95959).
Dermatologic
...In a small clinical trial of older, healthy males, one subject out of the 10 receiving creatine 5 grams four times daily for 10 days followed by 4 grams daily for 20 days reported a skin rash during the study.
The type and severity of rash and whether it resolved after creatine was discontinued were not discussed (4572). Also, skin rash has been reported by patients taking celecoxib and creatine; however, whether this effect was due to creatine or celecoxib is unclear (46706).
Topically, burning, itching, redness, irritation, and perception of changes in skin temperature have been reported (104669).
Endocrine ...Creatine may influence insulin production (11330). In human research, insulin levels increased 120 and 240 minutes after creatine supplementation (46760); however, there was no effect in another trial (46732). In a clinical study, 0.3 grams/kg of creatine daily for one week significantly increased cortisol levels by 29%. However, the levels returned to baseline at week 2 (46615).
Gastrointestinal
...Some small clinical studies have reported diarrhea and vomiting with oral creatine supplementation (4584,11332,46562,46684,46698,46704,104673).
Also, gastrointestinal distress, transient abdominal discomfort, constipation, heartburn, and nausea have been reported by a small number of individuals in randomized, controlled clinical trials (4572,11332,46527,46528,46573,46589,46622,46668,46684,46695), (46704,46771,95964,104668,104669,104673,108316). However, most high-quality clinical research shows that creatine does not increase the incidence of gastrointestinal upset (103102,103278,103279).
Undissolved creatine powder may cause gastroenteritis (1368). Additionally, simultaneous intake of creatine and caffeine powder may increase the occurrence of gastrointestinal distress (95964).
Hematologic ...There are two case reports of creatine-related venous thrombosis in otherwise healthy adults. In the first case, an active 18-year-old male who had been taking an unspecified dose of creatine daily for 3 months was diagnosed with venous thrombosis via MRI. The patient reported increased thirst and fluid consumption when taking creatine. In the second case, an active 31-year-old male who had recently taken a 5-hour flight was diagnosed with deep vein thrombosis. He had been taking an unspecified dose of creatine. After stopping creatine and receiving anticoagulation therapy for 6 months, both patients' thromboses were resolved and did not recur. Researchers speculate that dehydration might be to blame for these adverse events, as dehydration increases the risk of thrombosis. In both cases, thrombophilic conditions were ruled out, and a temporal relationship between creatine consumption and thrombosis was established (90301). However, it remains unclear if creatine was responsible for these thrombotic events.
Hepatic
...Despite two case reports describing hepatic injury in patients taking creatine (46701,90319), meta-analyses and clinical studies specifically evaluating the safety of creatine have not identified an increased risk for hepatic injury (103278,103279).
In addition, population research suggests that there is not an association between creatine intake and liver fibrosis, cirrhosis, or hepatic steatosis. However, this study largely included subjects consuming less than 4 grams daily (112208).
One preliminary clinical trial specifically evaluated the effect of creatine loading and maintenance doses on hepatic function indices in healthy adults. No clinically significant changes in hepatic indices were reported in patients taking creatine loading doses of 20 grams daily for 5 days followed by maintenance doses of 3 grams daily for 8 weeks (46521). Another clinical study evaluated the impact of creatine monohydrate and creatine nitrate on liver function enzymes, showing no change in levels within 5 hours after the first dose of 12 grams or after continued consumption of 12 grams daily for 7 days followed by 3 grams daily for 21 days (95959). The patients that experienced hepatic injury in the available case reports were also taking other exercise supplements. Whether the reported adverse hepatic effects were due to creatine or the other supplements patients were taking is unclear. Also, neither of these case reports addressed whether the supplements were tested for contamination (46701,90319).
Musculoskeletal ...Creatine-associated increase in body mass is well documented in randomized, controlled clinical trials and is often as large as 1-2 kg during the five-day loading period of creatine (2101,4569,4589,4591,4600,4605,46504,46561,46815,46827)(46830,46843,95962,103279,112201). This may be considered an unwanted adverse reaction in some individuals and a desired effect of supplementation in others. This weight gain may interfere with mass-dependent activities such as running and swimming (46504,46823). Muscle cramping due to creatine supplementation has been reported in controlled clinical trials and may result from water retention in skeletal muscle (2104,4572,4584,30915,46562,46695,46826,46827,104673). However, most high quality clinical research shows that creatine does not increase the incidence of musculoskeletal injuries or muscle cramping (103102). In one case report, rhabdomyolysis in a weight lifter using creatine 25 grams daily over a one-year period has been reported (12820). Another case report describes an adult male who developed acute compartment syndrome of the leg after regular consumption of an unspecified amount of creatine and cocaine (112210).
Neurologic/CNS ...In clinical research, thirst, sleepiness, mild headache, and syncope have been reported for patients taking creatine, although the events were uncommon (46578,46615,46820). More serious adverse events have been reported for patients taking creatine in combination with other ingredients. A case of ischemic stroke has been reported for an athlete who consumed creatine monohydrate 6 grams, caffeine 400-600 mg, ephedra 40-60 mg, and a variety of other supplements daily for 6 weeks (1275). In another case, a 26 year old male reported with a hemorrhagic stroke linked to taking the supplement Jack3d, which contains creatine, DMAA, schizandrol A, caffeine, beta-alanine, and L-arginine alpha-ketoglutarate (90318). It is likely that these adverse events were due to other ingredients, such as caffeine, ephedra, and DMAA, which are known to have stimulant and vasoconstrictive properties.
Oncologic ...Population research shows that use of muscle building supplements such as creatine, protein, and androstenedione is associated with an increased odds of testicular germ cell cancer. This risk appears to be more apparent in early users, those using two or more muscle building supplements, and those with long-term use of the supplements. The odds of testicular germ cell cancer may be increased by up to 155% in males taking both creatine and protein supplements (90329). The risk of testicular germ cell cancer from creatine alone is unclear from this study.
Psychiatric ...Anxiety, irritability, depression, aggression, and nervousness have been reported in clinical research for patients taking creatine, although the effects are not common (46518). A case of acute organic psychosis was reported in a 32-year-old soldier in Iraq who was consuming excessive amounts of caffeine coupled with use of creatine (Creatamax, MaxiNutrition) one tablet twice daily for 3 weeks plus a specific stimulant containing bitter orange, guarana seed extract, and St. John's wort extract (Ripped Fuel Ephedra Free, Twinlabs) two tablets three times daily for 2 days prior to admission. The psychosis was considered likely due to caffeine consumption in combination with the stimulant supplement rather than creatine (37982).
Renal
...Isolated cases of renal dysfunction in patients taking creatine have been reported, including a case of interstitial nephritis in a healthy male (184) and a case of renal insufficiency in a football player (46828).
In contrast to these cases, several clinical studies and case reports have shown that creatine does not affect markers of renal function in healthy adults (2120,3996,4573,16535,46735,46749,46758,46779,46813,95959,103279). Doses studied included 5- to 7-day loading regimens of 12 to 21 grams daily (2120,46813), or maintenance doses of 3-10 grams daily for up to 2 years (16535,46712,46758,95959). In two additional studies, creatine supplementation 15.75 grams for 5 days followed by 4.25 grams daily for 20 days with carbohydrate and protein ingestion led to no change of renal stress markers (46844). Other clinical research has shown that ingestion of creatine up to 30 grams daily for 5 years is not associated with an increased incidence of renal dysfunction (103102).
Other case reports involve patients with pre-existing renal dysfunction. For example, in one case, a patient with a history of recurrent renal failure developed relapsing steroid-responsive nephritis syndrome after taking creatine (1368,2118). In another case, a patient with diabetic nephropathy who was taking creatine and metformin developed severe metabolic acidosis and acute renal failure. It is unclear if creatine contributed to this event, as metformin alone is known to cause metabolic acidosis (46738). These case reports have raised concern that individuals with pre-existing renal dysfunction may be at increased risk for renal injury with creatine supplementation. However, no prospective clinical trials have been conducted in this population to clarify this concern.
In addition, two cases of acute kidney injury and hypercalcemia have been reported in 16 year old males that took 1-4 servings of creatine for less than 4 weeks; however, the creatine product contained unlabeled, very high doses of vitamin D, which is the likely cause of these symptoms (109739).
In one survey, 13% of male collegiate athletes taking creatine reported dehydration (4584). The Association of Professional Team Physicians has warned that creatine may cause dehydration, heat-related illnesses, and electrolyte imbalances, and reduce blood volume. Mild transient dehydration resulting in an elevated serum creatinine was also reported in a single person in a clinical trial (104672). However, a study found that creatine supplementation during preseason football training had no effect on fluid or electrolyte status (46845). Additionally, most high quality clinical research shows that creatine does not increase dehydration (103102). A theoretical increase in risk of dehydration due to intracellular fluid shifts has led most creatine manufacturers to caution about adequate hydration with creatine supplementation (4576).
Other
...There have been reports of heat intolerance with oral creatine supplementation (46505).
Increases in formaldehyde production have been reported with creatine use. A-24 year-old man taking supratherapeutic doses of creatine monophosphate in combination with an energy supplement developed malignant hyperthermia after undergoing anesthesia. His symptoms included tachycardia, hypertension, hypercarbia, and hyperthermia. Environmental factors are suspected to have played a role in the development of malignant hyperthermia, so whether this adverse event was due to creatine at all is unclear (46717).
In 1997, three collegiate wrestlers died after engaging in a rapid weight-loss program in order to qualify for competition (93628). Initially creatine supplementation was considered to have contributed to or caused these deaths (12820,93629); however, investigations by the U.S. Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) did not confirm this belief (12820,93630). It appears that only one of the three wrestlers had been using creatine. Instead, the deaths were related to drastic, short-term weight loss in which the wrestlers wore rubber suits, avoided hydration, and performed workouts in rooms with temperatures up to 33 °C (1368,93631).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally, niacin is well tolerated in the amounts found in foods.
It is also generally well tolerated in prescription doses when monitored by a healthcare provider.
Most Common Adverse Effects:
Orally: Flushing, gastrointestinal complaints (abdominal pain, constipation, diarrhea, heartburn, nausea, vomiting), and elevated liver enzymes.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, myopathy, thrombocytopenia, and vision changes.
Cardiovascular
...Orally, flushing is a common dose-related adverse reaction to niacin.
A large meta-analysis of clinical studies shows that up to 70% of patients may experience flushing (96211). Although flushing can occur with doses of niacin as low as 30 mg daily, it is more common with the larger doses used for treatment of dyslipidemia. The flushing reaction is due to prostaglandin-induced blood vessel dilation and can also include symptoms of burning, tingling, urticaria, erythema, pain, and itching of the face, arms, and chest. There may also be increased intracranial blood flow and headache (4889,26089,93341,104933). Onset is highly variable and ranges from within 30 minutes to as long as 6 weeks after the initial dose (6243). Flushing can be minimized via various strategies, including taking doses with meals, slow dose titration, using extended release formulations, pretreating with non-steroidal anti-inflammatory drugs, taking regular-release niacin with meals, or taking the sustained-release product at bedtime (4852,4853,4854,4857,4858,25922,26073,26084). Flushing often diminishes with continued use but can recur when niacin is restarted after missed doses (4863,6243,26081). The vasodilating effects of niacin can also cause hypotension, dizziness, tachycardia, arrhythmias, syncope, and vasovagal attacks, especially in patients who are already taking antihypertensive drugs (4863,12033,93341,110494).
High doses of niacin can raise homocysteine levels. A 17% increase has been reported with 1 gram daily and a 55% increased has been reported with 3 grams daily. Elevated homocysteine levels are an independent risk factor for cardiovascular disease (490); however, the clinical significance of this effect is unknown. A large-scale study (AIM-HIGH) found that patients receiving extended-release niacin (Niaspan) 1500-2000 mg daily with a statin had an over two-fold increased risk of ischemic stroke (1.6%) when compared with those receiving only simvastatin (0.7%). However, when the risk was adjusted for confounding factors, niacin was not found to be associated with increased stroke risk (17627,93354). A meta-analysis of three clinical trials conducted in approximately 29,000 patients showed a higher risk of mortality in patients taking niacin in addition to a statin when compared with a statin alone. However, with a p-value of 0.05 and confidence interval including 1, the validity of this finding remains unclear (97308).
Endocrine
...Orally, niacin can impair glucose tolerance in a dose-dependent manner.
Dosages of 3-4 grams daily appear to increase blood glucose in patients with or without diabetes, while dosages of 1.5 grams daily or less have minimal effects (12033). Niacin is thought to impair glucose tolerance by increasing insulin resistance or increasing hepatic output of glucose (4863,11692,11693). In patients with diabetes, niacin 4.5 grams daily for 5 weeks has been associated with an average 16% increase in plasma glucose and 21% increase in glycated hemoglobin (HbA1C) (4860). Up to 35% of patients with diabetes may need to increase the dose or number of hypoglycemic agents when niacin is started (4458,4860,4863,11689,12033). Occasionally, severe hyperglycemia requiring hospitalization can occur (11693). In patients with impaired fasting glucose levels, niacin may also increase fasting blood glucose, and adding colesevelam might attenuate this effect (93343).
Although patients without diabetes seem to only experience small and clinically insignificant increases in glucose (4458), niacin might increase their risk of developing diabetes. A meta-analysis of clinical research involving over 26,000 patients shows that using niacin over 5 years is associated with increased prevalence of new onset type 2 diabetes at a rate of 1 additional case of diabetes for every 43 patients treated with niacin (96207). This finding is limited because the individual trials were not designed to assess diabetes risk and the analysis could not be adjusted for confounding factors like obesity. One small clinical study shows that taking extended-release niacin with ezetimibe/simvastatin does not increase the risk of a new diagnosis of diabetes or need for antidiabetic medication when compared with ezetimibe/simvastatin alone after 16 months (93344). This may indicate that the increased risk of developing diabetes is associated with niacin use for more than 16 months.
Niacin therapy has also been linked with hypothyroidism and its associated alterations in thyroid hormone and binding globulin tests (such as decreased total serum thyroxine, increased triiodothyronine, decreased thyroxine-binding globulin levels, and increased triiodothyronine uptake) (25916,25925,25926,25928).
Gastrointestinal ...Orally, large doses of niacin can cause gastrointestinal disturbances including nausea, vomiting, bloating, heartburn, abdominal pain, anorexia, diarrhea, constipation, and activation of peptic ulcers (4458,4863,12033,26083,93341,96211). These effects may be reduced by taking the drug with meals or antacid, and usually disappear within two weeks of continued therapy (4851,26094). Gastrointestinal effects may be more common with time-release preparations of niacin (11691).
Hematologic ...Orally, sustained-release niacin has been associated with cases of reversible coagulopathy, mild eosinophilia, and decreased platelet counts (4818,25915,26097,93340). Also, there have been reports of patients who developed leukopenia while taking niacin for the treatment of hypercholesterolemia (25916).
Hepatic ...Orally, niacin is associated with elevated liver function tests and jaundice, especially with doses of 3 grams/day or more, and when doses are rapidly increased (4458,4863,6243). The risk of hepatotoxicity appears to be higher with slow-release and extended-release products (4855,4856,4863,6243,11691,12026,12033,93342). Niacin should be discontinued if liver function tests rise to three times the upper limit of normal (4863). There are rare cases of severe hepatotoxicity with fulminant hepatitis and encephalopathy due to niacin (4863,6243,11691). Also, there is at least one case of niacin-induced coagulopathy resulting from liver injury without liver enzyme changes (93340).
Musculoskeletal ...Orally, niacin has been associated with elevated creatine kinase levels (4818,4888). Also, several cases of niacin-induced myopathy have been reported (26100,26111). Concomitant administration of niacin and HMG-CoA reductase inhibitors may increase the risk of myopathy and rhabdomyolysis (14508,25918,26111); patients should be monitored closely.
Neurologic/CNS ...Orally, high-dose niacin has been associated with cases of neuropsychiatric adverse events such as extreme pain and psychosis. Two 65-year-old males taking niacin orally for 5 months for the treatment of dyslipidemias developed severe dental and gingival pain. The pain was relieved by the discontinuation of niacin. The pain was thought to be due to inflammation and pain referral to the teeth (4862). In one case report, a 52-year-old male with no history of psychiatric illness who initially complained of hot flushes when taking niacin 500 mg daily, presented with an acute psychotic episode involving mania after niacin was increased to 1000 mg daily (93350).
Ocular/Otic ...Orally, chronic use of large amounts of niacin has been associated with dry eyes, toxic amblyopia, blurred vision, eyelid swelling, eyelid discoloration, loss of eyebrows and eyelashes, proptosis, keratitis, macular edema, and cystic maculopathy, which appear to be dose-dependent and reversible (4863,6243,26112).
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Orally and intravenously, ribose is generally well-tolerated for up to 1 month.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal discomfort, headache, hypoglycemia, nausea.
Intravenously: Hypoglycemia.
Endocrine
...Orally, ribose can decrease blood glucose levels (5667,92891).
In one pharmacokinetic study, fasting plasma glucose declined after single ribose doses of 2.5-10 grams. At all doses, serum glucose returned to near normal 2 hours post-administration but remained slightly below pre-dose levels for up to 5 hours. One case of symptomatic hypoglycemia 70 minutes post-dose was reported in a 53 kg female who took ribose 10 grams. The reaction was considered mild; however, specific blood glucose levels were not reported (92891).
Intravenously, ribose has been reported to cause hypoglycemia, increased serum insulin levels, and decreased serum phosphate (5650,5662,5663,5676).
Gastrointestinal ...Orally, ribose can cause diarrhea, gastrointestinal discomfort, and nausea (5664,5676,15218,92891). In one study, lowering the dose of ribose resolved the nausea (15218).
Neurologic/CNS ...Orally, ribose can cause headache (5664,92891). It has also been reported to cause a hyperanxious feeling, lightheadedness, increased appetite, and mild anxiety (15218). In one study, lowering the dose of ribose resolved the feeling of anxiety (15218).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, taurine is generally well-tolerated when used in typical doses for up to one year.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, and dyspepsia.
Serious Adverse Effects (Rare):
Orally: Hypersensitivity reactions in sensitive individuals. Case reports raise concerns for serious cardiovascular adverse effects, but these reports have involved energy drinks containing taurine and other ingredients. It is unclear if these adverse effects are due to taurine, other ingredients, or the combination.
Cardiovascular ...Changes in heart rate and increased blood pressure have been reported following the co-administration of taurine and caffeine, although the effects of taurine alone are unclear (77088). In healthy individuals, consumption of energy drinks containing taurine increased platelet aggregation and decreased endothelial function (77151,112268,112741). A case of cardiac arrest following strenuous exercise and an excessive intake of energy drinks containing caffeine and taurine has been reported (77136). In another case report, a 28-year-old male without cardiovascular risk factors presented to the hospital with radiating chest pain, shortness of breath, and diaphoresis after excessive intake of an energy drink containing taurine, caffeine, sugar, and glucuronolactone. Electrocardiogram findings confirmed myocardial infarction, and subsequent catheterization confirmed thrombotic occlusion (112741).
Endocrine ...Orally, taurine has been reported to cause hypoglycemia (77153).
Gastrointestinal ...Orally, constipation has been reported following the administration of taurine (77231). Dyspepsia has also been reported after oral taurine use (104165).
Hematologic ...In clinical research, taurine reduced platelet aggregation (77245). A case of massive intravascular hemolysis, presenting with confusion, dark urine, dyspnea, emesis, and fever, has been reported following the administration of a naturopathic vitamin infusion containing taurine, free amino acids, magnesium, and a vitamin B and D complex (77177). However, the effects of taurine alone are unclear.
Immunologic ...A case report describes a hypersensitivity reaction in a female patient with a history of allergies to sulfonamides, sulfites, and various foods, after ingestion of taurine and other sulfur-containing supplements. The amount of taurine in the products ranged from 50-500 mg per dose. The allergic reaction recurred upon rechallenge with taurine 250-300 mg (91514).
Neurologic/CNS
...In a case study, encephalopathy occurred in a body-builder who took approximately 14 grams of taurine in combination with insulin and anabolic steroids.
It is not known if this was due to the taurine or the other drugs taken (15536).
Cases of seizures following the consumption of energy drinks containing taurine have been reported (77105,77196). In clinical research, taurine has been reported to cause drowsiness and ataxia in epileptic children (77241).
Psychiatric ...In a case report, a 36-year-old male with adequately controlled bipolar disorder was hospitalized with symptoms of mania after consuming several cans of an energy drink containing taurine, caffeine, glucuronolactone, B vitamins, and other ingredients (Red Bull Energy Drink) over a period of four days (14302). It is unknown if this effect was related to taurine.
Pulmonary/Respiratory ...In human research, an exacerbation of pulmonary symptoms of cystic fibrosis has been associated with taurine supplementation, although this could also be caused by progression of the disease (77231).
Renal ...A case of acute kidney failure has been reported following the concomitant intake of 1 liter of vodka and 3 liters of an energy drink providing taurine 4. 6 grams, caffeine 780 mg, and alcohol 380 grams (77185).