Ingredients | Amount Per Serving |
---|---|
Calories
|
120 Calorie(s) |
Total Fat
|
3 Gram(s) |
Saturated Fat
|
1 Gram(s) |
Total Carbohydrates
|
2 Gram(s) |
Dietary Fiber
|
1.5 Gram(s) |
Total Sugars
|
0 Gram(s) |
Protein
|
20 Gram(s) |
(Fe)
|
5 mg |
(Na)
|
378 mg |
Proprietary Protein Blend
(providing:)
(Proprietary Protein Blend Note: providing: )
|
26 Gram(s) |
(seed)
|
|
Cranberry Protein
(seed)
|
|
(MCT)
(from Coconut Oil, 50% Medium Chain Triglycerides)
(Medium Chain Triglycerides (MCT) Concentrate (Form: from Coconut Oil, 50% Medium Chain Triglycerides Note: equal to 1 g) (Alt. Name: MCT) )
|
2 Gram(s) |
natural Vanilla flavor, natural Cherry flavor, organic Rebaudioside A (Form: Stevia leaf extract PlantPart: leaf Genus: Stevia), Monk Fruit extract
Below is general information about the effectiveness of the known ingredients contained in the product 100% Vegan Protein Vanilla Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product 100% Vegan Protein Vanilla Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when hemp seed, hemp protein, and hemp seed oil are used orally in food amounts. Hulled hemp seed, hemp seed protein powder, and hemp seed oil are generally recognized as safe (GRAS) in the US (100531).
POSSIBLY SAFE ...when hemp seed oil is used orally and appropriately as medicine, short-term. Hemp seed oil in doses of 2-6.3 grams daily has been safely used for 3-6 months (88183,16791,101145). Hemp seed oil in doses of 30 mL (27.6 grams) daily has been used safely for 2 months (101125). There is insufficient reliable evidence available about the safety of hemp oil, flowers, or leaves.
CHILDREN:
There is insufficient reliable information available about the safety of hemp in children.
Adverse effects have been noted in case reports, but details related to specific hemp products are limited (101153,110287).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. For people age 14 and older with adequate iron stores, iron supplements are safe when used in doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron. The UL is not meant to apply to those who receive iron under medical supervision (7135,96621). To treat iron deficiency, most people can safely take up to 300 mg elemental iron per day (15). ...when used intravenously and appropriately. Ferric carboxymaltose 200 mg and iron sucrose 200 mg have been given intravenously for up to 10 doses with no reported serious adverse effects (91179). A meta-analysis of clinical studies of hemodialysis patients shows that administering high-dose intravenous (IV) iron does not increase the risk of hospitalization, infection, cardiovascular events, or death when compared with low-dose IV iron, oral iron, or no iron treatment (102861). A more recent meta-analysis of clinical studies of all patient populations shows that administering IV iron does not increase the risk of hospital length of stay or mortality, although the risk of infection is increased by 16% when compared with oral iron or no iron (110186). Another meta-analysis of 3 large clinical trials in patients with heart failure shows that intravenous ferric carboxymaltose at a dose of around 1500 mg every 6 months for a year does not increase the incidence of adverse effects when compared with placebo (113901). Despite these findings, there are rare reports of hypophosphatemia and/or osteomalacia (112603,112608,112609,112610,113905).
LIKELY UNSAFE ...when used orally in excessive doses. Doses of 30 mg/kg are associated with acute toxicity. Long-term use of high doses of iron can cause hemosiderosis and multiple organ damage. The estimated lethal dose of iron is 180-300 mg/kg; however, doses as low as 60 mg/kg have also been lethal (15).
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135,91183,112601).
CHILDREN: LIKELY UNSAFE
when used orally in excessive amounts.
Tell patients who are not iron-deficient not to use doses above the tolerable upper intake level (UL) of 40 mg per day of elemental iron for infants and children aged 0-13 years and 45 mg per day for children aged 14-18 years. Higher doses frequently cause gastrointestinal side effects such as constipation and nausea (7135,20097). Iron is the most common cause of pediatric poisoning deaths. Doses as low as 60 mg/kg can be fatal (15).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Iron is safe during pregnancy and breast-feeding in patients with adequate iron stores when used in doses below the tolerable upper intake level (UL) of 45 mg daily of elemental iron (7135,96625,110180).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally in high doses.
Tell patients who are not iron deficient to avoid exceeding the tolerable upper intake level (UL) of 45 mg daily of elemental iron. Higher doses frequently cause gastrointestinal side effects such as nausea and vomiting (7135) and might increase the risk of preterm labor (100969). High hemoglobin concentrations at the time of delivery are associated with adverse pregnancy outcomes (7135,20109).
LIKELY SAFE ...when used orally and appropriately (11726,11727,11728,11729,11730,93729). ...when used parenterally and appropriately (2275,2276,2278,11726,11727,11728,11729). There is insufficient reliable information available about the safety of MCTs when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in food amounts. Pea protein is commonly consumed as a food (94935,94970,94981).
POSSIBLY SAFE ...when pea protein is used orally in medicinal amounts, short term. Pea protein has been used with apparent safety in doses of up to 50 grams daily for up to 12 weeks (95426,94934,102013,104758,104759). ...when pea protein hydrolysate is used orally, short term. A pea protein hydrolysate has been used with apparent safety at doses of up to 3 grams daily for up to 3 weeks (94973).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those found in food.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
Below is general information about the interactions of the known ingredients contained in the product 100% Vegan Protein Vanilla Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, consuming hemp seed protein isolate with ACE inhibitors might have additive effects and increase the risk of hypotension.
|
Theoretically, hemp seed might increase the risk of bleeding when used concomitantly with anticoagulant/antiplatelet drugs.
|
Theoretically, hemp seed protein may have additive effects with antihypertensive drugs.
In a hypertensive animal model, hemp seed protein hydrolysate reduced systolic blood pressure by a mechanism possibly involving the inhibition of renin and angiotensin converting enzyme (ACE) activities. However, there was no effect of hemp seed protein on blood pressure in normotensive animals (101136). Furthermore, hempseed oil consumption does not seem to reduce blood pressure in humans (101144).
|
Theoretically, hemp might interfere with hormone therapy due to its estrogenic effects.
In an ovariectomized animal model, a diet containing hemp seed 1%, 2%, or 10% resulted in normalized plasma levels of 17-beta-estradiol (101132). The mechanism of action for this effect is unclear.
|
Iron reduces the absorption of bisphosphonates.
Advise patients that doses of bisphosphonates should be separated by at least two hours from doses of all other medications, including supplements such as iron. Divalent cations, including iron, can decrease absorption of bisphosphonates by forming insoluble complexes in the gastrointestinal tract (15).
|
Theoretically, taking chloramphenicol with iron might reduce the response to iron therapy in iron deficiency anemia.
|
Administration of intravenous iron within one month of denosumab administration might increase the risk of severe hypophosphatemia and hypocalcemia.
A case of severe hypocalcemia (albumin corrected calcium 6.88 mg/dL, ionized calcium 3.68 mg/dL) and hypophosphatemia (<0.5 mg/dL) with respiratory acidosis, QT interval prolongation, and nonsustained ventricular tachycardia was reported in a 76-year-old male who had received an iron polymaltose infusion within 2 weeks of a subcutaneous injection of denosumab. Serum parathyroid hormone was also elevated (348 pg/mL). Subsequent iron infusions with iron polymaltose and ferric carboxymaltose were followed by transient hypophosphatemia, but without hypocalcemia. Additionally, a literature review describes 6 additional cases of hypophosphatemia and hypocalcemia in patients 52-92 years of age who had been administered intravenous iron as either ferric carboxymaltose or iron polymaltose and subcutaneous denosumab within 1-4 weeks of each other (113905).
|
Iron might decrease dolutegravir levels by reducing its absorption.
Advise patients to take dolutegravir at least 2 hours before or 6 hours after taking iron. Pharmacokinetic research shows that iron can decrease the absorption of dolutegravir from the gastrointestinal tract through chelation (93578). When taken under fasting conditions, a single dose of ferrous fumarate 324 mg orally along with dolutegravir 50 mg reduces overall exposure to dolutegravir by 54% (94190).
|
Theoretically, taking iron along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
Iron is a divalent cation. There is concern that iron may decrease the absorption of integrase inhibitors from the gastrointestinal tract through chelation (93578). One pharmacokinetic study shows that iron can decrease blood levels of the specific integrase inhibitor dolutegravir through chelation (94190). Also, other pharmacokinetic research shows that other divalent cations such as calcium can decrease the absorption and levels of some integrase inhibitors through chelation (93578,93579).
|
Iron might decrease levodopa levels by reducing its absorption.
Advise patients to separate doses of levodopa and iron as much as possible. There is some evidence in healthy people that iron forms chelates with levodopa, reducing the amount of levodopa absorbed by around 50% (9567). The clinical significance of this hasn't been determined.
|
Iron might decrease levothyroxine levels by reducing its absorption.
Advise patients to separate levothyroxine and iron doses by at least 2 hours. Iron can decrease the absorption and efficacy of levothyroxine by forming insoluble complexes in the gastrointestinal tract (9568).
|
Iron might decrease methyldopa levels by reducing its absorption.
|
Theoretically, iron might decrease mycophenolate mofetil levels by reducing its absorption.
Advise patients to take iron 4-6 hours before, or 2 hours after, mycophenolate mofetil. It has been suggested that a decrease of absorption is possible, probably by forming nonabsorbable chelates. However, mycophenolate pharmacokinetics are not affected by iron supplementation in available clinical research (3046,20152,20153,20154,20155).
|
Iron might decrease penicillamine levels by reducing its absorption.
Advise patients to separate penicillamine and iron doses by at least 2 hours. Oral iron supplements can reduce absorption of penicillamine by 30% to 70%, probably due to chelate formation. In people with Wilson's disease, this interaction has led to reduced efficacy of penicillamine (3046,3072,20156).
|
Iron might decrease levels of quinolone antibiotics by reducing their absorption.
|
Iron might decrease levels of tetracycline antibiotics by reducing their absorption.
Advise patients to take iron at least 2 hours before or 4 hours after tetracycline antibiotics. Concomitant use can decrease absorption of tetracycline antibiotics from the gastrointestinal tract by 50% to 90% (15).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Below is general information about the adverse effects of the known ingredients contained in the product 100% Vegan Protein Vanilla Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, hemp products are generally well tolerated in food amounts.
In larger amounts, hemp seed oil seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Rare cases of anaphylaxis have been reported. Long QT syndrome, torsades de pointes, and syncope have also been reported rarely.
Cardiovascular ...Acquired long QT syndrome, torsades de pointes, and syncope have been reported in a 56-year-old woman following the intake of supplements containing hemp oil. The hemp supplements provided cannabidiol (CBD), and possibly cannabigerol (CBG). Although the exact dose is unknown, up to six times the recommended dose had been used for approximately 6 weeks, in combination with a supplement containing berberine. While hospitalized, intravenous magnesium and saline were used to stabilize heart rhythm. It is unknown whether this adverse effect was related to the hemp oil, berberine, or their interaction (110104).
Hepatic ...Orally, there is a case report of elevated liver enzymes and hepatitis in a two-year-old boy given hemp extract 2. 5 mL, providing 125 mg phytocannabinoid, five to eight times daily for infantile spasms and refractory seizures. The total dose of phytocannabinoids was approximately 60-100 mg/kg daily (110287).
Immunologic
...Orally, there are case reports of allergy to hemp seed, although this is uncommon (101140,101154).
A 44-year-old male developed hives during a meal of hemp seed-crusted seafoods. Later, he developed facial swelling, shortness of breath, and problems speaking. Evaluation revealed allergy to a specific protein in hemp seed. He did not react to smoked cannabis (101140). In other cases, anaphylaxis, facial swelling, and worsening asthma have been reported in association with a first exposure to hemp seed, although some had smoked cannabis previously (101154).
Topically, a case of patch-test confirmed allergic contact dermatitis to hemp seed oil has been reported in a 22-year-old woman. The initial rash started at the application point on her back and spread to her arms, hands, and neck (110288).
Airborne exposure to hemp pollen is a relatively common cause of allergic respiratory symptoms in some locations (101155).
Neurologic/CNS ...Orally, cases of acute cannabinoid toxicity with neurological symptoms in children and adults have been associated with intake of hemp seed oil. There is a case report of decreased alertness, stupor, bloodshot eyes, and fixed gaze in a 2-year-old male probably related to the intake of one teaspoon hemp seed oil (CANAH) containing 0.06% delta-9-tetrahydrocannabinol (THC) twice daily for 3 weeks. After stopping the oil, irritability was reported over the next few days (101153).
General
...Orally or intravenously, iron is generally well tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, gastrointestinal irritation, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about oral or gastric ulcerations.
Intravenously: Case reports have raised concerns about hypophosphatemia and osteomalacia.
Cardiovascular
...There is debate regarding the association between coronary heart disease (CHD) or myocardial infarction (MI) and high iron intake or high body iron stores.
Some observational studies have reported that high body iron stores are associated with increased risk of MI and CHD (1492,9542,9544,9545,15175). Some observational studies reported that only high heme iron intake from dietary sources such as red meat are associated with increased risk of MI and CHD (1492,9546,15174,15205,15206,91180). However, the majority of research has found no association between serum iron levels and cardiovascular disease (1097,1099,9543,9547,9548,9549,9550,56469,56683).
There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
There is also a case of a 56-year-old female, negative for HFE mutation homozygosity, diagnosed with acquired iron overload cardiomyopathy after starting ferrous sulfate 325 mg twice daily 3 years prior for iron deficiency secondary to alcoholic cirrhosis with esophageal varices and encephalopathy. The patient had no follow-up care over the 3 years and denied any blood transfusions over that time (113906).
Dermatologic ...Cutaneous hemosiderosis, or skin staining, has been reported following intravenous iron infusion in various case reports. Most of these cases are due to extravasation following iron infusion (112605,112611). In one case, extravasation has occurred following iron derisomaltose infusion in a 41-year-old female with chronic kidney disease (112605). Rarely, diffuse cutaneous hermosiderosis has occurred. In one case, a 31-year-old female with excessive sweating developed cutaneous hemosiderosis in the armpits following an intravenous iron polymaltose infusion (112611).
Endocrine ...Population research in females shows that higher ferritin levels are associated with an approximately 1. 5-fold higher odds of developing gestational diabetes. Increased dietary intake of heme-iron, but not non-heme iron, is also associated with an increased risk for gestational diabetes. The effects of iron supplementation could not be determined from the evaluated research (96618). However, in a sub-analysis of a large clinical trial in pregnant adults, daily supplementation with iron 100 mg from 14 weeks gestation until delivery did not affect the frequency or severity of glucose intolerance or gestational weight gain (96619).
Gastrointestinal
...Orally, iron can cause dry mouth, gastrointestinal irritation, heartburn, abdominal pain, constipation, diarrhea, nausea, or vomiting (96621,102864,104680,104684,110179,110185,110188,110189,110192).
These adverse effects are uncommon at doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron in adults with normal iron stores (7135). Higher doses can be taken safely in adults with iron deficiency, but gastrointestinal side effects may occur (1095,20118,20119,56698,102864). Taking iron supplements with food seems to reduce gastrointestinal side effects (7135). However, food can also significantly reduce iron absorption. Iron should be taken on an empty stomach, unless it cannot be tolerated.
There are several formulations of iron products such as ferrous sulfate, ferrous gluconate, ferrous fumarate, and others. Manufacturers of some formulations, such as polysaccharide-iron complex products (Niferex-150, etc), claim to be better tolerated than other formulations; however, there is no reliable evidence to support this claim. Gastrointestinal tolerability relates mostly to the elemental iron dose rather than the formulation (17500).
Enteric-coated or controlled-release iron formulations might reduce nausea for some patients, however, these products also have lower absorption rates (17500).
Liquid oral preparations can blacken and stain teeth (20118).
Iron can also cause oral ulcerations and ulcerations of the gastric mucosa (56684,91182,96622,110179). In one case report, an 87-year-old female with Alzheimer disease experienced a mucosal ulceration, possibly due to holding a crushed ferrous sulfate 80 mg tablet in the mouth for too long prior to swallowing (91182). The ulceration was resolved after discontinuing iron supplementation. In another case report, a 76-year old male suffered gastric mucosal injury after taking a ferrous sulfate tablet daily for 4 years (56684). In a third case report, a 14-year-old female developed gastritis involving symptoms of upper digestive hemorrhage, nausea, melena, and stomach pain. The hemorrhage was attributed to supplementation with ferrous sulfate 2 hours after meals for the prior 2 weeks (96622). In one case report, a 43-year old female developed atrophic gastritis with non-bleeding ulcerations five days after starting oral ferrous sulfate 325 mg twice daily (110179).
Intravenously, iron can cause gastrointestinal symptoms sch as nausea (104684,110192).
Hematologic ...Orally, iron supplements have been associated with hemochromatosis. In one case report, a 56-year-old female, negative for HFE mutation homozygosity, was diagnosed with acquired hemochromatosis after starting ferrous sulfate 325 mg twice daily 3 years prior, without follow-up care, for a previous iron deficiency secondary to alcoholic cirrhosis with esophageal varices and encephalopathy (113906).
Immunologic
...Although there is some clinical research associating iron supplementation with an increased rate of malaria infection (56796,95432), the strongest evidence to date does not support this association, at least for areas where antimalarial treatment is available (95433,96623).
In an analysis of 14 trials, iron supplementation was not associated with an increased risk of malaria (96623). In a sub-analysis of 7 preliminary clinical studies, the effect of iron supplementation was dependent upon the access to services for antimalarial treatment. In areas where anemia is common and services are available, iron supplementation is associated with a 9% reduced risk of clinical malaria. In an area where services are unavailable, iron supplementation was associated with a 16% increased risk in malaria incidence (96623). The difference in these findings is likely associated with the use of malaria prevention methods.
A meta-analysis of clinical studies of all patient populations shows that administering IV iron, usually iron sucrose and ferric carboxymaltose, increases the risk of infection by 16% when compared with oral iron or no iron. However, sub-analyses suggest this increased risk is limited to patients with inflammatory bowel disease (IBD) (110186).
Intravenously, iron has rarely resulted in allergic reactions, including anaphylactoid reactions (110185,110192,112606,112607). There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
Musculoskeletal ...Intravenously, iron administration may trigger hypophosphatemia in some patients (113905). However, parenteral iron rarely results in osteomalacia related to hypophosphatemia (112609). At least 2 cases exist of hypophosphatemic osteomalacia. In one case, a 70-year-old male with a genetic hemorrhagic disorder infused with ferric carboxymaltose developed lower limb pain with hypophosphatemia and diffuse bone demineralization in the feet (112609). In a second case, a 61-year-old male developed femoral neck insufficiency fractures following repeated ferric carboxymaltose transfusions for anemia related to vascular malformation in the bowel (112603). Severe hypophosphatemia requiring intravenous phosphate in the absence of osteomalacia has also occurred following intravenous ferric carboxymaltose (112608,112610).
Oncologic
...There is a debate regarding the association between high levels of iron stores and cancer.
Data are conflicting and inconclusive (1098,1099,1100,1102). Epidemiological studies suggest that increased body iron stores may increase the risk of cancer or general mortality (56703).
Occupational exposure to iron may be carcinogenic (56691). Oral exposure to iron may also be carcinogenic. Pooled analyses of population studies suggest that increasing the intake of heme iron increases the risk of colorectal cancer. For example, increasing heme iron intake by 1 mg/day is associated with an 11% increase in risk (56699,91185).
Pulmonary/Respiratory ...Orally, iron has been associated with rare reports of iron pill aspiration. This occurs when all or part of the pill is aspirated into the lungs. Once in the lungs, it can cause a chemical burn of the bronchial mucosa. Dozens of cases of iron pill aspiration have been reported in individuals ranging in age from 22 months to 92 years. Patients presented with cough, dyspnea, wheezing, and hemoptysis. The hemoptysis led to death in 2 patients due to hemorrhage. Long-term complication of fibrosis and bronchial stenosis was reported in a few of the cases. In one case, a 48-year-old female accidentally aspirated a ferrous sulfate tablet and presented to the emergency department with cough, blood-stained sputum, chest pain, dyspnea, and acute distress. Bronchoscopy was performed, parts of the pill were retrieved, and chemical burns and necrotic tissue were observed in the bronchus intermedius mucosa and throughout the middle and lower lobes. Debridement with bronchoalveolar lavage was performed. The patient was transferred to the intensive care unit, placed on mechanical ventilation for 2 days, treated with corticosteroids, and discharged on the fifth day of hospitalization. Four weeks post-discharge the patient had significantly improved but still had some reduction in lung capacity.
Other ...Intravenously, sodium ferric gluconate complex (SFGC) caused drug intolerance reactions in 0. 4% of hemodialysis patients including 2 patients with pruritus and one patient each with anaphylactoid reaction, hypotension, chills, back pain, dyspnea/chest pain, facial flushing, rash and cutaneous symptoms of porphyria (56527).
General
...Orally, MCTs can cause significant gastrointestinal upset, especially with higher doses.
Most Common Adverse Effects:
Abdominal discomfort, diarrhea, essential fatty acid deficiency, intestinal gas noises, irritability, nausea, reflux, vomiting. Gastrointestinal disturbances are thought to be associated with higher doses of MCT. Since MCTs are fats, excessive consumption can result in weight gain.
Cardiovascular ...There is some concern that MCTs may further increase the risk for hypertriglyceridemia in some preterm infants due to immature lipoprotein lipase activity in these infants. A case of extremely elevated triglyceride levels of 4,736 mg/dL and associated lipemia retinalis has been reported at 43 weeks post-menstrual age (PMA) for a preterm infant born at 30 weeks' gestational age. It was discovered that the baby had been receiving MCT supplements in addition to breast milk starting at 42 weeks' PMA. MCT supplements were discontinued. One month later triglycerides were reduced to 287 mg/dL, and the retinal vasculature had a normal hue. However, at 2-month follow-up, triglyceride levels were elevated to levels higher than normal for age despite MCT discontinuation. Investigators speculated that a genetic disorder of lipid metabolism may also have contributed to the elevated triglyceride levels in addition to use of MCTs (96330).
Gastrointestinal ...Orally, MCTs can cause significant gastrointestinal upset. Diarrhea is the most commonly reported side effect (11723,93737,93738,101967). Other reported side effects include vomiting, irritability, nausea, reflux, abdominal discomfort, intestinal gas noises, and essential fatty acid deficiency (11723,93738,101967). Taking MCTs with food can reduce these adverse effects (93737). Gastrointestinal disturbances are thought to be associated with higher doses of MCT, such as 85 grams (93731).
Other ...Excessive consumption of MCTs can result in weight gain. MCT oil contains 6-8.5 calories per gram. One tablespoon provides about 14 grams and about 115 calories (11724).
General
...Orally, pea protein seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Immunologic ...Orally, pea protein may cause allergic reactions in individuals sensitive to other foods. A case series describes 6 children who had anaphylactic reactions to pea protein present in a number of food items. Other symptoms included angioedema, urticaria, and asthma. All the children had a history of allergies to other foods including peanuts, tree nuts, chickpeas, lentils, or kidney beans (102012).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).