Ingredients | Amount Per Serving |
---|---|
(as Selenium Chelate)
(Selenium (Form: as Selenium Chelate) )
|
50 mcg |
(Molybdenum Glycinate Chelate)
|
100 mcg |
(Choline Citrate)
(Choline (Form: as Choline Citrate) )
|
30 mg |
(seed)
(30-70:1)
(Milk Thistle seed ext. PlantPart: seed Note: 30-70:1 )
|
250 mg |
250 mg | |
(leaf)
(3:1)
(Artichoke leaf ext. PlantPart: leaf Note: 3:1 )
|
50 mg |
(root)
(4:1)
(Turmeric root ext. PlantPart: root Note: 4:1 )
|
50 mg |
(root)
|
30 mg |
(Root)
(10:1)
(Yellow Dock root ext. PlantPart: Root Note: 10:1 )
|
30 mg |
(root)
(9:1)
(Beet root ext. PlantPart: root Note: 9:1 )
|
30 mg |
(rhizome)
(5% Gingerols)
(Ginger rhizome ext. (Form: 5% Gingerols) PlantPart: rhizome )
|
30 mg |
Vegetable Capsule (Form: Hydroxypropyl Methylcellulose, Water), Calcium-Laurate, Silicon Dioxide (Alt. Name: SiO2)
Below is general information about the effectiveness of the known ingredients contained in the product Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of yellow dock.
Below is general information about the safety of the known ingredients contained in the product Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Artichoke has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Artichoke extract has been used with apparent safety at doses up to 3200 mg daily for up to 12 weeks (6282,15204,52235,91475,91478,100934). Artichoke leaf powder has been used with apparent safety at a dose of 1000 mg daily for up to 8 weeks (104133). Cynarin, a constituent in artichoke extract, has been used with apparent safety at daily doses of 750 mg daily for up to 3 months or 60 mg daily for up to 7 months (1423,1424,52222,52223,52236).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of artichoke when used in medicinal amounts during pregnancy or lactation; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally and appropriately. Choline is safe in adults when taken in doses below the tolerable upper intake level (UL) of 3.5 grams daily (3094) ...when used intravenously and appropriately. Intravenous choline 1-4 grams daily for up to 24 weeks has been used with apparent safety (5173,5174).
POSSIBLY UNSAFE ...when used orally in doses above the tolerable upper intake level (UL) of 3. 5 grams daily. Higher doses can increase the risk of adverse effects (3094).
CHILDREN: LIKELY SAFE
when used orally and appropriately (3094).
Choline is safe in children when taken in doses below the tolerable upper intake level (UL), which is 1 gram daily for children 1-8 years of age, 2 grams daily for children 9-13 years of age, and 3 grams daily for children 14-18 years of age (3094).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL.
High doses can increase the risk of adverse effects (3094).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Choline is safe when taken in doses below the tolerable upper intake level (UL), which is 3 grams daily during pregnancy and lactation in those up to 18 years of age and 3.5 grams daily for those 19 years and older (3094,92114). There is insufficient reliable information available about the safety of choline used in higher doses during pregnancy and lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dandelion has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dandelion when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those in foods.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately. A specific milk thistle extract standardized to contain 70% to 80% silymarin (Legalon, Madaus GmbH) has been safely used in doses up to 420 mg daily for up to 4 years (2613,2614,2616,7355,63210,63212,63278,63280,63299,63340)(88154,97626,105792). Higher doses of up to 2100 mg daily have been safely used for up to 48 weeks (63251,96107,101150). Another specific milk thistle extract of silymarin (Livergol, Goldaru Pharmaceutical Company) has been safely used at doses up to 420 mg daily for up to 6 months (95021,95029,102851,102852,105793,105794,105795,113979,114909,114913)(114914). Some isolated milk thistle constituents also appear to be safe. Silibinin (Siliphos, Thorne Research) has been used safely in doses up to 320 mg daily for 28 days (63218). Some combination products containing milk thistle and other ingredients also appear to be safe. A silybin-phosphatidylcholine complex (Silipide, Inverni della Beffa Research and Development Laboratories) has been safely used in doses of 480 mg daily for 7 days (7356) and 240 mg daily for 3 months (63320). Tree turmeric and milk thistle capsules (Berberol, PharmExtracta) standardized to contain 60% to 80% silybin have been safely used twice daily for up to 12 months (95019,96140,96141,96142,97624,101158).
POSSIBLY SAFE ...when used topically and appropriately, short-term. A milk thistle extract cream standardized to silymarin 0.25% (Leviaderm, Madaus GmbH) has been used safely throughout a course of radiotherapy (63239). Another milk thistle extract cream containing silymarin 1.4% has been used with apparent safety twice daily for 3 months (105791,110489). A cream containing milk thistle fruit extract 25% has been used with apparent safety twice daily for up to 12 weeks (111175). A milk thistle extract gel containing silymarin 1% has been used with apparent safety twice daily for 9 weeks (95022). There is insufficient reliable information available about the safety of intravenous formulations of milk thistle or its constituents.
PREGNANCY AND LACTATION:
While research in an animal model shows that taking milk thistle during pregnancy and lactation does not adversely impact infant development (102850), there is insufficient reliable information available about its safety during pregnancy or lactation in humans; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A milk thistle extract 140 mg three times daily has been used with apparent safety for up to 9 months (88154,98452). A specific product containing the milk thistle constituent silybin (Siliphos, Thorne Research Inc.) has been used with apparent safety in doses up to 320 mg daily for up to 4 weeks in children one year of age and older (63218).
LIKELY SAFE ...when used orally and appropriately. Molybdenum is safe in amounts that do not exceed 2 mg/day, the Tolerable Upper Intake Level (UL) (7135).
POSSIBLY UNSAFE ...when used orally in high doses. Use of molybdenum in doses exceeding the Tolerable Upper Intake Level (UL) of 2 mg/day might not be safe (7135).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Molybdenum is safe in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 0.3 mg/day for children 1 to 3 years, 0.6 mg/day for children 4 to 8 years, 1.1 mg/day for children 9 to 13 years, and 1.7 mg/day for adolescents (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Molybdenum might not be safe when used in doses exceeding the UL of 0.3 mg/day for children 1 to 3 years, 0.6 mg/day for children 4 to 8 years, 1.1 mg/day for children 9 to 13 years, and 1.7 mg/day for adolescents (7135).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Molybdenum crosses the placenta by passive diffusion and is exchanged freely between the mother and fetus (16482). However, molybdenum is safe when used in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 1.7 mg/day for women 14 to 18 years, or 2 mg/day for women 19 years of age and older (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in high doses.
Molybdenum might not be safe during pregnancy when used in doses exceeding the UL of 1.7 mg/day for women 14 to 18 years, or 2 mg/day for women 19 and older (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Molybdenum is safe when used in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 2 mg/day for breast-feeding women 19 years of age or older, or 1.7 mg/day for breast-feeding women ages 14 to 18 years (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in high doses.
Molybdenum might not be safe when used in doses exceeding the UL of 2 mg/day for breast-feeding women 19 or older, or 1.7 mg/day for breast-feeding women ages 14 to 18 years (7135).
LIKELY SAFE ...when used orally, intravenously, intratracheally, or by inhalation and appropriately. N-acetyl cysteine is an FDA-approved prescription drug (832,1539,1705,1710,2245,2246,2252,2253,2254,2256)(2258,2259,2260,5808,6176,6611,7868,10270,10271,16840)(91243,91247,102027,102660,102666,99531).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
N-acetyl cysteine has been safely used at doses of 900-2700 mg daily for 8-12 weeks (91235,91239,91241,102666). ...when used intravenously and appropriately. Intravenous N-acetyl cysteine 140 mg/kg/day plus oral N-acetyl cysteine 70 mg/kg four times daily for up to 10 months has been safely used (64547).
PREGNANCY: POSSIBLY SAFE
when used orally, intratracheally, intravenously, or by inhalation.
N-acetyl cysteine crosses the placenta, but has not been associated with adverse effects to the fetus (1711,64615,64493,97041). However, N-acetyl cysteine should only be used in pregnancy when clearly indicated, such as in cases of acetaminophen toxicity.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Selenium appears to be safe when taken short-term in amounts below the tolerable upper intake level (UL) of 400 mcg daily (4844,7830,7831,7836,7841,9724,9797,14447,17510,17511)(17512,17513,17515,17516,97087,97943,109085); however, there is concern that taking selenium long-term might not be safe. Some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). Some evidence also shows that taking a selenium supplement 200 mcg daily for an average of 3-8 years increases the risk of developing type 2 diabetes (97091,99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661). ...when used intravenously. Selenium, as selenious acid, is an FDA-approved drug. Sodium selenite intravenous infusions up to 1000 mcg daily have been safely used for up to 28 days (90347,92910).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. Doses above 400 mcg daily can increase the risk of developing selenium toxicity (4844,7825). Additionally, some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). There is also concern that taking a selenium supplement 200 mcg daily long-term, for an average of 3-8 years, increases the risk of developing type 2 diabetes (99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Selenium seems to be safe when used short-term in doses below the tolerable upper intake level (UL) of 45 mcg daily for infants up to age 6 months, 60 mcg daily for infants 7 to 12 months, 40-90 mcg daily for children 1 to 3 years, 100-150 mcg daily for children 4 to 8 years, 200-280 mcg daily for children 9 to 13 years, and 400 mcg daily for children age 14 years and older (4844,86095); however, there is some concern that long-term use might not be safe. ...when used via a nasogastric tube in premature infants (7835,9764).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily (4844,17507,74419,74481,74391); however, there is concern that long-term use might not be safe.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844).
LACTATION: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily when taken short-term (4844,74467); however, there is concern that long-term use might not be safe.
LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844,7838). ...when used orally in HIV-positive women. Selenium supplementation in HIV-positive women not taking highly active antiretroviral therapy may increase HIV-1 levels in breast milk (90358).
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283,114899) and products providing up to 1500 mg of curcumin daily have been safely used for up to 12 months (114898). Additionally, turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357,114906). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
POSSIBLY SAFE ...when properly prepared and consumed in amounts commonly found in foods. Young leaves must be boiled to remove the oxalate content; death has occurred after consuming uncooked leaves (6,18).
POSSIBLY UNSAFE ...when the uncooked leaves are consumed. Young leaves must be boiled to remove the oxalate content; death has occurred after consuming uncooked leaves (6,18). There is insufficient reliable information available about the safety of properly prepared yellow dock when used orally in medicinal amounts.
PREGNANCY: POSSIBLY UNSAFE
when used orally; avoid using.
Yellow dock contains anthraquinone glycosides; unstandardized laxatives are not desirable during pregnancy (4).
LACTATION: POSSIBLY UNSAFE
when used orally; avoid using.
Anthraquinones are secreted into breast milk (4,5).
Below is general information about the interactions of the known ingredients contained in the product Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, artichoke leaf extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
A meta-analysis of small clinical studies shows that taking artichoke leaf extract for 8-12 weeks can modestly reduce fasting plasma glucose when compared with placebo (105768).
|
Theoretically, artichoke leaf extract may increase the risk of hypotension when taken with antihypertensive drugs.
A meta-analysis of small clinical studies in patients with hypertension shows that taking artichoke can reduce systolic blood pressure by around 3 mmHg and diastolic blood pressure by around 2 mmHg when compared with placebo (105767).
|
Theoretically, artichoke might increase serum levels of drugs metabolized by CYP2B6.
In vitro research shows that artichoke leaf extract inhibits CYP2B6 activity (97717). However, this interaction has not been reported in humans.
|
Theoretically, artichoke might increase serum levels of drugs metabolized by CYP2C19.
In vitro research shows that artichoke leaf extract inhibits CYP2C19 activity (97717). However, this interaction has not been reported in humans.
|
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Theoretically, choline might decrease the effects of atropine in the brain.
Animal research shows that administering choline one hour before administering atropine can attenuate atropine-induced decreases in brain levels of acetylcholine (42240). Theoretically, concomitant use of choline and atropine may decrease the effects of atropine.
|
Theoretically, taking dandelion root along with anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
In vitro research suggests that dandelion root inhibits platelet aggregation (18291).
|
Theoretically, dandelion might increase the risk for hypoglycemia when used with antidiabetes drugs.
Laboratory research suggests that dandelion extract may have moderate alpha-glucosidase inhibitor activity and might also increase insulin secretion (13474,90926). Also, in a case report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemia 2 weeks after beginning to eat salads containing dandelion (46960).
|
Theoretically, dandelion might increase levels of drugs metabolized by CYP1A2.
Laboratory research suggests that dandelion might inhibit CYP1A2 (12734). So far, this interaction has not been reported in humans. However, until more is known, watch for an increase in the levels of drugs metabolized by CYP1A2 in patients taking dandelion.
|
Theoretically, dandelion might increase the clearance of drugs that are UDP-glucuronosyltransferase substrates.
There is some preliminary evidence that dandelion might induce UDP-glucuronosyltransferase, a phase II enzyme (12734).
|
Theoretically, through diuretic effects, dandelion might reduce excretion and increase levels of lithium.
Animal research suggests that dandelion has diuretic properties (13475). As diuretics can increase serum lithium levels, the dose of lithium might need to be decreased when taken with dandelion.
|
Theoretically, dandelion might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Dandelion contains significant amounts of potassium (13465).
|
Theoretically, dandelion might lower fluoroquinolone levels.
Animal research shows that dandelion reduces absorption of ciprofloxacin and can lower levels by 73% (13477). However, this effect has not been reported in humans.
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Taking milk thistle with antidiabetes drugs may increase the risk of hypoglycemia.
Clinical research shows that milk thistle extract, alone or along with tree turmeric extract, can lower blood glucose levels and glycated hemoglobin (HbA1c) in patients with type 2 diabetes, including those already taking antidiabetes drugs (15102,63190,63314,63318,95019,96140,96141,97624,97626,113987). Additionally, animal research shows that milk thistle extract increases the metformin maximum plasma concentration and area under the curve and decreases the renal clearance of metformin, due to inhibition of the multi-drug and toxin extrusion protein 1 (MATE1) renal tubular transport protein (114919).
|
Theoretically, milk thistle might inhibit CYP2B6.
An in vitro study shows that silybin, a constituent of milk thistle, binds to and noncompetitively inhibits CYP2B6. Additionally, silybin might downregulate the expression of CYP2B6 by decreasing mRNA and protein levels (112229).
|
It is unclear if milk thistle inhibits CYP2C9; research is conflicting.
In vitro research suggests that milk thistle might inhibit CYP2C9 (7089,17973,17976). Additionally, 3 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP2C9 substrates, including imatinib and capecitabine (111644). However, contradictory clinical research shows that milk thistle extract does not inhibit CYP2C9 or significantly affect levels of the CYP2C9 substrate tolbutamide (13712,95026). Differences in results could be due to differences in dosages or formulations utilized (95026).
|
It is unclear if milk thistle inhibits CYP3A4; research is conflicting.
While laboratory research shows conflicting results (7318,17973,17975,17976), pharmacokinetic research shows that taking milk thistle extract 420-1350 mg daily does not significantly affect the metabolism of the CYP3A4 substrates irinotecan, midazolam, or indinavir (8234,17974,93578,95026). However, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP3A4 substrates, including gefitinib, sorafenib, doxorubicin, and vincristine (111644).
|
Theoretically, milk thistle might interfere with estrogen therapy through competition for estrogen receptors.
|
Theoretically, milk thistle might affect the clearance of drugs that undergo glucuronidation.
Laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase levels of glucuronidated drugs. Other laboratory research suggests that a milk thistle extract of silymarin might inhibit beta-glucuronidase (7354), although the significance of this effect is unclear.
|
Theoretically, milk thistle might interfere with statin therapy by decreasing the activity of organic anion transporting polypeptide 1B1 (OATB1B1) and inhibiting breast cancer resistance protein (BCRP).
Preliminary evidence suggests that a milk thistle extract of silymarin can decrease the activity of the OATP1B1, which transports HMG-CoA reductase inhibitors into the liver to their site of action, and animal research shows this increases the maximum plasma concentration of pitavastatin and pravastatin (113975). The silibinin component also inhibits BCRP, which transports statins from the liver into the bile for excretion. However, in a preliminary study in healthy males, silymarin 140 mg three times daily had no effect on the pharmacokinetics of a single 10 mg dose of rosuvastatin (16408).
|
Theoretically, milk thistle may induce cytochrome P450 3A4 (CYP3A4) enzymes and increase the metabolism of indinavir; however, results are conflicting.
One pharmacokinetic study shows that taking milk thistle (Standardized Milk Thistle, General Nutrition Corp.) 175 mg three times daily in combination with multiple doses of indinavir 800 mg every 8 hours decreases the mean trough levels of indinavir by 25% (8234). However, results from the same pharmacokinetic study show that milk thistle does not affect the overall exposure to indinavir (8234). Furthermore, two other pharmacokinetic studies show that taking specific milk thistle extract (Legalon, Rottapharm Madaus; Thisilyn, Nature's Way) 160-450 mg every 8 hours in combination with multiple doses of indinavir 800 mg every 8 hours does not reduce levels of indinavir (93578).
|
Theoretically, milk thistle might increase the levels and clinical effects of ledipasvir.
Animal research in rats shows that milk thistle increases the area under the curve (AUC) for ledipasvir and slows its elimination (109505).
|
Theoretically, concomitant use of milk thistle with morphine might affect serum levels of morphine and either increase or decrease its effects.
Animal research shows that milk thistle reduces serum levels of morphine by up to 66% (101161). In contrast, laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase morphine levels. The effect of taking milk thistle on morphine metabolism in humans is not known.
|
Milk thistle may inhibit one form of OATP, OATP-B1, which could reduce the bioavailability and clinical effects of OATP-B1 substrates.
In vitro research shows that milk thistle inhibits OATP-B1. Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are OATP substrates, including sorafenib and methotrexate (111644). OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds into the body. Inhibition of OATP may reduce the bioavailability of oral drugs that are substrates of OATP.
|
Theoretically, milk thistle might increase the absorption of P-glycoprotein substrates. However, this effect does not seem to be clinically significant.
In vitro research shows that milk thistle can inhibit P-glycoprotein activity (95019,111644) and 1 case report from the World Health Organization (WHO) adverse drug reaction database describes increased abdominal pain in a patient taking milk thistle and the cancer medication vincristine, a P-glycoprotein substrate, though this patient was also taking methotrexate (111644). However, a small pharmacokinetic study in healthy volunteers shows that taking milk thistle (Enzymatic Therapy Inc.) 900 mg, standardized to 80% silymarin, in 3 divided doses daily for 14 days does not affect absorption of digoxin, a P-glycoprotein substrate (35825).
|
Theoretically, milk thistle might decrease the clearance and increase levels of raloxifene.
Laboratory research suggests that the milk thistle constituents silibinin and silymarin inhibit the glucuronidation of raloxifene in the intestines (93024).
|
Milk thistle might decrease the clearance of sirolimus.
Pharmacokinetic research shows that a milk thistle extract of silymarin decreases the apparent clearance of sirolimus in hepatically impaired renal transplant patients (19876). It is unclear if this interaction occurs in patients without hepatic impairment.
|
Theoretically, milk thistle might decrease the levels and clinical effects of sofosbuvir.
Animal research in rats shows that milk thistle reduces the metabolism of sofosbuvir, as well as the hepatic uptake of its active metabolite (109505).
|
Theoretically, the milk thistle constituent silibinin might increase tamoxifen levels and interfere with its conversion to an active metabolite.
Animal research suggests that the milk thistle constituent silibinin might increase plasma levels of tamoxifen and alter its conversion to an active metabolite. The mechanism appears to involve inhibition of pre-systemic metabolism of tamoxifen by cytochrome P450 (CYP) 2C9 and CYP3A4, and inhibition of P-glycoprotein-mediated efflux of tamoxifen into the intestine for excretion (17101). Whether this interaction occurs in humans is not known.
|
Theoretically, milk thistle might increase the effects of warfarin.
In one case report, a man stabilized on warfarin experienced an increase in INR from 2.64 to 4.12 after taking a combination product containing milk thistle 200 mg daily, as well as dandelion, wild yam, niacinamide, and vitamin B12. Levels returned to normal after stopping the supplement (101159). Although a direct correlation between milk thistle and the change in INR cannot be confirmed, some in vitro research suggests that milk thistle might inhibit cytochrome P450 2C9 (CYP2C9), an enzyme involved in the metabolism of various drugs, including warfarin (7089,17973,17976).
|
N-acetyl cysteine might reduce the effects of activated charcoal, while activated charcoal might reduce the absorption of N-acetyl cysteine.
N-acetyl cysteine appears to reduce the capacity of activated charcoal to adsorb acetaminophen and salicylic acid (7869). Conversely, although clinical research suggests that although activated charcoal can reduce the absorption of N-acetyl cysteine by up to 40%, it does not seem to reduce its clinical effects (1755,22774,22775,64501,64647). Other clinical evidence suggests that activated charcoal does not affect the absorption of N-acetyl cysteine (22776,22777).
|
Theoretically, N-acetyl cysteine might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Clinical research suggests that intravenous N-acetyl cysteine decreases prothrombin time, prolongs coagulation time, decreases platelet aggregation, and increases blood loss in surgical patients (64511,64644). Furthermore, in vitro research suggests that N-acetyl cysteine increases the anticoagulant activity of nitroglycerin (22780,64780).
|
Theoretically, N-acetyl cysteine might increase the risk of hypotension when taken with antihypertensive drugs.
Animal research suggests that N-acetyl cysteine potentiates the hypotensive effects of the angiotensin-converting enzyme inhibitors (ACEIs) captopril and enalaprilat (22785). Theoretically, combining N-acetyl cysteine with other antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, N-acetyl cysteine might interfere with the antimalarial effects of chloroquine.
Animal research suggests that N-acetyl cysteine might reduce the antimalarial effects of chloroquine by increasing cellular levels of glutathione (22786).
|
N-acetyl cysteine can increase the risk for hypotension and headaches when taken with intravenous or transdermal nitroglycerin.
Clinical research shows that concomitant administration of N-acetyl cysteine and intravenous or transdermal nitroglycerin can cause severe hypotension (2246) and intolerable headaches (2245,2280). Furthermore, in vitro research suggests that N-acetyl cysteine increases the anticoagulant activity of nitroglycerin (22780,64780).
|
Selenium may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Clinical research suggests that taking selenium 10 mcg/kg/day can increase bleeding times by increasing prostacyclin production, which inhibits platelet activity (14540). Other clinical research suggests that taking selenium 75 mcg daily, in combination with ascorbic acid 600 mg, alpha-tocopherol 300 mg, and beta-carotene 27 mg, reduces platelet aggregation (74406).
|
Theoretically, selenium might prolong the sedating effects of barbiturates.
|
Contraceptive drugs might increase levels of selenium, although the clinical significance of this effect is unclear.
Some research suggests that oral contraceptives increase serum selenium levels in women taking oral contraceptives; however, other research shows no change in selenium levels (14544,14545,14546,101343). It is suggested that an increase could be due to increased carrier proteins, indicating a redistribution of selenium rather than a change in total body selenium (14545).
|
Gold salts might interfere with selenium activity in tissues.
|
Theoretically, selenium supplementation may reduce the effectiveness of immunosuppressant therapy.
|
Selenium might reduce the beneficial effects of niacin on high-density lipoprotein (HDL) levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as selenium, or to the combination. It also is not known whether it will occur in other patient populations.
|
Theoretically, selenium might interfere with warfarin activity.
Animal research suggests that selenium can increase warfarin activity. Selenium might interact with warfarin by displacing it from albumin binding sites, reducing its metabolism in the liver, or by decreasing production of vitamin K-dependent clotting factors (14541). Selenium can also prolong bleeding times in humans by increasing prostacyclin production, which inhibits platelet activity (14540).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Other clinical studies in patients with diabetes show that taking curcumin daily can reduce blood glucose levels when compared with placebo (104149,114898,114900).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
|
Theoretically, turmeric might increase the effects of losartan.
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Theoretically, yellow dock might increase the risk of digoxin toxicity when used long-term or in large amount.
|
Theoretically, yellow dock might increase the risk of hypokalemia when taken with diuretics.
|
Theoretically, the laxative effects of yellow dock might increase the effects of warfarin, including the risk of bleeding.
|
Below is general information about the adverse effects of the known ingredients contained in the product Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, artichoke extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, flatulence, hunger, and nausea.
Topically: Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to artichoke inulin has been reported in individuals sensitive to inulin.
Topically: Chest tightness, cough, and dyspnea after occupational exposure in sensitive individuals.
Dermatologic
...Artichoke can cause an allergic reaction in some patients.
Patients sensitive to the Asteraceae/Compositae family may be at the greatest risk. Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs. Topically, allergic contact dermatitis can occur with the use of artichoke. This has been attributed to the constituent cynaropicrin (11,52206,52226,52230). Redness in the face (11774) and sweating (91475) have been reported rarely following oral use of artichoke extract.
Occupational or airborne exposure to artichoke may also cause allergic reactions. In one case, a 52-year-old male presented with severe spongiotic dermatitis in exposed areas that was recurrent over the past 8 years. A patch test confirmed allergies to artichokes and sesquiterpene lactones, a group of allergens from the Compositae family, and the patient confirmed occupational and airborne exposure to artichokes during the time of his symptoms. The patient improved considerably after treatment with dupilumab (111565).
Gastrointestinal
...Orally, artichoke extract might increase abdominal discomfort, flatulence, diarrhea, hunger, and nausea in some patients (2562,52238,91475).
Abdominal pain and a bitter taste in the mouth were reported by a single person following oral use of a dietary supplement containing artichoke extract, as well as red yeast rice, pine bark extract, and garlic extract (89452). It is not clear if this adverse effect was due to artichoke, other ingredients, or the combination.
In one case report, the autopsy of an 84-year-old female revealed a colonic bezoar comprised of artichoke fiber and fragments. This bezoar caused complete intestinal obstruction, leading to fatal acute peritonitis. Although rare, patients who lack adequate teeth and/or who have a history of gastric surgery are at increased risk for fibrous bezoar formation (97716).
Pulmonary/Respiratory
...Following occupational exposure, allergic symptoms including dyspnea, cough, chest tightness, and asthma symptoms or exacerbation have been reported.
The effects were attributed to sensitization to artichoke. Subsequent nasal challenge with artichoke extract caused reduced nasal patency in these patients (52210,52230).
Orally, severe anaphylactic shock in response to artichoke inulin as an ingredient in commercially available products has been reported (52217). Individuals with a noted sensitivity to artichokes should consume inulin with caution. While rare, individuals with a known inulin allergy should avoid artichoke and artichoke extract.
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, choline is well tolerated when used appropriately.
Adverse effects have been reported with doses exceeding the tolerable upper intake level (UL) of 3.5 grams daily.
Most Common Adverse Effects:
Orally: Fishy body odor. At high doses of at least 9 grams daily, choline has been reported to cause diarrhea, nausea, salivation, sweating, and vomiting.
Cardiovascular ...Orally, doses of choline greater than 7. 5 grams daily may cause low blood pressure (94648).
Gastrointestinal ...Orally, large doses of choline can cause nausea, vomiting, salivation, and anorexia (42275,91231). Gastrointestinal discomfort has reportedly occurred with doses of 9 grams daily, while gastroenteritis has reportedly occurred with doses of 32 grams daily (42291,42310). Doses of lecithin 100 grams standardized to 3.5% choline have reportedly caused diarrhea and fecal incontinence (42312).
Genitourinary ...Orally, large doses of choline greater than 9 grams daily have been reported to cause urinary incontinence (42291).
Neurologic/CNS ...Orally, high intake of choline may cause sweating due to peripheral cholinergic effects (42275).
Oncologic ...In one population study, consuming large amounts of choline was associated with an increased risk of colorectal cancer in females, even after adjusting for red meat intake (14845). However, more research is needed to confirm this finding.
Psychiatric ...Orally, large doses of choline (9 grams daily) have been associated with onset of depression in patients taking neuroleptics. Further research is needed to clarify this finding (42270).
Other ...Orally, choline intake may cause a fishy body odor due to intestinal metabolism of choline to trimethylamine (42285,42275,42310,92111,92112).
General
...Orally, dandelion seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, heartburn, and stomach discomfort.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...In one report, a 39-year-old obese woman developed palpitations and syncope after taking a weight loss supplement containing a combination of dandelion, bladderwrack, and boldo for 3 weeks. The patient was found to have prolonged QT-interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether dandelion, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Dermatologic ...Topically, dandelion can cause contact dermatitis and erythema multiforme in sensitive individuals. Dandelion can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family (13478,13481,42893,46945,46977). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Endocrine ...In one report, a 56-year-old man with renal impairment developed hyperoxalaemia and peripheral gangrene after ingesting large amounts of dandelion tea (10 to 15 cups daily for 6 months). The adverse effect was attributed to the high oxalate content of dandelion tea (258 mcmol/L) and reduced renal oxalate clearance caused by renal impairment (90639). In another report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemic symptoms 2 weeks after beginning to eat salads containing dandelion (46960). The hypoglycemic effect was attributed to the potential alpha-glucosidase inhibitory activity of dandelion.
Gastrointestinal ...Gastrointestinal symptoms, including stomach discomfort, diarrhea, and heartburn, have been reported following oral use of dandelion (19146,36931). A case of intestinal blockage has been reported for a patient who ingested a large amount of dandelion greens three weeks after undergoing a stomach operation (46981). Also, a case of hemorrhagic cystitis has been reported for a 33-year-old woman who took a specific herbal product (Slim-Kombu, Balestra and Mech, Vicenza, Italy) containing 20 herbal extracts, including dandelion extract. Symptoms resolved after the patient discontinued using the product, and symptoms resumed when the patient began taking the supplement again four months later. While various ingredients in the supplement may have contributed to the symptoms, it is possible that dandelion extract may have contributed to the effect due to its diuretic, laxative, cholagogue, and antirheumatic properties (46959).
Other ...Orally, products containing dandelion pollen can cause allergic reactions, including anaphylaxis (13479,13480). Also, rhinoconjunctivitis and asthma have been reported after handling products such as bird feed containing dandelion and other herbs, with reported positive skin tests for dandelion hypersensitivity (46948). Dandelion pollen may cause pollinosis, such as allergic rhinitis and conjunctivitis (18065,46951,46964,46966,46972).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, milk thistle is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal bloating, diarrhea, dyspepsia, flatulence, and nausea. However, these adverse effects do not typically occur at a greater frequency than with placebo.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis, have been reported.
Dermatologic ...Orally, milk thistle may cause allergic reactions including urticaria, eczema, skin rash, and anaphylaxis in some people (6879,7355,8956,63210,63212,63238,63251,63315,63325,95029). Allergic reactions may be more likely to occur in patients sensitive to the Asteraceae/Compositae family (6879,8956). A case report describes a 49-year-old female who developed clinical, serologic, and immunopathologic features of bullous pemphigoid after taking milk thistle orally for 6 weeks. Symptoms resolved after treatment with prednisone and methotrexate (107376). Topically, milk thistle can cause erythema (110489).
Gastrointestinal ...Mild gastrointestinal symptoms have been reported, including nausea, vomiting, bloating, diarrhea, epigastric pain, abdominal colic or discomfort, dyspepsia, dysgeusia, flatulence, constipation, and loss of appetite (2616,6879,8956,13170,63140,63146,63160,63210,63218,63219)(63221,63244,63247,63250,63251,63320,63321,63323,63324,63325)(63327,63328,95024,95029,107374,114914). There is one report of a 57-year-old female with sweating, nausea, colicky abdominal pain, diarrhea, vomiting, weakness, and collapse after ingesting milk thistle; symptoms subsided after 24-48 hours without medical treatment and recurred with re-challenge (63329).
Musculoskeletal ...In one clinical study three patients taking milk thistle 200 mg orally three times daily experienced tremor; the incidence of this adverse effect was similar for patients treated with fluoxetine 10 mg three times daily (63219).
Neurologic/CNS ...With oral milk thistle use, CNS symptoms have been reported, including headache, dizziness, and sleep disturbances (114913,114914).
General ...Orally, molybdenum is generally well tolerated when used appropriately in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 2 mg/day (7135).
Genitourinary ...Environmental exposure to molybdenum has been reported to be a reproductive toxicant in men. Circulating levels of molybdenum are inversely associated with testosterone levels and sperm concentration (63482,63484).
Hematologic ...Orally, in an area of Armenia, a very high dietary molybdenum intake of 10 to 15 mg/day due to high local soil levels has resulted in an increased incidence of hyperuricemia (7135,16478,16487). The mechanism likely involves increased xanthine oxidase activity, leading to increased uric acid production (2663).
Immunologic ...Molybdenum is present in some stainless steel angioplasty stents. Multiple cases report on patients with these stents who have developed a contact allergy to molybdenum, as indicated by positive skin patch tests. It is suggested that this increases the risk for restenosis of the stented artery (16485).
Musculoskeletal ...Orally, in an area of Armenia, a very high dietary molybdenum intake of 10 to 15 mg/day due to high local soil levels has resulted in an increased incidence of hyperuricemia, gout, and arthralgias (7135,16478,16487). There is also a case report of gout in a man with industrial exposure to molybdenum metal dust (16480). The mechanism likely involves increased xanthine oxidase activity, leading to increased uric acid production (2663).
Neurologic/CNS ...In one case report of a man in his late thirties, dietary supplementation with molybdenum 300-800 micrograms daily for a cumulative dose of 13. 5 mg over 18 days resulted in acute psychosis with visual and auditory hallucinations, petit mal seizures, and a life-threatening grand mal attack, related to frontal cortical damage. Chelation therapy with calcium ethylene diamine tetraacetic acid (CaEDTA) was required. A year later, the man was diagnosed with toxic encephalopathy with executive deficiencies, learning disability, major depression, and post-traumatic stress disorder (63368).
Psychiatric ...In one case report of a man in his late thirties, dietary supplementation with molybdenum 300-800 micrograms daily for a cumulative dose of 13. 5 mg over 18 days resulted in acute psychosis with visual and auditory hallucinations, petit mal seizures, and a life-threatening grand mal attack, related to frontal cortical damage. Chelation therapy with calcium ethylene diamine tetraacetic acid (CaEDTA) was required. A year later, the man was diagnosed with toxic encephalopathy with executive deficiencies, learning disability, major depression, and post-traumatic stress disorder (63368).
Pulmonary/Respiratory ...Pneumoconiosis has been reported with excessive intake of molybdenum or exposure in the workplace (63365,63547,63510).
General
...Orally, intravenously, and as an inhalation, N-acetyl cysteine is generally well-tolerated when used in typical doses.
Most adverse effects to N-acetyl cysteine occur when single doses of greater than 9 grams are used or when a regimen of greater than 30 grams daily is followed.
Most Common Adverse Effects:
Orally: Diarrhea, dry mouth, dyspepsia, heartburn, loss of appetite, nausea, and vomiting.
Intravenously: Skin rash and hypersensitivity reactions.
Inhaled: Bronchospasm, cough, epigastric pain, throat irritation, and wheezing.
Serious Adverse Effects (Rare):
Orally: Chest tightness, hemoptysis, and palpitations have been reported.
Intravenously: Anaphylaxis, angina, dystonic reactions, tachycardia, and transient sinus bradycardia have been reported.
Cardiovascular
...Intravenously, N-acetyl cysteine has been reported to significantly increase systolic and diastolic blood pressure after exposure to nitroglycerin when compared with placebo (2280).
Tachycardia, chest pain, angina, and transient sinus bradycardia have been rarely reported after administration of intravenous N-acetyl cysteine (2280,7872,64658).
Intratracheally, infants receiving 5% N-acetyl cysteine every four hours for chronic lung disease have developed bradycardia (64490).
Orally, palpitations and chest tightness have been reported rarely in clinical research evaluating oral N-acetyl cysteine at doses up to 600 mg twice daily (64675,64717,64762).
Dermatologic
...Orally, N-acetyl cysteine may cause hives (64713,64739,64813), flushing (2260,64715), and edema (64714).
Rash has also been reported (64510,64715,64717,102656). In one study, flushing was reported in 2% of patients receiving 600 mg of N-acetyl cysteine orally twice daily for six months (2260).
Intravenously, N-acetyl cysteine may cause rash, and the occurrence seems to be more common than with oral use (2254,64492,64562,64658,64759,64794). Hives (2280,64794), facial edema (2280), flushing (64412), and pruritus (64658,64763) have also been reported. In a small case series of 10 healthy male patients receiving 150 mg/kg of intravenous N-acetyl cysteine for muscle fatigue, erythema was experienced 30 minutes after infusion. Other side effects reported by these patients include facial erythema, palmar erythema, and sweating (64763). In other clinical research, three patients developed an erythematous flare at the sites of previous venipunctures after receiving 5.5 gm/m2 of N-acetyl cysteine with doxorubicin therapy (64712). Pain, inflammation, and excoriation of the skin have been reported after a 20% N-acetyl cysteine solution leaked from the catheter in one patient (64726).
Gastrointestinal
...Orally, gastrointestinal complaints are the most common adverse effects reported with N-acetyl cysteine.
These include heartburn (64608,64715,64717,64738,64739,102666), dyspepsia (1710,64715,64717,64724,64738), and epigastric pain (2260,10429,64715,64717). In one case report, esophagitis related to ulcerations occurred following intake of N-acetyl cysteine while in the supine position with inadequate water (102655). Other common side effects include loss of appetite (64715,64812), flatulence (2256,64510), diarrhea (64713,64715,97049), constipation (64715), dry mouth (64715,64724), nausea (7868,11430,64715,64724,64738,64812,97049), vomiting (64717,64724,64715,97049), gastric upset (64510,64545,97045,97049), acid reflux (108450), changes in bowel habits (108450), and intolerance to taste and odor (64510,64545). N-acetyl cysteine's unpleasant odor makes it difficult for some patients to take orally. Using a straw to drink N-acetyl cysteine solutions can improve tolerability. Additionally, placement of a nasogastric or duodenal tube and administration of metoclopramide or ondansetron can be helpful for patients unable to tolerate oral N-acetyl cysteine (17).
Intravenously, N-acetyl cysteine may cause diarrhea (64712), dyspepsia, nausea, vomiting (64763), mild gastrointestinal upset (102657), and metallic taste (64763).
When inhaled, N-acetyl cysteine may cause epigastric pain and throat irritation (64703,64707,64674).
Genitourinary ...Orally, dysuria was reported in 2% of patients receiving 600 mg of N-acetyl cysteine twice daily for 6 months in one clinical trial (2260).
Hematologic
...In general, hematologic adverse reactions are reported more frequently with intravenous N-acetyl cysteine compared with oral use.
In surgical patients, decreased prothrombin time (1341,64511), prolonged coagulation time (64511), increased blood loss (64511,64644), and decreased platelet aggregation (64511) have been reported after administration of IV N-acetyl cysteine. In one clinical trial, six healthy patients were administered a loading dose of IV N-acetyl cysteine 10 mg/kg followed by 10 mg/kg per hour for 32 hours. All patients experienced a decrease in prothrombin time by 30% to 40%. The decrease prothrombin time (25.4 sec to 20.6 sec) reached a steady state after 16 hours (1341). In a clinical trial evaluating patients with acute myocardial infarction, hemorrhage occurred in three patients taking intravenous N-acetyl cysteine 10 mg/min, heparin (per study protocol), and aspirin (7872). Two pediatric patients receiving intravenous N-acetyl cysteine (loading dose: 140 mg/kg followed by 70 mg/kg) experienced episodes of coagulopathy; however, patients were being treated for acetaminophen overdose (64794).
Hemoptysis was reported in six patients receiving 200 mg of N-acetyl cysteine orally twice daily for 6 months for treatment of chronic bronchitis (64739).
Immunologic
...Orally, anaphylaxis to N-acetyl cysteine has been rarely reported (64794).
However, anaphylactic reactions to intravenous N-acetyl cysteine appear to be more common (1716,64412,64449,64628,64710,64711,64721,64786,64789).
Anaphylactic reactions to N-acetyl cysteine have involved rash, angioedema, hypotension, and bronchospasm (64449,64711,64720). The mechanism of this reaction is unclear, but some data suggest it is not an immunologic hypersensitivity reaction but rather an acute toxic effect of N-acetyl cysteine (64786,64641,64720). Management guidelines for the treatment of anaphylactoid reactions to intravenous N-acetyl cysteine have been published. In most cases, treatment is not required or treatment with diphenhydramine or salbutamol is sufficient to continue or restart N-acetyl cysteine infusion. Antihistamines are useful in controlling and preventing recurrence of anaphylactoid symptoms (1716).
Musculoskeletal ...In one clinical trial, joint pain was reported in more than 15% of patients receiving oral N-acetyl cysteine (64608). In other research, one patient experienced pain in the legs while taking 600 mg of N-acetyl cysteine twice daily for the treatment of chronic bronchitis (64762).
Neurologic/CNS
...Orally, headache has been frequently reported with N-acetyl cysteine in clinical research (7873,11430,64510,64608,64672,64713,64715,64724,64762).
Other less common adverse effects reported in patients taking oral N-acetyl cysteine at a total daily dose of 600-1200 mg include dizziness (64715,64717,64724,64762), tiredness (64675,64717), vivid dreams (102666), disorientation, and inability to concentrate (64673). One pediatric patient receiving oral N-acetyl cysteine (loading dose: 140 mg/kg followed by 70 mg/kg) experienced encephalopathy (64794).
Intravenously, N-acetyl cysteine has been associated with rare neurologic adverse reactions , including headache (7872), lightheadedness (64763), and dystonic reactions (64794). In a previously healthy 2-year-old female, status epilepticus occurred during intravenous N-acetyl cysteine therapy for paracetamol ingestion (64781). Increased deterioration in bulbar function in patients with amyotrophic lateral sclerosis has also been reported with IV N-acetyl cysteine (2254).
Ocular/Otic ...While rare, blurred vision has been reported in research on oral N-acetyl cysteine (64715). Additionally, in a previously healthy 2-year-old female, status epilepticus followed by cortical blindness occurred during intravenous N-acetyl cysteine therapy for paracetamol ingestion. In this case, vision was almost completely recovered 18-months later (64781).
Psychiatric ...Intravenously, dysphoria was experienced 30 minutes after infusion of N-acetyl cysteine in 8 of 10 healthy males assessed in one clinical study (64763).
Pulmonary/Respiratory
...Respiratory adverse reactions to N-acetyl cysteine are most commonly reported with inhalable dosage forms.
These include wheezing (64455,64707), bronchospasm (64455,64699), and cough (64455,64456,64703,64811). While less frequent, wheezing (64675), bronchospasm (64675), increased sputum production (7868), cough (7868,64510), decreased peak flow (64510), dyspnea (64714), and cold symptoms (64510) have been reported with oral N-acetyl cysteine in clinical research. A few cases of wheezing (64718,64719), cough (64763), and bronchospasm (64658) have also been reported with intravenous N-acetyl cysteine. Additionally, respiratory arrest has been reported in one case where a 16 year-old female was being treated for acetaminophen toxicity with intravenous N-acetyl cysteine (64450).
Two premature infants receiving 5% N-acetyl cysteine via intratracheal instillation for the treatment of chronic lung disease had an increased frequency of cyanotic spells (64490).
Other ...Injection site reactions, including burning and phlebitis, have been reported in patients receiving IV N-acetyl cysteine (1341,64763). Fever associated with IV N-acetyl cysteine was reported in one patient during clinical research (64759).
General
...Orally, selenium is generally well-tolerated when used in doses that do not exceed the tolerable upper intake level (UL) of 400 mcg daily.
Intravenously, selenium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Gastric discomfort, headache, and rash. Excessive amounts can cause alopecia, dermatitis, fatigue, nail changes, nausea and vomiting, and weight loss.
Serious Adverse Effects (Rare):
Orally: Excessive ingestion has led to cases of multi-organ failure and death.
Dermatologic ...Excess selenium can produce selenosis in humans, affecting liver, skin, nails, and hair (74304,74326,74397,74495,90360,113660) as well as dermatitis (74304). Results from the Nutritional Prevention of Cancer Trial conducted among individuals at high risk of nonmelanoma skin cancer demonstrate that selenium supplementation is ineffective at preventing basal cell carcinoma and that it increases the risk of squamous cell carcinoma and total nonmelanoma skin cancer (10687). Mild skin rash has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Endocrine
...Multiple clinical studies have found an association between increased intake of selenium, either in the diet or as a supplement, and the risk for type 2 diabetes (97091,99661).
One meta-analysis shows that a selenium plasma level of 90 mcg/L or 140 mcg/L is associated with a 50% or 260% increased risk for developing type 2 diabetes, respectively, when compared with plasma levels below 90 mcg/L. Additionally, consuming selenium in amounts exceeding the recommended dietary allowance (RDA) is associated with an increased risk of developing diabetes when compared with consuming less than the RDA daily. Also, taking selenium 200 mcg daily as a supplement is associated with an 11% increased risk for diabetes when compared with a placebo supplement (99661).
Hypothyroidism, secondary to iodine deficiency, has been reported as a result of selenium intravenous administration (14563,14565). One large human clinical trial suggested a possible increased risk of type 2 diabetes mellitus in the selenium group (16707).
Gastrointestinal ...In human research, nausea, vomiting, and liver dysfunction has been reported as a result of high selenium exposure (74439,74376,113660). Mild gastric discomfort has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Genitourinary ...The effect of selenium supplementation on semen parameters is unclear. In human research, selenium supplementation may reduce sperm motility (9729); however, follow-up research reported no effect on sperm motility or any other semen quality parameter (74441).
Musculoskeletal ...Chronic selenium exposure of 30 mg daily for up to 24 weeks may cause arthralgia, myalgia, and muscle spasms (113660).
Neurologic/CNS ...Chronic exposure to organic and inorganic selenium may cause neurotoxicity, particularly motor neuron degeneration, leading to an increased risk of amyotrophic lateral sclerosis (ALS) (74304). Headache has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months and in patients taking sodium selenate 30 mg daily for up to 24 weeks (97943,113660).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148,114899). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118,114898,114899), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430,114898,114899), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, turmeric has been associated with headache and vertigo (81163,114898).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).
General
...Orally, yellow dock seems to be well tolerated when properly prepared and consumed in food amounts.
Consuming raw yellow dock leaves or rhizomes may be unsafe.
Serious Adverse Effects (Rare):
Orally: Raw leaves or rhizomes can cause hypocalcemia, kidney stones, and vomiting.
Cardiovascular ...Orally, yellow dock has been linked to ventricular fibrillation and death after ingestion of 500 grams (17). Oxalic acid, a constituent of yellow dock, reacts with calcium in plasma, forming insoluble calcium oxalate, which can cause hypocalcemia; the crystals may precipitate in the blood vessels and heart (12). Older or uncooked leaves should be avoided (6).
Dermatologic ...Orally, yellow dock can cause dermatitis when consumed in large amounts (4). Topically, contact with the plant may cause dermatitis in people sensitive to yellow dock (6).
Gastrointestinal ...Orally, vomiting may occur after ingestion of fresh rhizome (18). Consuming excessive amounts can cause diarrhea and nausea (6). Excessive use can also cause abdominal cramps and intestinal atrophy (4). There is one report of a death, preceded by vomiting and diarrhea, after ingestion of 500 grams of yellow dock (17). Older or uncooked leaves should be avoided (6).
Genitourinary ...Orally, yellow dock can cause polyuria when consumed in large amounts (6).
Hematologic ...Orally, in one case report, a 38-year-old female developed immune-mediated thrombocytopenia after consuming a "cleansing" tea containing unknown amounts of yellow dock and burdock. The patient presented with bruising, mild weakness, and fatigue, which started 2-3 days after consuming the tea, and was found to have a platelet count of 5,000 per mcL. Symptoms resolved after platelet transfusion and treatment with oral dexamethasone (108971). It is unclear if these effects were caused by yellow dock, burdock, the combination, or other contributing factors.
Hepatic ...Orally, yellow dock has been linked to liver failure and death after ingestion of 500 grams (17). Oxalic acid, a constituent of yellow dock, reacts with calcium in plasma, forming insoluble calcium oxalate, which can cause hypocalcemia; the crystals may precipitate in the liver (12). Older or uncooked leaves should be avoided (6).
Neurologic/CNS ...Orally, yellow dock has been linked to coma and death after ingestion of 500 grams (17). Older or uncooked leaves should be avoided (6).
Pulmonary/Respiratory ...Orally, yellow dock has been linked to respiratory depression and death after ingestion of 500 grams (17). Oxalic acid, a constituent of yellow dock, reacts with calcium in plasma, forming insoluble calcium oxalate, which can cause hypocalcemia; the crystals may precipitate in the lungs (12). Older or uncooked leaves should be avoided (6).
Renal ...Orally, yellow dock can cause polyuria when consumed in large amounts (6). There is one report of a death, preceded by kidney failure, after ingestion of 500 grams (17). Oxalic acid, a constituent of yellow dock, reacts with calcium in plasma, forming insoluble calcium oxalate, which can cause hypocalcemia; the crystals may precipitate in the kidneys. Individuals with a history of kidney stones should use yellow dock cautiously (12). Older or uncooked leaves should be avoided (6).
Other ...Orally, yellow dock can cause hypokalemia when taken in large amounts (4). There is one report of a death, preceded by severe metabolic acidosis, after ingestion of 500 grams of yellow dock (17). Oxalic acid, a constituent of yellow dock, reacts with calcium in plasma, forming insoluble calcium oxalate, which can cause hypocalcemia; the crystals may precipitate in the kidneys, blood vessels, heart, lungs, and liver (12). Older or uncooked leaves should be avoided (6).