Ingredients | Amount Per Serving |
---|---|
Calories
|
10 Calorie(s) |
Total Carbohydrates
|
2 Gram(s) |
(Ascorbic Acid)
(Acerola fruit extract)
|
230 mg |
(Na)
|
110 mg |
2:1:1 BCAA Blend
|
8 Gram(s) |
5 Gram(s) | |
PhytoBlend
|
160 mg |
(seed)
|
|
(Vitis vinifera )
(fruit)
(Meganatural)
|
|
Citrus Bioflavonoid Complex
|
Natural and Artificial flavor, Citric Acid, Malic Acid, Silicon Dioxide (Alt. Name: SiO2), Calcium Silicate, Salt, Tartaric Acid, Soy Lecithin, Sucralose, Potassium Chloride, Red 40
Below is general information about the effectiveness of the known ingredients contained in the product Pro BCAA & 5 g Glutamine Support Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Pro BCAA & 5 g Glutamine Support Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. BCAAs 12 grams daily have not been associated with significant adverse effects in studies lasting for up to 2 years (68,72,73,74,10117,10146,10147,37120,92643,97531,103351,103352). ...when used intravenously and appropriately. BCAAs are an FDA-approved injectable product (13309).
CHILDREN: LIKELY SAFE
when used orally in dietary amounts of 71-134 mg/kg daily (11120,13308).
CHILDREN: POSSIBLY SAFE
when larger, supplemental doses are used orally and appropriately for up to 6 months (13307,13308,37127).
PREGNANCY:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although adverse effects have not been reported in humans, some animal research suggests that consumption of supplemental isoleucine, a BCAA, during the first half of pregnancy may have variable effects on birth weight, possibly due to abnormal placental development (103350).
LACTATION:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although the safety of increased BCAA consumption during lactation is unclear, some clinical research suggests that a higher concentration of isoleucine and leucine in breastmilk during the first 6 months postpartum is not associated with infant growth or body composition at 2 weeks, 2 months, or 6 months (108466).
LIKELY SAFE ...when used orally and appropriately. Glutamine has been safely used in clinical research in doses up to 40 grams per day or 1 gram/kg daily (2334,2337,2338,2365,5029,5462,7233,7288,7293), (52288,52307,52308,52311,52313,52337,52349,52350,96516,97366). A specific glutamine product (Endari) is approved by the US Food and Drug Administration (FDA) (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 600 mg/kg daily in clinical trials (2363,2366,5448,5452,5453,5454,5458,7293,52272,52275), (52283,52289,52304,52306,52316,52341), (52359,52360,52371,52377,52381,52284,52385,52408,96637,96507,96516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Glutamine has been shown to be safe in clinical research when used in amounts that do not exceed 0.7 grams/kg daily in children 1-18 years old (11364,46657,52321,52323,52363,86095,96517). A specific glutamine product (Endari) is approved by the US Food and Drug Administration for certain patients 5 years of age and older (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 0.4 grams/kg daily in clinical research (52338,96508). There is insufficient reliable information available about the safety of glutamine when used in larger amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of glutamine when used in larger amounts as medicine during pregnancy or lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when the whole fruit of the grape, or extracts of the fruit, seed, or leaf, are used orally and appropriately in medicinal amounts. Grape seed extracts have been used with apparent safety in doses up to 200 mg daily for up to 11 months (9182,53016) and in doses up to 2000 mg daily for up to 3 months (53149,53190). Specific grape fruit extracts (Stilvid, Actafarma; Cognigrape, Bionap srl) have been used with apparent safety in doses up to 250-350 mg daily for 3-12 months or 700 mg daily for 6 months (53254,53256,96198). A specific grape leaf extract (AS 195, Antistax, Boehringer Ingelheim) has been used with apparent safety in doses up to 720 mg daily for up to 3 months (2538,52985,53005,53206). A preparation of dehydrated whole grapes, equivalent to 250 grams of fresh grapes daily, has also been used with apparent safety for up to 30 days (18228). A specific grape seed extract (Enovita; Indena SpA) 150 mg twice daily, standardized to provide at least 95% oligomeric proanthocyanins, has been used with apparent safety for up to 16 weeks (108091) ...when used topically and appropriately. Creams and ointments containing grape seed extract 2% or 5% have been used topically with apparent safety for up to 3 weeks (91539,100955). There is insufficient reliable information available about the safety of other grape plant parts when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). However, whole grapes should be eaten with caution in children aged 5 years and under. Whole grapes can be a choking hazard for young children (96193). To reduce the risk of choking, whole grapes should be cut in half or quartered before being given to children. There is insufficient reliable information available about the safety of grape when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of medicinal amounts during pregnancy and breast-feeding; avoid using in amounts greater than what is commonly found in foods.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product Pro BCAA & 5 g Glutamine Support Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, BCAAs might alter the effects of antidiabetes medications.
Details
|
BCAAs in large doses can reduce the effects of levodopa.
Details
BCAAs may compete with levodopa for transport systems in the intestine and brain and decrease the effectiveness of levodopa (66,2719). Small clinical studies how that concomitant ingestion of protein or high doses of leucine or isoleucine (100 mg/kg) and levodopa can exacerbate tremor, rigidity, and the "on-off" syndrome in patients with Parkinson disease (3291,3292,3293,3294).
|
Theoretically, glutamine might antagonize the effects of anticonvulsant medications.
Details
|
Theoretically, grape extracts may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Ingesting grape juice with cyclosporine can reduce cyclosporine absorption.
Details
A small pharmacokinetic study in healthy young adults shows that intake of purple grape juice 200 mL along with cyclosporine can decrease the absorption of cyclosporine by up to 30% when compared with water (53177). Separate doses of grape juice and cyclosporine by at least 2 hours to avoid this interaction.
|
Theoretically, grape juice might reduce the levels of CYP1A2 substrates.
Details
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of CYP1A2 (2539).
|
It is unclear if grape juice or grape seed extract inhibits CYP2C9; research is conflicting.
Details
In vitro evidence shows that grape seed extract or grape juice might inhibit CYP2C9 enzymes (11094,53011,53089). However, a small pharmacokinetic study in healthy adults shows that drinking 8 ounces of grape juice once does not affect the clearance of flurbiprofen, a probe-drug for CYP2C9 metabolism (11094). The effects of continued grape juice consumption are unclear.
|
Theoretically, grape seed extract may increase the levels of CYP2D6 substrates.
Details
In vitro evidence suggests that grape seed extract might inhibit CYP2D6 enzymes (53011). However, this interaction has not been reported in humans.
|
Theoretically, grape seed extract might increase the levels of CYP2E1 substrates.
Details
In vitro and animal research suggests that grape seed proanthocyanidin extract inhibits CYP2E1 enzymes (52949). However, this interaction has not been reported in humans.
|
It is unclear if grape seed extract inhibits or induces CYP3A4; research is conflicting.
Details
|
Theoretically, long-term intake of grape seed extract might decrease the effects of midazolam.
Details
Animal research shows that subchronic ingestions of grape seed extract can increase the elimination of intravenous midazolam by increasing hepatic CYP3A4 activity. Single doses of grape seed extract do not appear to affect midazolam elimination (53011).
|
Grape juice might decrease phenacetin absorption.
Details
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of cytochrome P450 1A2 (CYP1A2) (2539).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product Pro BCAA & 5 g Glutamine Support Fruit Punch. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally or intravenously, BCAAs are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, diarrhea, nausea, vomiting.
All routes of administration: High doses can lead to fatigue and loss of motor coordination.
Cardiovascular ...Orally, a single case of hypertension following the use of BCAAs has been reported (37143).
Dermatologic ...Orally, a single case of skin blanching following the use of BCAAs has been reported (681). It is not known if this effect was due to use of BCAAs or other factors.
Gastrointestinal ...Orally, BCAAs can cause nausea, vomiting, diarrhea, and abdominal distension. Nausea and diarrhea has been reported to occur in about 10% of people taking BCAAs (10117,37143,92643,97531).
Neurologic/CNS ...Orally and intravenously, BCAAs can cause fatigue and loss of motor coordination due to increased plasma ammonia levels (693,694,10117). Short-term use of 60 grams of BCAAs containing leucine, isoleucine, and valine for 7 days in patients with normal metabolic function seems to increase levels of ammonia, but not to toxic plasma levels (10117). However, liver function should be monitored with high doses or long-term use (10117). Due to the potential of increased plasma levels of ammonia and subsequent fatigue and loss of motor coordination, BCAAs should be used cautiously before or during activities where performance depends on motor coordination (75). Orally, BCAAs may also cause headache, but this has only been reported in one clinical trial (681).
General
...Orally and intravenously, glutamine is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, constipation, cough, diarrhea, flatulence, gastrointestinal pain, headache, musculoskeletal pain, nausea, and vomiting.
Endocrine ...One case of hot flashes has been reported in a patient taking glutamine 5-15 grams orally twice daily for up to 1 year (96520).
Gastrointestinal ...Orally, glutamine has been associated with belching, bloating, constipation, flatulence, nausea, vomiting, diarrhea, and gastrointestinal (GI) pain. Nausea, vomiting, constipation, diarrhea, and GI pain have been reported in clinical trials using high-dose glutamine 10-30 grams (0.3 grams/kg) in two divided doses daily to treat sickle cell disease (99414). One case of dyspepsia and one case of abdominal pain have been reported in patients taking glutamine 5-15 grams twice daily orally for up to 1 year (96520). In a small trial of healthy males, taking a single dose of about 60 grams (0.9 grams/kg of fat free body mass [FFM]) was associated with a 50% to 79% incidence of GI discomfort, nausea, and belching, compared with a 7% to 28% incidence with a lower dose of about 20 grams (0.3 gram/kg FFM). Flatulence, bloating, lower GI pain, and urge to regurgitate occurred at similar rates regardless of dose, and there were no cases of heartburn, vomiting, or diarrhea/constipation (105013). It is possible that certain GI side effects occur only after multiple doses of glutamine.
Musculoskeletal ...Orally, glutamine 30 grams daily has been associated with cases of musculoskeletal pain and non-cardiac chest pain in clinical trials for patients with sickle cell disease (99414).
Neurologic/CNS ...Orally, glutamine has been associated with dizziness and headache. A single case of dizziness has been reported in a patient treated with oral glutamine 0.5 grams/kg. However, the symptom resolved after reducing the dose to 0.25 grams/kg (91356). Mania and hypomania have been reported in 2 patients with bipolar disorder taking commercially purchased glutamine up to 4 grams daily (7291). Glutamine is metabolized to glutamate and ammonia, both of which might have neurological effects in people with neurological and psychiatric diseases or in people predisposed to hepatic encephalopathy (7293).
Oncologic ...There is some concern that glutamine might be used by rapidly growing tumors and possibly stimulate tumor growth. Although tumors may utilize glutamine and other amino acids, preliminary research shows that glutamine supplementation does not increase tumor growth (5469,7233,7738). In fact, there is preliminary evidence that glutamine might actually reduce tumor growth (5469).
Other ...Orally, glutamine has been associated with cough when a powdered formulation is used. It is unclear if this was due to accidental inhalation. One case of a burning sensation and one case of hypersplenism has been reported in a patient taking glutamine 5-15 grams twice daily orally for up to 1 year (96520).
General
...Orally, the whole fruit, as well as the seed, fruit, and leaf extracts, seem to be well tolerated.
Topically, grape seed extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, dry mouth, dyspepsia, headache, joint pain, and nausea.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to grape skin has been reported.
Dermatologic ...Orally, mild hair thinning has been reported in a patient taking a specific grape leaf extract AS195 KG) (2538). Urticaria (hives) has also been reported with this same extract (53206). Cases of contact dermatitis have been reported in grape workers, including those working in California vineyards (53270,53272,53275).
Gastrointestinal ...Orally, abdominal pain and nausea have been reported with use of grape seed extract, but these effects typically occur at rates similar to placebo (9182,13162). In a case report of a 57-year-old man, intermittent nausea, vomiting, and diarrhea occurred over a 10-day period and improved once grape seed extract was stopped (96764). Gastrointestinal adverse effects have also been reported with use of a different grape seed extract (Entelon, Hanlim Pharm). However, the specific types of gastrointestinal effects were not described (100954). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused flatulence, mild constipation, gastrointestinal discomfort, diarrhea, dyspepsia, dry mouth, and retching (2538,52985,53206). Diarrhea, gastrointestinal distress, indigestion, and aversion to taste have been reported with use of Concord grape juice (52972,53166,53175,53181,53199). Loose stools have been reported in a clinical trial of grape pomace (99270). Bowel obstruction caused by intact grapes and grape seeds has been described in case reports (53241,53284,53278). Excessive consumption of grapes, dried grapes, raisins, or sultanas might cause diarrhea due to laxative effects (4201).
Hematologic ...Orally, one case of leg hematoma following a minor trauma was reported in a person using grape leaf extract (2538). Also, one case of bruising was reported in a person drinking Concord grape juice daily for 2 weeks (52972).
Immunologic ...Orally, there is one report of an anaphylactic reaction to oral grape skin extract, which included urticaria and angioedema (4073).
Musculoskeletal ...Orally, musculoskeletal disorders, including back pain, have been reported with use of a specific grape leaf extract AS195 KG) (2538,53206). Joint pain and lumbago have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (91541).
Neurologic/CNS ...Orally, headache has been reported with use of grape seed extract, but this effect occurs at rates similar to placebo (9182,91541). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused dizziness, tiredness, headache, and sleep problems (2538,53206). As a class, nervous system adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of adverse neurologic effects were not described (100954).
Ocular/Otic ...Orally, ocular adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of ocular adverse effects were not described (100954).
Pulmonary/Respiratory ...Orally, nasopharyngitis and oropharyngeal pain have been reported with use of a specific grape leaf extract AS195 KG) (53206). Sore throat, cough, allergic rhinitis, and nasopharyngitis have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (9182,91541). One case report describes a 16-year-old female who developed increased levels of immunoglobulin E (IgE) following skin-prick exposure to grape vine pollen, as well as positive test responses following bronchial and conjunctival provocation (53301). Reduced forced vital capacity has been described in California grape workers (53080,53081). Occupational eosinophilic lung was diagnosed in a grape grower with a history of asthma. Respiratory exposure to sulfites in grape was implicated as the cause of the adverse reaction (53285).
Other
...Orally, grape products can cause adverse effects due to contamination with pesticides or mycotoxins.
Some evidence has shown that pesticides used in vineyards may remain on grape surfaces post-harvesting. For example, the fungicide folpet sprayed on grapevines has been shown to remain on the grape surface. Although there was minimal penetration of the epicuticular wax, it showed high resistance to washing (52935). Carbaryl has been identified in over 58% of juice samples collected in Canada. This pesticide reportedly occurred more frequently in grape than in other juices. However, estimates of short-term intake were below proposed acute reference doses (53003).
Ochratoxin A is a mycotoxin that is suspected to be nephrotoxic, teratogenic, hepatotoxic and carcinogenic and has been identified in grape juice, frozen grape pulps, and red and white wine sold in Rio de Janeiro, Brazil. However, the highest levels identified in grape products were lower than the established virtually safe dose of 5 ng/kg of body weight daily (53010,53004). Ochratoxin A has also been identified in red, but not white, grape juice marketed in Switzerland, Canada, and the U.S. (53292,53020).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).