Ingredients | Amount Per Serving |
---|---|
Alkalize-Me-Now Proprietary Blend
|
1000 mg |
(root)
|
|
(Spirulina )
|
|
Vegan Capsule (Form: Cellulose, Glycerin, Water)
Below is general information about the effectiveness of the known ingredients contained in the product Alkalize-Me-Now 1000 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Alkalize-Me-Now 1000 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when the leaves are used orally and appropriately, short-term (4,6,12).
LIKELY UNSAFE ...when large amounts are used long-term. Chronic ingestion of alfalfa has been associated with drug-induced lupus effects (381,14828,30602).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Alfalfa contains constituents with possible estrogenic activity (4,11,30592).
POSSIBLY SAFE ...when non-contaminated species of spirulina blue-green algae are used orally and appropriately (91713). The blue-green algae species Arthrospira platensis has been used with apparent safety in doses up to 19 grams daily for 2 months, or 10 grams daily for 6 months (18296,18300,18306,75944,91705,99703,104567,109965). The blue-green algae species Arthrospira fusiformis has been used with apparent safety in doses up to 4 grams daily for 3 months, or 1 gram daily for 12 months (15782,91717). Another blue-green algae species, Arthrospira maxima, has been used with apparent safety in a dose of 4.5 grams daily for up to 12 weeks (18297,99654,99655,102688). ...when non-contaminated, non-toxin producing strains of blue-green algae from the Aphanizomenon flos-aquae species are used orally and appropriately. Doses up to 1.6 grams daily have been used with apparent safety for up to 6 months (14842,18310). Some blue-green algae species can produce toxins called microcystins. According to the World Health Organization (WHO), the tolerable daily intake of microcystins in adults is 0.04 mcg/kg (96549).
POSSIBLY UNSAFE ...when contaminated blue-green algae are used orally. Blue-green algae can be contaminated with heavy metals (including mercury, cadmium, lead, or arsenic), neurotoxins, and toxic microcystin-producing cyanobacteria such as Microcystis aeruginosa (9171,75966,91704,91711,96550). Microcystins are most commonly reported in the blue-green algae species Aphanizomenon flos-aquae harvested from Upper Klamath Lake in Oregon. The Oregon Department of Health has set a limit of 1 mcg of microcystin-LR equivalents per gram dry weight of blue-green algae, assuming consumption of about 2 grams/day by adults (91704,91713). However, many samples of Aphanizomenon flos-aquae have been reported to contain higher levels than this (9171,91704). According to the World Health Organization (WHO), the tolerable daily intake of microcystins in adults is 0.04 mcg/kg (96549). When consumed orally, microcystins accumulate in the liver, binding to and inhibiting protein phosphatases, causing hepatocyte damage and possible tumor promotion (9171). Aphanizomenon flos-aquae can also produce neurotoxic compounds that may be present in supplements containing this organism (91704).
CHILDREN: POSSIBLY UNSAFE
when blue-green algae products are used orally.
Blue-green algae can accumulate heavy metals such as lead and mercury (91704,91711). They can also contain toxic microcystins produced by contaminating species of cyanobacteria such a Microcystis aeruginosa (91704). Children are more sensitive to poisoning by microcystins (3536). The Oregon Department of Health has set a limit for microcystins of 1 mcg per gram dry weight of blue-green algae, but some countries have set very low exposure limits of 0.2 mcg per day and 0.8 mcg per day for infants and children, respectively (91704).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Some blue-green algae products, specifically those of the species Aphanizomenon flos-aquae, have been found to contain low amounts of beta-methylamino-L-alanine (BMAA). BMAA is associated with neurodegenerative diseases, and breast milk has been shown to be a potential source of BMAA exposure in infants (96550).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dandelion has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dandelion when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those in foods.
There is insufficient reliable information about the safety of diatomaceous earth.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when applied topically to the skin. A gel containing 1% Fucus vesiculosus extract, applied to the skin twice daily, has been used in clinical research with apparent safety for up to 5 weeks (12799).
POSSIBLY UNSAFE ...when used orally due to its iodine content and possible heavy metal content. Fucus vesiculosus contains up to 0.05% iodine or 226 mcg/gram dry weight (12789,74217). Ingesting more than 150 mcg of iodine daily can cause hyperthyroidism or exacerbate existing hyperthyroidism (12788). Fucus vesiculosus can also contain heavy metals, including cadmium, arsenic, and lead, and can cause heavy metal nephropathy (12789,12800,74213).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally because it may contain iodine and heavy metals (12789,74213,74217); avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Parsley has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term (12,13173).
LIKELY UNSAFE ...when used orally in very large doses e., 200 grams). Parsley oil contains significant amounts of the potentially toxic constituents, apiole and myristicin (11). Apiole can cause blood dyscrasias, kidney toxicity, and liver toxicity; myristicin can cause giddiness and hallucinations (4). ...when parsley seed oil is used topically. Applying parsley seed oil to the skin can cause photodermatitis upon sun exposure (4). There is insufficient reliable information available about the safety of the topical use of parsley leaf and root.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts.
Parsley has been used orally as an abortifacient and to stimulate menstrual flow (4,12,515,19104,92873). Population evidence suggests that maternal intake of An-Tai-Yin, an herbal combination product containing parsley and dong quai, during the first trimester increases the risk of congenital malformations of the musculoskeletal system, connective tissue, and eyes (15129).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the stalk is used in amounts commonly found in foods and when the root is used as a food flavoring. Rhubarb has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the root or rhizome is used orally and appropriately in medicinal amounts for up to 2 years (92294,92295,92297). ...when the stalk is used orally and appropriately in medicinal amounts for up to 4 weeks (71351,71363,97920). ...when used topically and appropriately (10437,97919).
POSSIBLY UNSAFE ...when the leaf is used orally. Rhubarb leaf contains oxalic acid and soluble oxalate, which can cause abdominal pain, burning of the mouth and throat, diarrhea, nausea, vomiting, seizures, and death (17).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used in medicinal amounts, rhubarb root is a stimulant laxative; avoid using (12).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Over 20 cases of stomach rupture have been reported for patients who used sodium bicarbonate to relieve stomach discomfort after eating large meals (29414,29415,29416,29962,90913). In some of these cases, it is believed that the patients consumed dry sodium bicarbonate or a sodium bicarbonate suspension rather than a completely dissolved sodium bicarbonate solution. Ingestion of undissolved or partially undissolved sodium bicarbonate is believed to produce excess carbon dioxide and corresponding gastric dilation, leading to stomach rupture (90913). There is also concern that excessive or prolonged use of oral sodium bicarbonate may cause metabolic alkalosis characterized by hypokalemia, hypochloremia, and hypernatremia (25733,29962,90913). There is insufficient reliable information available about the safety of sodium bicarbonate when used topically.
CHILDREN: POSSIBLY SAFE
when used intravenously and appropriately with proper medical supervision.
Intravenous sodium bicarbonate solutions are approved by the US Food and Drug Administration (FDA) to be used in infants and children (13309).
CHILDREN: POSSIBLY UNSAFE
when used topically.
At least two cases of hypernatremia resulting from topical application of sodium bicarbonate (baking soda) have been reported (29962,90914).
There is insufficient reliable information available about the safety of sodium bicarbonate when used orally; avoid using unless advised by a physician.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally or intravenously during pregnancy.
There is concern that sodium bicarbonate may increase the risk of metabolic alkalosis or fluid retention when used orally during pregnancy (90915).
There is insufficient reliable information available about the safety of oral or intravenous sodium bicarbonate when used in medicinal amounts during lactation.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283,114899) and products providing up to 1500 mg of curcumin daily have been safely used for up to 12 months (114898). Additionally, turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357,114906). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product Alkalize-Me-Now 1000 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, alfalfa might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, alfalfa might interfere with the activity of contraceptive drugs.
|
Theoretically, alfalfa might interfere with hormone therapy.
|
Theoretically, alfalfa might decrease the efficacy of immunosuppressive therapy.
|
Theoretically, concomitant use of alfalfa with photosensitizing drugs might have additive effects.
Animal research suggests that excessive doses of alfalfa may increase photosensitivity, possibly due to its chlorophyll content (106043). It is unclear if this effect would be clinically relevant in humans.
|
Theoretically, alfalfa might reduce the anticoagulant activity of warfarin.
|
Theoretically, spirulina blue-green algae might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs. However, this is unlikely.
Spirulina blue-green algae have shown antiplatelet and anticoagulant effects in vitro (18311,18312,75892,92162,92163). However, one preliminary study in 24 patients receiving spirulina blue-green algae 2.3 grams daily for 2 weeks showed no effect on platelet activation or measures of clotting time (97202).
|
Theoretically, taking blue-green algae with antidiabetes drugs might increase the risk of hypoglycemia.
Human research shows that spirulina blue-green algae can have hypoglycemic effects in patients with diabetes, at least some of whom were using antidiabetes drugs (18299). However, blue-green algae does not seem to improve glycated hemoglobin (HbA1c) levels in patients with diabetes (102689,109970). A meta-analysis of animal studies also suggests that spirulina blue-green algae have hypoglycemic effects (109970).
|
Theoretically, concurrent use of blue-green algae might interfere with immunosuppressive therapy.
|
Theoretically, taking dandelion root along with anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
In vitro research suggests that dandelion root inhibits platelet aggregation (18291).
|
Theoretically, dandelion might increase the risk for hypoglycemia when used with antidiabetes drugs.
Laboratory research suggests that dandelion extract may have moderate alpha-glucosidase inhibitor activity and might also increase insulin secretion (13474,90926). Also, in a case report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemia 2 weeks after beginning to eat salads containing dandelion (46960).
|
Theoretically, dandelion might increase levels of drugs metabolized by CYP1A2.
Laboratory research suggests that dandelion might inhibit CYP1A2 (12734). So far, this interaction has not been reported in humans. However, until more is known, watch for an increase in the levels of drugs metabolized by CYP1A2 in patients taking dandelion.
|
Theoretically, dandelion might increase the clearance of drugs that are UDP-glucuronosyltransferase substrates.
There is some preliminary evidence that dandelion might induce UDP-glucuronosyltransferase, a phase II enzyme (12734).
|
Theoretically, through diuretic effects, dandelion might reduce excretion and increase levels of lithium.
Animal research suggests that dandelion has diuretic properties (13475). As diuretics can increase serum lithium levels, the dose of lithium might need to be decreased when taken with dandelion.
|
Theoretically, dandelion might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Dandelion contains significant amounts of potassium (13465).
|
Theoretically, dandelion might lower fluoroquinolone levels.
Animal research shows that dandelion reduces absorption of ciprofloxacin and can lower levels by 73% (13477). However, this effect has not been reported in humans.
|
Theoretically, combining Fucus vesiculosus with amiodarone might cause excessively high iodine levels.
|
Theoretically, taking Fucus vesiculosus with antiplatelet or anticoagulant drugs might increase the risk of bruising and bleeding.
|
Due to its iodine content, Fucus vesiculosus might alter the effects of antithyroid drugs.
Fucus vesiculosus contains high concentrations of iodine (7135). Iodine in high doses has been reported to cause both hyperthyroidism and hypothyroidism, depending on the individual's past medical history. Taking Fucus vesiculosus while using antithyroid drugs could alter the effects of the antithyroid drugs (2138,17574).
|
Theoretically, concomitant use of Fucus vesiculosus with CYP2C8 substrates might increase the risk for adverse effects.
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, inhibits CYP2C8 (97791). This interaction has not been reported in humans.
|
Theoretically, concomitant use of Fucus vesiculosus with CYP2C9 substrates might increase the risk for adverse effects.
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, inhibits CYP2C9 (97791). This interaction has not been reported in humans.
|
Theoretically, concomitant use of Fucus vesiculosus with CYP2D6 substrates might alter the effects of these substrates.
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, both inhibits and induces CYP2D6 (97791). This interaction has not been reported in humans.
|
Theoretically, concomitant use of Fucus vesiculosus with CYP3A4 substrates might increase the risk for adverse effects.
In vitro research shows that fucoidan, a constituent of Fucus vesiculosus, inhibits CYP3A4 (97791). This interaction has not been reported in humans.
|
Concomitant use of Fucus vesiculosus and lithium has resulted in hyperthyroidism.
There is a case of hyperthyroidism occurring in a patient taking Fucus vesiculosus and lithium (74217). Monitor thyroid hormones closely in patients taking lithium and Fucus vesiculosus concomitantly.
|
Due to its iodine content, Fucus vesiculosus might alter the effects of thyroid hormone.
Fucus vesiculosus contains high concentrations of iodine (7135). Iodine in high doses has been reported to cause both hyperthyroidism and hypothyroidism, depending on the individual's past medical history. Taking Fucus vesiculosus while using thyroid hormone could alter the effects of thyroid hormone.
|
Theoretically, parsley might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Animal research suggests that parsley has antiplatelet effects (68209).
|
Theoretically, parsley might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, aspirin might increase the severity of allergic reactions to parsley.
In one case, severe urticaria and swelling were reported after taking aspirin with parsley in an individual with a known mild parsley allergy (5054).
|
Theoretically, parsley might increase serum levels of CYP1A2 substrates.
Laboratory research suggests that parsley can inhibit CYP1A2 (68176).
|
Theoretically, parsley might enhance or interfere with the effects of diuretic drugs.
|
Theoretically, parsley might increase the duration of pentobarbital effects.
Animal research suggests that parsley juice prolongs the action of pentobarbital, perhaps by decreasing cytochrome P450 levels (25362). It is not known if this occurs in humans or if this applies to other barbiturates or sedatives.
|
Theoretically, large quantities of parsley might increase sirolimus levels.
In one case report, an adult female with a history of kidney transplant presented with elevated blood sirolimus levels, approximately 4-7 times greater than previous measures, after daily consumption of a juice containing approximately 30 grams of parsley for 7 days. Sirolimus levels returned to normal a week after the parsley juice was discontinued (106010).
|
Theoretically, large amounts of parsley leaf and root might decrease the effects of warfarin.
Parlsey contains vitamin K (19).
|
Theoretically, frequent and high doses of rhubarb might increase the risk of hypokalemia when taken with corticosteroids.
|
Theoretically, taking rhubarb with cyclosporine might reduce cyclosporine levels.
Animal research shows that co-administration of rhubarb decoction 0.25 or 1 gram/kg with cyclosporine 2.5 mg/kg, decreases cyclosporine maximum plasma concentration and overall exposure levels when compared with taking cyclosporine alone. The authors theorize that rhubarb might reduce cyclosporine bioavailability by inducing of P-glycoprotein and/or cytochrome P450 3A4 (92304). However, since rhubarb was administered as a single oral dose and enzyme induction usually occurs after multiple doses, it is possible that cyclosporine absorption was actually reduced via rhubarb's stimulant laxative effects (12). Also, the composition of the rhubarb decoction was not described.
|
Theoretically, overuse of rhubarb might increase the risk of adverse effects when taken with digoxin.
|
Theoretically, frequent and high doses of rhubarb might increase the risk of hypokalemia.
|
Theoretically, concomitant use of rhubarb with potentially hepatotoxic drugs might increase the risk of developing liver damage.
|
Theoretically, long-term use of anthraquinones from rhubarb might increase the risk of nephrotoxicity when used with nephrotoxic drugs.
The anthraquinone constituents of rhubarb have been shown to induce nephrotoxicity in animal research (71322). Additionally, in a case report, a 23-year old female presented with kidney failure after taking 6 tablets of a proprietary slimming agent (found to contain the anthraquinones emodin and aloe-emodin from rhubarb) daily for 6 weeks and then adding diclofenac 25 mg 4 times daily for 2 days. The authors postulate that the anthraquinone constituents of rhubarb contributed to the renal dysfunction, and the addition of diclofenac, a nephrotoxic drug, led to renal failure (15257). Until more is known, advise patients to avoid taking rhubarb if they are taking other potentially nephrotoxic drugs.
|
Theoretically, rhubarb might increase the risk for fluid and electrolyte loss when taken with other stimulant laxatives.
|
Theoretically, excessive use of rhubarb might increase the risk of bleeding when taken with warfarin.
|
Theoretically, sodium bicarbonate may increase the risk for hypokalemia in patients receiving aminoglycosides.
Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, when administered intravenously, the most common complication of sodium bicarbonate is hypokalemia (25709). Nephrotoxicity caused by aminoglycosides may lead to increased urinary losses of various electrolytes, including potassium (9519).
|
Theoretically, sodium bicarbonate may increase the risk for hypokalemia in patients receiving amphotericin B.
Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, when administered intravenously, the most common complication of sodium bicarbonate is hypokalemia (25709). Amphotericin B increases urinary potassium losses due to toxic effects on renal tubular epithelium. Hypokalemia can occur in up to 50% of patients (9519).
|
Theoretically, sodium bicarbonate may reduce the levels and clinical effects of aspirin.
In humans, oral or intravenous administration of sodium bicarbonate increases salicylate elimination. Although the exact mechanism of this effect is not clear, some researchers hypothesize that sodium bicarbonate increases urinary pH, which increases salicylate ionization and subsequent excretion by the kidneys. In patients with urine pH of about 5.5, renal clearance of salicylate is approximately 55 mL/min. When urine pH is increased with oral sodium bicarbonate to about 7.5, renal clearance of salicylate increases to approximately 100 mL/min. Similarly, urine alkalinization with sodium bicarbonate increases the mean total body clearance of salicylate by approximately 60% compared with urine acidification (29410,29411).
|
Theoretically, sodium bicarbonate may increase the risk for hypokalemia in patients taking beta-adrenergic agonists.
Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, the most common adverse effect of intravenous sodium bicarbonate is hypokalemia (25709). Oral, parenteral, or inhaled beta-adrenergic agonists can reduce serum potassium levels, especially during acute use of high doses (6217,7001,8880,8881,8882,8883,8884,8885,8886,8889)(8890,9534,9599).
|
Theoretically, sodium bicarbonate might reduce the levels and clinical effects of cefpodoxime.
Cefpodoxime proxetil is an oral prodrug that is de-esterified in the intestine to the active drug cefpodoxime. Drugs or supplements that increase gastric pH can inhibit the activation of cefpodoxime proxetil and reduce the peak plasma concentrations of cefpodoxime. In humans, taking sodium bicarbonate 12.6 grams orally along with cefpodoxime proxetil 200 mg reduces peak plasma concentrations and area under the plasma concentration-time curve (AUC) of cefpodoxime by 35% to 50% (25740).
|
Theoretically, sodium bicarbonate might reduce the levels and clinical effects of chlorpropamide.
The elimination of chlorpropamide by the kidneys depends strongly on urine pH. At a pH of 5, the renal clearance of chlorpropamide ranges from 0.5 to 3 mL/hr. At a pH of 8, renal clearance of chlorpropamide ranges from 500 to 1000 mL/hr. When taken in combination with oral sodium bicarbonate, the elimination half-life of chlorpropamide is shortened from 49.7 to 12.8 hours and urinary excretion of chlorpropamide is increased four-fold (25741).
|
Theoretically, sodium bicarbonate may increase the risk of hypokalemia in patients receiving cisplatin.
Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, the most common complication of intravenous sodium bicarbonate is hypokalemia (25709). Cisplatin can cause renal tubular damage, with increased losses of electrolytes including potassium (15509,15510,15511).
|
Theoretically, sodium bicarbonate may increase the risk of hypokalemia in patients taking corticosteroids.
Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, the most common intravenous complication of sodium bicarbonate is hypokalemia (25709). Some glucocorticoids (corticosteroids) can also cause hypokalemia by causing sodium retention, resulting in compensatory renal potassium excretion. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Theoretically, sodium bicarbonate may increase the risk of hypokalemia in patients taking loop diuretics.
Loop diuretics increase urinary potassium excretion (4412,4425,4449). Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, the most common complication of intravenous sodium bicarbonate is hypokalemia (25709).
|
Theoretically, sodium bicarbonate may increase the risk of hypokalemia in patients taking methylxanthines.
Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, the most common complication of intravenous sodium bicarbonate is hypokalemia (25709). Theophylline and related drugs can reduce serum potassium levels, possibly by increasing intracellular uptake of potassium. Hypokalemia is most likely to occur after acute overdose of these drugs (17). However, reduced potassium levels can occur with therapeutic doses, and the incidence and degree of hypokalemia increases with increasing serum theophylline levels (9534,9537,9538,9539).
|
Theoretically, sodium bicarbonate may increase levels and adverse effects of pseudoephedrine.
In humans, intravenous or oral administration of sodium bicarbonate can increase urinary pH. Clinical evidence shows that urine alkalinization increases the serum elimination half-life of pseudoephedrine by approximately 10-fold (29412). In one patient with persistently alkaline urine, treatment with pseudoephedrine resulted in hallucinations and personality changes (29412).
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related adverse effects.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium bicarbonate, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, sodium bicarbonate may increase the risk of hypokalemia in patients taking stimulant laxatives.
Long-term use of stimulant laxatives, or acute use of high doses (e.g., in bowel-cleansing regimens), can result in potassium loss and hypokalemia (4411,4412,4425). Orally, use of excessive sodium bicarbonate (such as intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, the most common complication of intravenous sodium bicarbonate is hypokalemia (25709).
|
Theoretically, sodium bicarbonate may increase the risk of hypokalemia in patients taking thiazide diuretics.
Thiazide diuretics increase urinary potassium excretion (4412,4425,4449). Orally, use of excessive sodium bicarbonate (such as the intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with cases of hypokalemia (25733). Furthermore, the most common complication of intravenous sodium bicarbonate is hypokalemia (25709).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Other clinical studies in patients with diabetes show that taking curcumin daily can reduce blood glucose levels when compared with placebo (104149,114898,114900).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
|
Theoretically, turmeric might increase the effects of losartan.
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Alkalize-Me-Now 1000 mg. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, alfalfa leaf seems to be well tolerated.
However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Abdominal discomfort, diarrhea, and flatulence.
Serious Adverse Effects (Rare):
Orally: Lupus-like syndrome after chronic ingestion of alfalfa.
Dermatologic ...Dermatitis associated with alfalfa use has been reported. In a 1954 publication, dermatitis was noted in a 61-year-old female consuming 4-6 cups of tea made with two tablespoonfuls of alfalfa seeds for approximately two months prior to onset. Examination revealed diffuse, confluent edema and erythema on the face, eyelids, ears, hands, forearms, and distal humeral regions. The dermatitis improved with treatment; re-exposure to alfalfa resulted in a similar reaction (30609).
Endocrine
...Alfalfa contains constituents, including coumestrol, with reported estrogenic activity (30586,30592,4753).
Effects in humans are not known.
One case report documents hypokalemia in a female who had been drinking a "cleansing tea" containing alfalfa, licorice, and stinging nettle. The potassium level returned to normal after discontinuing the tea and initiating potassium supplementation. The specific cause of the hypokalemia is not clear. Notably, both stinging nettle and licorice have been associated with hypokalemia and may have been responsible for this effect (30562).
Gastrointestinal ...Orally, flatulence and bulkier feces were reported during the first week of a case series of three subjects ingesting alfalfa (30598). In a case series of 15 patients ingesting alfalfa, increased fecal volume and increased stool frequency was reported. Additional adverse effects included abdominal discomfort in two patients, diarrhea in two patients, loose stools in six patients, and intestinal gas in 13 patients (5816).
Hematologic ...Pancytopenia and splenomegaly were reported in a 59-year-old male who had been taking 80-160 grams of ground alfalfa seeds for up to six weeks at a time, for a five month period. Hematologic values and spleen size returned to normal when alfalfa was discontinued (381).
Other
...Alfalfa products, including sprouts, seeds, and tablets, have been found to be contaminated with Escherichia coli, Salmonella, and Listeria monocytogenes, which have caused documented infections (5600,30566,30568,30572,30569,30564,30604,30610,30563,30607) (30566,30564,30604,30610,30563,30607,30576).
Orally, alfalfa has been associated with the development of a lupus-like syndrome in animals and humans (30594,14828,14830,30602), as well as with possible exacerbations of lupus in patients with known systemic lupus erythematosus (SLE). These reactions may be associated with the amino acid L-canavanine (30594), which appears to be present in alfalfa seeds and sprouts, but not leaves, and therefore should not be present in alfalfa tablets manufactured from the leaves (30601). However, case reports have included individuals ingesting tablets. A lupus-like syndrome was described in four patients taking 12-24 alfalfa tablets per day. Symptoms included arthralgias, myalgias, and rash; positive antinuclear antibodies (ANA) arose anywhere from three weeks to seven months after initiating alfalfa therapy. Upon discontinuation of alfalfa tablets, all four patients became asymptomatic. In two patients, ANA levels normalized (14828). Two additional reports have documented possible exacerbation or induction of SLE associated with alfalfa use. One case involved a female with a 26-year history of SLE, who had been taking 15 tablets of alfalfa daily for nine months prior to an exacerbation. Because of the delay in onset of the exacerbation from the initiation of alfalfa therapy, causation cannot be clearly established (30575). In a different report, SLE and arthritis were found in multiple family members who had been taking a combination of vitamin E and alfalfa tablets for seven years (30602). It is not known what other environmental or genetic factors may have affected these individuals, and the association with alfalfa is unclear.
General
...Orally, spirulina blue-green algae seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, bloating, diarrhea, dizziness, fatigue, flatulence, headache, nausea, and vomiting.
Dermatologic ...Orally, a severe rash has been reported in a 49-year-old woman after taking a spirulina blue-green algae supplement (species and dose unknown). After stopping the supplement, inflammatory myopathy with muscle weakness and elevated creatine kinase occurred. The condition resolved with corticosteroid and cyclophosphamide treatment (75936). In another case report, an 82 year-old woman developed a blistering skin condition over a 2-year period while taking spirulina blue-green algae (A. platensis, dose unknown). She had partly hemorrhagic bullae, secreting erosions and macerations. These symptoms resolved when the supplement was stopped and the patient was treated with oral prednisone, topical silver sulfadiazine, and topical triamcinolone / neomycin (75921).
Gastrointestinal ...Orally, gastrointestinal complaints are amongst the most common adverse effects associated with spirulina blue-green algae, including nausea, vomiting, diarrhea, and abdominal cramps (19272,75924,91713,109969). Similarly, common adverse effects associated with the blue-green algae species Aphanizomenon flos-aquae are stomach upset, flatulence, diarrhea, and bloating (14842).
Hematologic ...Orally, three cases of mild gum bleeding and one case of mild bruising have been reported in patients taking spirulina blue-green algae (Cyactiv, Cerule LLC) 2. 3 grams daily (containing approximately 1 gram of phycocanin) for 2 weeks (97202).
Hepatic ...Orally, significant elevations of liver function tests within 2 weeks of starting a spirulina blue-green algae supplement (species and dose unknown) have been reported in a 52-year-old man stabilized on amlodipine, simvastatin, and acarbose. A biopsy showed feathery degeneration and ballooning of hepatic cells. Cholestasis was present, and an ex-vivo lymphocyte stimulation test for spirulina blue-green algae was positive. All drugs and the spirulina blue-green algae supplement were stopped, with return of the LFTs to normal (9172).
Immunologic
...Orally, urticarial rashes and pruritus have occurred as part of generalized allergic reactions to blue-green algae (91706,91711,91712).
In one case report, a 14-year-old male experienced anaphylaxis with urticaria, lip edema, and asthma 6 hours after taking five tablets of spirulina blue-green algae (A. platensis, strength unknown). He had a positive skin prick test. Oral challenge to an extract of the tablets, and IgE from his serum, reacted with the beta chain of C-phycocyanin from A. platensis (91712).
In another case report, a 17-year-old male with a history of multiple allergies developed rash, pruritus, angioedema, wheezing, and dyspnea within 10 minutes of taking spirulina blue-green algae (A. platensis) 300 mg. He had a positive skin test to A. platensis but no other ingredients of the tablets (91706).
Musculoskeletal ...Orally, after a 49-year-old woman stopped taking a spirulina blue-green algae supplement (species and dose unknown), the patient experienced inflammatory myopathy with muscle weakness and elevated creatine kinase. The condition resolved with corticosteroid and cyclophosphamide treatment (75936). Another case report describes acute rhabdomyolysis that occurred after consumption of spirulina (Arthrospira platensis, Hawaiian spirulina, Solgar Inc., Leonia, NJ) 3 grams daily for 1 month. The 24-year old man presented with weakness, myalgias, elevated creatine kinase and liver function tests, and myoglobinuria (75922).
General
...Orally, dandelion seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, heartburn, and stomach discomfort.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...In one report, a 39-year-old obese woman developed palpitations and syncope after taking a weight loss supplement containing a combination of dandelion, bladderwrack, and boldo for 3 weeks. The patient was found to have prolonged QT-interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether dandelion, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Dermatologic ...Topically, dandelion can cause contact dermatitis and erythema multiforme in sensitive individuals. Dandelion can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family (13478,13481,42893,46945,46977). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Endocrine ...In one report, a 56-year-old man with renal impairment developed hyperoxalaemia and peripheral gangrene after ingesting large amounts of dandelion tea (10 to 15 cups daily for 6 months). The adverse effect was attributed to the high oxalate content of dandelion tea (258 mcmol/L) and reduced renal oxalate clearance caused by renal impairment (90639). In another report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemic symptoms 2 weeks after beginning to eat salads containing dandelion (46960). The hypoglycemic effect was attributed to the potential alpha-glucosidase inhibitory activity of dandelion.
Gastrointestinal ...Gastrointestinal symptoms, including stomach discomfort, diarrhea, and heartburn, have been reported following oral use of dandelion (19146,36931). A case of intestinal blockage has been reported for a patient who ingested a large amount of dandelion greens three weeks after undergoing a stomach operation (46981). Also, a case of hemorrhagic cystitis has been reported for a 33-year-old woman who took a specific herbal product (Slim-Kombu, Balestra and Mech, Vicenza, Italy) containing 20 herbal extracts, including dandelion extract. Symptoms resolved after the patient discontinued using the product, and symptoms resumed when the patient began taking the supplement again four months later. While various ingredients in the supplement may have contributed to the symptoms, it is possible that dandelion extract may have contributed to the effect due to its diuretic, laxative, cholagogue, and antirheumatic properties (46959).
Other ...Orally, products containing dandelion pollen can cause allergic reactions, including anaphylaxis (13479,13480). Also, rhinoconjunctivitis and asthma have been reported after handling products such as bird feed containing dandelion and other herbs, with reported positive skin tests for dandelion hypersensitivity (46948). Dandelion pollen may cause pollinosis, such as allergic rhinitis and conjunctivitis (18065,46951,46964,46966,46972).
General ...There is very little clinical research on diatomaceous earth and no reliable information about tolerability and potential common side effects. There is some data suggesting an increased risk of lung cancer and non-malignant lung disease in people exposed to high crystalline silica in processed diatomaceous earth used industrially (26630,91493,91496,91498).
Dermatologic ...In one case report, diatomaceous earth was found in the skin of a woman diagnosed with a delusional infestation. Due to the delusional belief of a chronic cutaneous parasite infestation, the woman used diatomaceous earth topically as an insecticide. Examination revealed erosions and ulcerations on the skin on her trunk and extremities, but these were absent on hard to reach areas of the body. A biopsy of a papule revealed a crust of neutrophils and extravasated erythrocytes. The presence of diatomaceous earth was determined using microscopic magnification (91499).
Musculoskeletal ...In one case report. exposure to processed diatomaceous earth was associated with the development of systemic sclerosis (91494).
Pulmonary/Respiratory ...When mined or used for industrial purposes, diatomaceous earth appears to increase the risk of lung cancer and non-malignant respiratory disease such as chronic obstructive pulmonary disease (COPD), likely due to its constituent crystalline silica. However, compared to other forms of silica, the crystalline silica content of unprocessed diatomaceous earth, used topically or orally medicinally, is quite low and therefore this source does not appear to be as toxic as other sources of silica (26630,91493,91496,91498).
General
...When used orally, Fucus vesiculosus may be unsafe due to its iodine content.
Topically, Fucus vesiculosus appears to be well tolerated.
Most Common Adverse Effects:
Orally: Goiter, hyperthyroidism, hypothyroidism.
Serious Adverse Effects (Rare):
Orally: Thyroid cancer.
Cardiovascular ...In one report, a young adult with obesity developed palpitations and syncope after taking an oral weight loss supplement containing a combination of Fucus vesiculosus, dandelion, and boldo for 3 weeks. The patient was found to have a prolonged QT interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether Fucus vesiculosus, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Endocrine
...Orally, Fucus vesiculosus can cause or exacerbate hyperthyroidism due to its high iodine content (12789,13061,74217).
One case of hyperthyroidism has been reported for a 60-year-old patient taking lithium for bipolar disorder and a combination product containing Fucus vesiculosus 0.125 grams, cascara 0.170 grams, and Frangula 0.222 grams per tablet for laxative purposes. The patient had been taking one tablet of the combination laxative product daily for several years. Following discontinuation of the supplement, thyroid levels normalized (74217). Similar cases of hyperthyroidism have been reported for patients taking other seaweed-containing herbal supplements (Dream Shape; Ever Youth). Analyses of these supplements shows that these products contain triiodothyronine 1 mcg and thyroxine 3-4 mcg. In addition to seaweed, Dream Shape also contains hydrangea vine, maltose, chrysanthemum, Chinese matrimony vine, and sucrose, while Ever Youth contains radish, lotus leaf, chrysanthemum, hawthorn, senna tea, and Chinese matrimony vine (13061).
Orally, prolonged use of Fucus vesiculosus has been associated with hypothyroidism (13664). The iodine in Fucus vesiculosus can cause idiosyncratic reactions.
According to the Institute of Medicine Food and Nutrition Board, prolonged, high dietary intake of iodine is associated with goiter and an increased risk of thyroid cancer (7135).
Genitourinary ...A case of hemorrhagic cystitis characterized by dysuria and polyuria has been reported in a young adult who took a specific product (Slim-Kombu, Balestra and Mech) containing Fucus vesiculosus and 19 other herbal extracts orally for weight loss. Upon discontinuation, symptoms improved (46959). It is unclear if this effect was due to Fucus vesiculosus or other ingredients in the supplement.
Renal ...A case of hemorrhagic cystitis characterized by dysuria and polyuria has been reported in a young adult who took a specific product (Slim-Kombu, Balestra and Mech) containing Fucus vesiculosus and 19 other herbal extracts orally for weight loss. Upon discontinuation, symptoms improved (46959). It is unclear if this effect was due to Fucus vesiculosus or other ingredients in the supplement. Nephrotoxicity has been associated with oral intake of Fucus vesiculosus that was contaminated with arsenic (12800).
General
...Orally, parsley seems to be well tolerated when used low to moderate doses.
Large doses may be unsafe.
Serious Adverse Effects (Rare):
Orally, Hallucinations, hemolytic anemia, hypotension, hepatic impairment, kidney impairment, nephrotic syndrome, paralysis, and thrombocytopenia purpura when taken in very high doses (200 grams parsley oil or 10 grams or more of parsley's apiole or myristicin constituents).
Cardiovascular ...Parsley contains the potentially toxic constituent, myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with myristicin include hypotension and bradycardia (4).
Dermatologic
...Orally, parsley oil can cause contact photodermatitis with sun exposure (4).
Topically, parsley can cause contact photodermatitis (4).
Hematologic ...Parsley contains the potentially toxic constituent apiole, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with more than 10 grams of the constituent apiole include hemolytic anemia and thrombocytopenia purpura (4).
Hepatic ...Parsley contains the potentially toxic constituents, apiole and myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with more than 10 grams of the constituent apiole include hepatic dysfunction (4). Adverse effects specifically associated with the constituent myristicin include fatty degeneration of the liver (4).
Immunologic ...A case of anaphylaxis involving severe angioedema leading to unconsciousness has been reported in a woman who consumed parsley 45 minutes prior to symptoms. The patient responded to epinephrine, antihistamines, intravenous fluids, oxygen therapy, and 1 mg/kg methylprednisolone. The woman had consumed one cup of chopped parsley nearly every day for several years, but upon skin testing, the patient tested positive to parsley (92869). There is also a report of lip angioedema after consumption of raw parsley. The patient had anaphylaxis to raw arugula, and reported itchy red lesions after contact with the leaves of either raw parsley or arugula. The patient had positive skin prick tests to both plants. The reaction may have been due to oral allergy syndrome, as the patient could tolerate cooked arugula and parsley, but not raw (92870).
Ocular/Otic ...Parsley contains the potentially toxic constituent, myristicin, which can cause significant adverse effects at high doses (11). An adverse effect specifically associated with the constituent myristicin includes deafness (4).
Psychiatric ...Parsley contains the potentially toxic constituent, myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with the constituent myristicin include giddiness and hallucinations (4).
Renal ...Parsley contains the potentially toxic constituents, apiole and myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with more than 10 grams of the constituent apiole include nephrosis and kidney irritation (4). Adverse effects specifically associated with the constituent myristicin include fatty degeneration of the kidneys (4).
General
...Orally, rhubarb root and stalk are well tolerated when used in food amounts and seem to be well tolerated when used in medicinal amounts.
Rhubarb leaf contains oxalic acid and can be toxic. Topically, rhubarb seems to be well tolerated.
Most Common Adverse Effects:
Orally: Cramps, diarrhea, gastrointestinal discomfort, nausea, vomiting.
Topically: Rash.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Cardiovascular ...Orally, chronic use or abuse of rhubarb can cause arrhythmias (12).
Dermatologic ...Orally, rhubarb taken alone or in combination with other ingredients has been reported to cause rash (71315,71342). Topically, short term application of a specific product (Pyralvex) containing rhubarb, salicylic acid, and ethanol to the gums has been reported to cause slight burning and dark discoloration of the gums in approximately 1% of patients (71369). It is unclear if this effect is due to rhubarb, other ingredients, or the combination.
Endocrine ...Orally, chronic use or abuse of rhubarb can cause electrolyte loss (especially potassium), hyperaldosteronism, albuminuria, and edema (12).
Gastrointestinal
...Orally, rhubarb can cause cramp-like or spasmodic gastrointestinal discomfort, watery diarrhea, and uterine contractions (18).
Rhubarb, alone or in combination with other ingredients, has also been reported to cause bloating, nausea, diarrhea, vomiting, and stomach upset or pain in clinical studies. Diarrhea is more common with a starting dose of at least 3 grams of extract (71315,71329,71339,71340,71341,71342,71373,92300). Chronic use or abuse of rhubarb can cause inhibition of gastric motility and pseudomelanosis coli (pigment spots in the intestinal mucosa) (12,6138).
Although some research suggests that rhubarb and other anthranoid laxatives might increase the risk of colorectal cancer due to pseudomelanosis coli (30743), more recent research suggests that this condition is harmless, typically reversed with rhubarb discontinuation, and not associated with an increased risk for colorectal adenoma or carcinoma (6138).
Hematologic ...Orally, chronic use or abuse of rhubarb can cause hematuria (12).
Hepatic ...Orally, chronic use of anthraquinone-containing products, such as rhubarb, has been associated with hepatotoxicity (15257). Use of rhubarb specifically has been linked to at least 24 reports of liver injury, although details on the dose of rhubarb and duration of use in these cases are not clear (100963). In one clinical study, rhubarb, taken in combination with other ingredients, has been reported to cause mild to moderate elevations of serum alanine aminotransferase (71315).
Immunologic ...Orally, rhubarb has rarely been reported to cause anaphylaxis (18).
Musculoskeletal ...Orally, chronic use or abuse of rhubarb can cause accelerated bone deterioration and muscular weakness (12).
Renal ...Orally, chronic use or abuse of rhubarb can cause electrolyte loss (especially potassium), albuminuria, hematuria, dehydration, and nephropathies (12). There is one case report of renal failure in a patient who took a product containing rhubarb for six weeks. The patient presented with renal failure two days after starting diclofenac, which is known to have nephrotoxic effects. It is hypothesized that the combination of diclofenac with the anthraquinone constituents of rhubarb precipitated renal dysfunction (15257).
General
...Orally, sodium bicarbonate is generally well tolerated when used in over-the-counter antacid products.
However, it is possibly unsafe when used in excessive amounts. Intravenously, sodium bicarbonate is generally well tolerated when used appropriately with proper medical supervision. Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Metabolic alkalosis and stomach rupture.
Intravenously: Alkalotic tetany, hypernatremia, hypocalcemia, hypokalemia, and metabolic alkalosis.
Cardiovascular ...Orally, sodium bicarbonate has been reported to cause increased blood pressure (109689).
Gastrointestinal
...Orally, sodium bicarbonate may cause mild adverse effects including gastrointestinal disturbance such as bloating, nausea, vomiting, and abdominal pain (25706,106250).
The severity of these effects appears to increase with dose (104850). When taken in large amounts (300 mg/kg as a single dose, 4 ounces over a 24-hour time period, or 10-12 ounces over 5 days), sodium bicarbonate can cause diarrhea, nausea, vomiting, bloating, flatulence, and abdominal pain (29962,104853,104850). Gastrointestinal side effects during exercise can be reduced when single doses of 200-300 mg/kg are taken 3 hours before with a high-carbohydrate meal (106250). Taking enteric-coated or delayed-release formulations may also reduce the incidence and severity of mild gastrointestinal symptoms (104853,106250), but enteric-coated formulations may also reduce overall absorption of bicarbonate (104853).
Sodium bicarbonate antacids may cause serious gastrointestinal effects, including stomach rupture, if taken orally as a partially dissolved slurry rather than a solution, especially if taken when overly full from food or drink (25735,25736,29414,29415,29416,90913).
Hematologic
...In patients with normal kidney function, appropriate use of oral sodium bicarbonate may not cause significant alkalosis, although it may increase loss of sodium, chloride, potassium, and volume due to diuresis (25733).
However, excessive use or chronic oral intake of sodium bicarbonate may induce metabolic alkalosis characterized by levels of sodium bicarbonate ≥40 mEq/L, hypokalemia, hypochloremia, and hypernatremia (25733,29962,106255). When administered intravenously, the most common complication of sodium bicarbonate is hypokalemia (25709). Hypocalcemia or hypernatremia may also occur, although these effects are less common and typically associated with overaggressive therapy (25709,106255).
At least two cases of hypernatremia resulting from topical application of sodium bicarbonate (baking soda) have been reported (29962,90914).
Musculoskeletal ...Metabolic alkalosis induced by sodium bicarbonate has reportedly been associated with tetany that results from hypocalcemia; however, this condition is rare (25709).
Neurologic/CNS ...Orally, concomitant use of excessive sodium bicarbonate (intake of "tablespoons" of sodium bicarbonate daily or up to one box of baking soda weekly) has been associated with at least two cases of hypercalcemia-induced metabolic alkalosis, characterized by dizziness, headache, and loss of consciousness with shivering (25733). Rare symptoms include drowsiness, lethargy, seizures, and coma (106255). Sodium bicarbonate may also cause metabolic alkalosis and the associated symptoms when administered intravenously (13309). However, these effects are typically associated with therapy that is overaggressive.
Ocular/Otic ...At least three cases of otitis externa have been reported following the use of eardrops containing sodium bicarbonate (25696).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148,114899). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118,114898,114899), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430,114898,114899), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, turmeric has been associated with headache and vertigo (81163,114898).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).