Ingredients | Amount Per Serving |
---|---|
(Zn)
|
17 mg |
75 mg | |
1.5 Gram(s) | |
N-Acetyl-D-Glucosamine
|
1 Gram(s) |
1 Gram(s) | |
(Glycyrrhiza glabra )
(root)
(DGL)
|
400 mg |
(Aloe barbadensis )
(leaf)
|
300 mg |
(Ulmus pulmila )
(bark)
|
200 mg |
Mucin
|
200 mg |
(Althaea officinalis )
(root )
|
100 mg |
(Matricaria chamomilla )
(flower)
|
100 mg |
(Abelmoschus esculentus )
(fruit)
|
100 mg |
(Uncaria tomentosa )
(bark)
|
100 mg |
(MSM)
|
100 mg |
100 mg | |
100 mg |
Tapioca Dextrin, Natural Flavors, Stevia leaf extract powder PlantPart: leaf Genus: Stevia, Citric Acid, Cellulose Gum, Silicon Dioxide (Alt. Name: SiO2), Black Tea PlantPart: leaf Genus: Camellia Species: sinensis
Below is general information about the effectiveness of the known ingredients contained in the product GI Renew. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product GI Renew. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when aloe gel is used topically and appropriately. Aloe gel-containing formulations have been safely applied in clinical trials (101,11982,12096,12098,12159,12160,12163,12164,17418)(90123,90124,90127,90128,90129,90131,97320,98816,103305). When included in topical cosmetics, the Cosmetic Ingredient Review Expert Panel concluded that aloe-derived anthraquinone levels should not exceed 50 ppm (90122).
POSSIBLY SAFE ...when aloe gel is used orally and appropriately, short-term. Aloe gel has been safely used in a dose of 15 mL daily for up to 42 days or 100 mL of a 50% solution twice daily for up to 4 weeks (11984,12164). Also, a specific aloe gel complex (Aloe QDM complex, Univera Inc.) has been safely used at a dose of approximately 600 mg daily for up to 8 weeks (90121). ...when aloe extract is used orally and appropriately, short-term. Aloe extract has been used with apparent safety in a dose of 500 mg daily for one month (101579). Also, an aloe extract enriched in aloe sterols has been used with apparent safety in a dose of 500 mg daily for 12 weeks (101577).
POSSIBLY UNSAFE ...when aloe latex is used orally. There is some evidence that anthraquinones in aloe latex are carcinogenic or promote tumor growth, although data are conflicting (6138,16387,16388,91596,91597). In 2002, the US FDA banned the use of aloe latex in laxative products due to the lack of safety data (8229). ...when aloe whole-leaf extract is used orally. Aloe whole-leaf extract that has not been filtered over charcoal still contains anthraquinones. This type of aloe whole-leaf extract is referred to as being "nondecolorized". The International Agency for Research on Cancer has classified this type of aloe whole-leaf extract as a possible human carcinogen (91598,91908). Although filtering aloe whole-leaf extract over charcoal removes the anthraquinones, some animal research suggests that this filtered extract, which is referred to as being "decolorized", may still cause gene mutations (91598). This suggests that constituents besides anthraquinones may be responsible for the carcinogenicity of aloe whole-leaf extract. It should be noted that commercial products that contain aloe whole-leaf extract may be labeled as containing "whole leaf Aloe vera juice" or "aloe juice" (91908).
LIKELY UNSAFE ...when aloe latex is used orally in high doses. Ingesting aloe latex 1 gram daily for several days can cause nephritis, acute kidney failure, and death (8,8961).
CHILDREN: POSSIBLY SAFE
when aloe gel is used topically and appropriately.
Aloe gel-containing formulations have been safely applied in clinical trials (90124,90131).
CHILDREN: POSSIBLY UNSAFE
when aloe latex and aloe whole leaf extracts are used orally in children.
Children younger than 12 years may experience abdominal pain, cramps, and diarrhea (4).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Anthraquinones present in aloe latex and aloe whole leaf extracts have irritant, cathartic, and possible mutagenic effects (4,16387,16388,90122). There are also anecdotal reports and evidence from animal research that anthraquinones or aloe whole leaf extracts might induce abortion and stimulate menstruation; avoid using (4,8,19,90122).
LACTATION: POSSIBLY UNSAFE
when aloe preparations are used orally.
Cathartic and mutagenic anthraquinones present in aloe latex and aloe whole leaf extracts might pass into milk; avoid using (4,19).
LIKELY SAFE ...when the seed is used orally in the amounts commonly found in food (11). Ambrette has Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of ambrette when used orally or topically in medicinal amounts.
PREGNANCY:
Insufficient reliable information available; avoid using.
LACTATION: POSSIBLY UNSAFE
when used orally or topically.
Ambrette passes into mother's milk (6), but the effect is unknown.
POSSIBLY SAFE ...when used orally, short-term. A specific freeze-dried aqueous extract seems to be safe when used in doses of 100 mg daily for up to four weeks (7317). Another extract of cat's claw, free of tetracyclic oxindole alkaloids, seems to be safe when used in doses of 60 mg daily for up to 24 weeks (8661). There is insufficient reliable information available about the safety of cat's claw when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is concern that cat's claw might be unsafe based on its traditional use as a contraceptive (12); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. German chamomile has Generally Recognized as Safe (GRAS) status in the US (4912,110318).
POSSIBLY SAFE ...when used orally, for medicinal purposes, short-term. German chamomile has been used with apparent safety at doses of up to 1500 mg daily for up to 26 weeks (6655,12724,12729,13089,19377,19716,104806,111380). ...when applied topically. A lotion containing 0.2% microencapsulated German chamomile extract has been applied to the skin with apparent safety for up to 35 days (108993). ...when used topically as an oral rinse (99853).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Preliminary clinical research suggests that several multi-ingredient products containing German chamomile are safe in infants when used for up to 4 weeks (16735,19705,19715,96278). ...when used topically and appropriately, short-term. Six drops of oil infused with German chamomile flower has been applied nightly with apparent safety for up to 6 weeks in children 6-18 years old (98621).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Glutamine has been safely used in clinical research in doses up to 40 grams per day or 1 gram/kg daily (2334,2337,2338,2365,5029,5462,7233,7288,7293), (52288,52307,52308,52311,52313,52337,52349,52350,96516,97366). A specific glutamine product (Endari) is approved by the US Food and Drug Administration (FDA) (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 600 mg/kg daily in clinical trials (2363,2366,5448,5452,5453,5454,5458,7293,52272,52275), (52283,52289,52304,52306,52316,52341), (52359,52360,52371,52377,52381,52284,52385,52408,96637,96507,96516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Glutamine has been shown to be safe in clinical research when used in amounts that do not exceed 0.7 grams/kg daily in children 1-18 years old (11364,46657,52321,52323,52363,86095,96517). A specific glutamine product (Endari) is approved by the US Food and Drug Administration for certain patients 5 years of age and older (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 0.4 grams/kg daily in clinical research (52338,96508). There is insufficient reliable information available about the safety of glutamine when used in larger amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of glutamine when used in larger amounts as medicine during pregnancy or lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when marshmallow root and leaf are used in amounts commonly found in foods. Marshmallow root has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when marshmallow root and leaf are used orally in medicinal amounts (4,12). ...when used topically (4,62020). There is insufficient reliable information available about the safety of marshmallow flower.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
POSSIBLY SAFE ...when used orally and appropriately, short term. MSM in doses of 1.5-6 grams daily or 50 mg/kg daily has been used safely in studies lasting up to 6 months (8574,12469,14335,17127,19312,96446,96448,102555). One specific product (OptiMSM, Bergstrom Nutrition) is Generally Recognized As Safe (GRAS) by the United States Food and Drug Administration (FDA) (102555). ...when used topically. Topical cream containing MSM and silymarin, as well as topical gel containing MSM, hyaluronic acid, and tea tree oil, have been used with apparent safety for up to 20 days (19318,19319).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Pectin has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in amounts greater than those typically found in food. Pectin 4.8 grams three times daily has been used for up to one year without serious adverse effects (12547,15019,15020,92481,108525).
CHILDREN: POSSIBLY SAFE
when used orally in amounts greater than those found in food, short-term.
Pectin 4 grams/kg has been used daily for up to 7 days without reports of serious adverse effects (12575,19705).
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods.
Pectin has Generally Recognized as Safe (GRAS) status in the US (4912).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when used orally in medicinal amounts (12577).
LIKELY SAFE ...when used orally in the amounts typically found in food.
POSSIBLY SAFE ...when dried plums are used orally as a medicine. Dried plums have been used with apparent safety at doses of up to 100 grams daily for up to 12 months (95271,95272,95280,95281,95295,112402,112403). ...when plum juice or dried plum essence is used orally as a medicine. Plum juice has been consumed with apparent safety at a dose of up to 250 mL daily for up to 12 weeks and up to 90 grams daily for 24 weeks (95293,95294,112402). Dried plum essence has been consumed with apparent safety at a dose of up to 100 mL daily for up to 4 weeks (95274,112402).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those found in food.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Quercetin has been used with apparent safety in doses up to 1 gram daily for up to 12 weeks (481,1998,1999,16418,16429,16430,16431,96774,96775,96782)(99237,102539,102540,102541,104229,104679,106498,106499,107450,109620)(109621). ...when used intravenously and appropriately. Quercetin has been used with apparent safety in doses less than 945 mg/m2. Higher doses have been reported to cause nephrotoxicity (9564,16418). There is insufficient reliable information available about the safety of quercetin when used topically.
POSSIBLY UNSAFE ...when used intravenously in large amounts. Doses greater than 945 mg/m2 have been reported to cause nephrotoxicity (9564,16418).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately (4,12,272,512,1740).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Slippery elm bark has historically been inserted into the cervix to induce abortion. As a result, slippery elm has been reported in some sources to have abortifacient activity. However, there is no reliable information available about whether slippery elm has abortifacient activity when taken orally.
LIKELY SAFE ...when used orally and appropriately. Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 40 mg daily (7135). ...when used topically and appropriately (2688,6538,6539,7135,8623,11051,111291).
POSSIBLY SAFE ...when used orally and appropriately in doses higher than the tolerable upper intake level (UL). Because the UL of zinc is based on regular daily intake, short-term excursions above 40 mg daily are not likely to be harmful. In fact, there is some evidence that doses of elemental zinc as high as 80 mg daily in combination with copper 2 mg can be used safely for approximately 6 years without significant adverse effects (7303,8622,92212). However, there is some concern that doses higher than the UL of 40 mg daily might decrease copper absorption and result in anemia (7135).
POSSIBLY UNSAFE ...when used intranasally. Case reports and animal research suggest that intranasal zinc might cause permanent anosmia or loss of sense of smell (11155,11156,11703,11704,11705,11706,11707,16800,16801,17083). Several hundred reports of anosmia have been submitted to the US Food and Drug Administration (FDA) and the manufacturer of some intranasal zinc products (Zicam) (16800,16801). Advise patients not to use intranasal zinc products.
LIKELY UNSAFE ...when taken orally in excessive amounts. Ingestion of 10-30 grams of zinc sulfate can be lethal in adults (7135). Chronic intake of 450-1600 mg daily can cause multiple forms of anemia, copper deficiency, and myeloneuropathies (7135,17092,17093,112473). This has been reported with use of zinc-containing denture adhesives in amounts exceeding the labeled directions, such as several times a day for several years (17092,17093). Advise patients to follow the label directions on denture adhesives that contain zinc.
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL for children is based on age: 4 mg daily for 0-6 months, 5 mg daily for 7-12 months, 7 mg daily for 1-3 years, 12 mg daily for 4-8 years, 23 mg daily for 9-13 years, and 34 mg daily for 14-18 years (7135,97140).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Taking amounts greater than the UL can cause sideroblastic anemia and copper deficiency (7135). ...when used topically on damaged skin. An infant treated with 10% zinc oxide ointment for severe diaper rash with perianal erosions developed hyperzincemia. Absorption seemed to occur mainly via the erosions; plasma levels dropped after the erosions healed despite continued use of the ointment (106905).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during pregnancy in those 14-18 years of age and 40 mg daily in those 19-50 years of age (7135).
PREGNANCY: LIKELY UNSAFE
when used orally in doses exceeding the UL (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during lactation in those 14-18 years of age, and 40 mg daily for those 19-50 years of age (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses can cause zinc-induced copper deficiency in nursing infants (7135).
Below is general information about the interactions of the known ingredients contained in the product GI Renew. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, aloe gel might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
In vitro research shows that aloe gel can inhibit platelet aggregation. This inhibition was greater than that seen with celecoxib, but less than that seen with aspirin (105501).
|
Aloe might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, aloe might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that aloe extract induces CYP1A2 enzymes (111404).
|
Theoretically, aloe latex might increase the risk of adverse effects when taken with cardiac glycosides.
Overuse of aloe latex can increase the risk of adverse effects from cardiac glycoside drugs, such as digoxin, due to potassium depletion. Overuse of aloe, along with cardiac glycoside drugs, can increase the risk of toxicity (19).
|
Theoretically, aloe latex might increase the risk of hypokalemia when taken with diuretic drugs.
Overuse of aloe latex might compound diuretic-induced potassium loss, increasing the risk of hypokalemia (19).
|
Theoretically, aloe latex might increase the risk for fluid and electrolyte loss when taken with stimulant laxatives.
|
Theoretically, aloe latex might increase the risk of bleeding when taken with warfarin.
Aloe latex has stimulant laxative effects. In some people aloe latex can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Advise patients who take warfarin not to take excessive amounts of aloe vera.
|
Theoretically, concomitant use of ambrette with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, cat's claw may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking cat's claw with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, taking cat's claw with calcium channel blockers might increase the risk of hypotension.
|
Theoretically, cat's claw might increase or decrease the levels and effects of drugs metabolized by CYP3A4.
Cat's claw may affect the clearance of drugs metabolized by CYP3A4. In vitro research shows that cat's claw can inhibit CYP3A4 enzymes (6450,25522). In one case report, a patient taking cat's claw (at an unspecified dose) experienced increased serum levels of atazanavir, ritonavir, and saquinavir, all of which are CYP3A4 substrates. Levels returned to normal 15 days after discontinuation of the cat's claw supplement, suggesting inhibition of CYP3A4 by cat's claw (25522). In contrast, animal research suggests that rhynchophylline, an alkaloid contained in cat's claw, induces CYP3A expression and accelerates the metabolism of nirmatrelvir, the active component in the nirmatrelvir/ritonavir combination product(115308).
|
Theoretically, cat's claw might interfere with immunosuppressive therapy.
In human and laboratory research, cat's claw has been shown to have immunostimulating activity (7225,40208,40211,40212). It stimulates phagocytosis and increases respiratory cellular activity and the mobility of leukocytes. Theoretically, this could interfere with the activity of immunosuppressant medications.
|
Theoretically, cat's claw may decrease the levels of nirmatrelvir.
Cat's claw contains rhynchophylline. Animal research suggests that this alkaloid induces CYP3A expression, thereby accelerating the metabolism of nirmatrelvir, the active component in the nirmatrelvir/ritonavir combination product (115308). This interaction has not been reported in humans.
|
Theoretically, German chamomile might have additive effects when used with CNS depressants.
|
Theoretically, large amounts of German chamomile might reduce the effectiveness of oral contraceptives.
In vitro, German chamomile has demonstrated antiestrogenic activity (12728). Theoretically, concomitant use of large amounts of German chamomile might interfere with contraceptive drugs through competition for estrogen receptors.
|
Theoretically, German chamomile might inhibit CYP1A2 and increase levels of drugs metabolized by these enzymes.
|
Theoretically, German chamomile might inhibit CYP2C9 and increase levels of drugs metabolized by these enzymes.
In vitro evidence shows that German chamomile might inhibit CYP2C9 (19720). So far, this interaction has not been reported in humans. However, there might be an increase in the levels of drugs metabolized by CYP2C9 in patients taking German chamomile.
|
Theoretically, German chamomile might inhibit CYP2D6 and increase levels of drugs metabolized by these enzymes.
In vitro evidence shows that German chamomile might inhibit CYP2D6 (19720). So far, this interaction has not been reported in humans. However, there might be an increase in the levels of drugs metabolized by CYP2D6 in patients taking German chamomile.
|
Theoretically, German chamomile might inhibit CYP3A4 and increase levels of drugs metabolized by these enzymes.
|
Theoretically, large amounts of German chamomile might reduce the effectiveness of estrogens.
In vitro, German chamomile has demonstrated antiestrogenic activity (12728). Theoretically, large amounts of German chamomile might interfere with hormone replacement therapy through competition for estrogen receptors.
|
Theoretically, large amounts of German chamomile might interfere with the activity of tamoxifen.
In vitro, German chamomile has demonstrated antiestrogenic activity (12728).
|
German chamomile might increase the effects of warfarin and increase the risk of bleeding.
In one case, a 70-year-old female taking warfarin developed retroperitoneal hematoma and bilateral recti muscle bleeding along with an INR of 7.9 following ingestion of German chamomile tea 4-5 cups daily and use of a topical chamomile-based lotion applied 4-5 times daily (14309).
|
Theoretically, glutamine might antagonize the effects of anticonvulsant medications.
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
|
Theoretically, licorice might reduce the effects of cisplatin.
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that licorice induces CYP1A2 enzymes (111404).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
Theoretically, marshmallow flower might have antiplatelet effects.
Animal research suggests that marshmallow flower extract has antiplatelet effects (92846). However, the root and leaf of marshmallow, not the flower, are the plant parts most commonly found in dietary supplements. Theoretically, use of marshmallow flower with anticoagulant/antiplatelet drugs can have additive effects, and might increase the risk for bleeding in some patients.
|
Theoretically, due to potential diuretic effects, marshmallow might reduce excretion and increase levels of lithium.
Marshmallow is thought to have diuretic properties. To avoid lithium toxicity, the dose of lithium might need to be decreased when used with marshmallow.
|
Theoretically, mucilage in marshmallow might impair absorption of oral drugs.
|
Theoretically, pectin might reduce the absorption of digoxin, potentially decreasing its effectiveness.
A small clinical study shows that taking digoxin with a kaolin-pectin suspension reduces the absorption of digoxin by about 62% (2212). It is unclear if these effects are due to pectin, kaolin, or the combination.
|
Theoretically, pectin might reduce the absorption of lovastatin, potentially decreasing its effectiveness.
Case reports suggest that concomitant use of pectin and lovastatin might reduce the cholesterol-lowering effect of lovastatin, possibly due to reduced intestinal absorption of lovastatin (615).
|
Theoretically, pectin might reduce the absorption of tetracycline antibiotics, potentially decreasing their effectiveness.
A small clinical study shows that taking tetracycline with bismuth subsalicylate in a kaolin-pectin suspension reduces the absorption of tetracycline by about 34% (2213). It is unclear if these effects are due to pectin, kaolin, bismuth subsalicylate, or the combination.
|
Theoretically, plum juice might have antiplatelet effects.
|
Theoretically, concomitant use of quercetin and antidiabetes drugs might increase the risk of hypoglycemia.
Clinical research suggests that a combination of quercetin, myricetin, and chlorogenic acid reduce levels of fasting glucose in patients with type 2 diabetes, including those already taking antidiabetes agents (96779). The effect of quercetin alone is unknown. |
Theoretically, taking quercetin with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, concomitant use might increase the levels and adverse effects of cyclosporine.
A small study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine, possibly due to inhibition of p-glycoprotein or cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporin (16434). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C8 substrates.
|
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C9 substrates.
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac, a CYP2C9 substrate, increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5% (97931). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar), a substrate of CYP2C9 (100968). Furthermore, laboratory research shows that quercetin inhibits CYP2C9 (15549,16433). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2D6 substrates.
|
Theoretically, concomitant use might alter the effects and adverse effects of CYP3A4 substrates.
A small clinical study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine (Neoral, Sandimmune), a substrate of CYP3A4 (16434). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) and quetiapine (Seroquel), substrates of CYP3A4 (100968,104228). Other laboratory research also shows that quercetin inhibits CYP3A4 (15549,16433,16435). However, one clinical study shows that quercetin can increase the metabolism of midazolam, a substrate of CYP3A4, and decrease serum concentrations of midazolam by about 24% in some healthy individuals, suggesting possible induction of CYP3A4 (91573).
|
Theoretically, concomitant use might increase the levels and adverse effects of diclofenac.
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5%. This is thought to be due to inhibition of CYP2C9 by quercetin (97931). |
Theoretically, concomitant use might increase the effects and adverse effects of losartan and decrease the effects of its active metabolite.
Animal research shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) while decreasing plasma levels of losartan's active metabolite. This metabolite, which is around 10-fold more potent than losartan, is the result of cytochrome P450 (CYP) 2C9- and CYP3A4-mediated transformation of losartan. Additionally, in vitro research shows that quercetin may inhibit P-glycoprotein-mediated efflux of losartan from the intestines, resulting in increased absorption of losartan (100968). These results suggest that concomitant use of quercetin and losartan might increase systemic exposure to losartan while also decreasing plasma concentrations of losartan's active and more potent metabolite. |
Theoretically, concomitant use might decrease the levels and effects of midazolam.
A small clinical study in healthy volunteers shows that quercetin can increase the metabolism of midazolam, with a decrease in AUC of about 24% (91573). |
Theoretically, quercetin might increase the effects and adverse effects of mitoxantrone.
In vitro research shows that quercetin increases the intracellular accumulation and cytotoxicity of mitoxantrone, possibly through inhibition of breast cancer resistance protein (BCRP), of which mitoxantrone is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of OAT1 substrates.
In vitro research shows that quercetin is a strong non-competitive inhibitor of OAT1, with half-maximal inhibitory concentration (IC50) values less than 10 mcM (104454). So far, this interaction has not been reported in humans. |
Theoretically, concomitant use might increase the effects and adverse effects of OAT3 substrates.
|
Theoretically, concomitant use might increase the effects and adverse effects of OATP substrates.
In vitro evidence shows that quercetin can inhibit organic anion-transporting peptide (OATP) 1B1-mediated uptake of estrone-3-sulfate and pravastatin (91581). Furthermore, clinical research in healthy males shows that intake of quercetin along with pravastatin increases the AUC of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581). |
Theoretically, concomitant use might alter the effects and adverse effects of P-glycoprotein substrates.
There is preliminary evidence that quercetin inhibits the gastrointestinal P-glycoprotein efflux pump, which might increase the bioavailability and serum levels of drugs transported by the pump (16433,16434,16435,100968,104228). A small study in healthy volunteers reported that pretreatment with quercetin increased bioavailability and plasma levels after a single dose of cyclosporine (Neoral, Sandimmune) (16434). Also, two small studies have shown that quercetin might decrease the absorption of talinolol, a substrate transported by the gastrointestinal P-glycoprotein efflux pump (91579,91580). However, in another small study, several days of quercetin treatment did not significantly affect the pharmacokinetics of saquinavir (Invirase) (16433). The reason for these discrepancies is not entirely clear (91580). Until more is known, use quercetin cautiously in combination with P-glycoprotein substrates. |
Theoretically, concomitant use might increase the effects and adverse effects of pravastatin.
In vitro evidence shows that quercetin can inhibit OATP 1B1-mediated uptake of pravastatin (91581). Also, preliminary clinical research in healthy males shows that intake of quercetin along with pravastatin increases the maximum concentration of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581).
|
Theoretically, quercetin might increase the effects and adverse effects of prazosin.
In vitro research shows that quercetin inhibits the transcellular efflux of prazosin, possibly through inhibition of breast cancer resistance protein (BCRP), of which prazosin is a substrate. BCRP is an ATP-binding cassette efflux transporter in the intestines, kidneys, and liver (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of quetiapine.
Animal research shows that pretreatment with quercetin can increase plasma levels of quetiapine and prolong its clearance, possibly due to inhibition of cytochrome P450 3A4 (CYP3A4) by quercetin. Additionally, the brain-to-plasma ratio of quetiapine concentrations increased, possibly due to inhibition of P-glycoprotein at the blood-brain barrier (104228). This interaction has not been reported in humans.
|
Theoretically, concomitant use might inhibit the effects of quinolone antibiotics.
In vitro, quercetin binds to the DNA gyrase site on bacteria (481), which may interfere with the activity of quinolone antibiotics.
|
Theoretically, quercetin might increase the effects and adverse effects of sulfasalazine.
Animal research shows that quercetin increases the maximum serum concentration (Cmax) and area under the curve (AUC) of sulfasalazine, possibly through inhibition of breast cancer resistance protein (BCRP), of which sulfasalazine is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, quercetin may increase the risk of bleeding if used with warfarin.
Animal and in vitro studies show that quercetin might increase serum levels of warfarin (17213,109619). Quercetin and warfarin have the same human serum albumin (HSA) binding site, and in vitro research shows that quercetin has stronger affinity for the HSA binding site and can theoretically displace warfarin, causing higher serum levels of warfarin (17213). Animal research shows that taking quercetin for 2 weeks before initiating warfarin increases the maximum serum level of warfarin by 30%, the half-life by 10%, and the overall exposure by 63% when compared with control. Concomitant administration of quercetin and warfarin, without quercetin pre-treatment, also increased these measures, but to a lesser degree. Researchers theorize that inhibition of CYP3A4 by quercetin may explain these effects (109619). So far, this interaction has not been reported in humans.
|
Theoretically, slippery elm may slow the absorption and reduce serum levels of oral drugs.
Slippery elm inner bark contains mucilage, which may interfere with the absorption of orally administered drugs (19).
|
Amiloride can modestly reduce zinc excretion and increase zinc levels.
Clinical research shows that amiloride can reduce urinary zinc excretion, especially at doses of 10 mg per day or more. This zinc-sparing effect can help to counteract zinc losses caused by thiazide diuretics, but it is unlikely to cause zinc toxicity at usual amiloride doses (830,11626,11627,11634). The other potassium-sparing diuretics, spironolactone (Aldactone) and triamterene (Dyrenium), do not seem to have a zinc-sparing effect.
|
Zinc modestly reduces levels of atazanavir, although this effect does not seem to be clinically significant.
Clinical research shows that zinc might decrease serum atazanavir levels by chelating with atazanavir in the gut and preventing its absorption (93578). Although a single dose of zinc sulfate (Solvazinc tablets) 125 mg orally does not affect atazanavir concentrations in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate 125 mg daily for 2 weeks reduces plasma levels of atazanavir by about 22% in these patients. However, despite this decrease, atazanavir levels still remain at high enough concentrations for the prevention of HIV virus replication (90216).
|
Zinc might decrease cephalexin levels by chelating with cephalexin in the gut and preventing its absorption.
A pharmacokinetic study shows that zinc sulfate 250 mg taken concomitantly with cephalexin 500 mg decreases peak levels of cephalexin by 31% and reduces the exposure to cephalexin by 27%. Also, taking zinc sulfate 3 hours before cephalexin decreases peak levels of cephalexin by 11% and reduces the exposure to cephalexin by 18%. By decreasing cephalexin levels, zinc might increase the risk of treatment failure. This effect does not occur when zinc is taken 3 hours after the cephalexin dose (94163). To avoid an interaction, advise patients take zinc sulfate 3 hours after taking cephalexin.
|
Theoretically, zinc might interfere with the therapeutic effects of cisplatin.
Animal research suggests that zinc stimulates tumor cell production of the protein metallothionein, which binds and inactivates cisplatin (11624,11625). It is not known whether zinc supplements or high dietary zinc intake can cause clinically significant interference with cisplatin therapy. Cisplatin might also increase zinc excretion.
|
Theoretically, taking zinc along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
|
Zinc might reduce the levels and clinical effects of penicillamine.
By forming an insoluble complex with penicillamine, zinc interferes with penicillamine absorption and activity. Zinc supplements reduce the efficacy of low-dose penicillamine (0.5-1 gram/day), but do not seem to affect higher doses (1-2.75 gram/day), provided dosing times are separated (2678,4534,11605). Advise patients to take zinc and penicillamine at least 2 hours apart.
|
Zinc can decrease the levels and clinical effects of quinolones antibiotics.
|
Zinc modestly reduces levels of ritonavir.
Clinical research shows that zinc might reduce serum ritonavir levels by chelating with ritonavir in the gut and preventing its absorption (93578). In patients with HIV, ritonavir is taken with atazanavir to prevent the metabolism and increase the effects of atazanavir. A pharmacokinetic study shows that, in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate (Solvazinc tablets) 125 mg as a single dose or as multiple daily doses for 2 weeks reduces plasma levels of ritonavir by about 16% (90216). However, atazanavir levels still remains high enough to prevent HIV virus replication. Therefore, the decrease in ritonavir levels is not likely to be clinically significant.
|
Zinc might reduce levels of tetracycline antibiotics.
Tetracyclines form complexes with zinc in the gastrointestinal tract, which can reduce absorption of both the tetracycline and zinc when taken at the same time (3046,4945). Taking zinc sulfate 200 mg with tetracycline reduces absorption of the antibiotic by 30% to 40% (11615). Demeclocycline and minocycline cause a similar interaction (4945). However, doxycycline does not seem to interact significantly with zinc (11615). Advise patients to take tetracyclines at least 2 hours before, or 4-6 hours after, zinc supplements to avoid any interactions.
|
Below is general information about the adverse effects of the known ingredients contained in the product GI Renew. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and topically, aloe products are generally well tolerated when used in typical doses.
However, oral aloe latex is associated with a greater risk of adverse effects, especially when used in high doses or long-term.
Most Common Adverse Effects:
Orally: Aloe latex may cause abdominal pain, cramps, and diarrhea.
Topically: Burning, erythema, and itching. Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Aloe latex is associated with serious adverse effects when taken in high doses or long-term. Cases of acute hepatitis due to a hypersensitivity reaction to aloe leaf extract has been reported.
Dermatologic ...Topically, aloe gel has occasionally been associated with burning (12164,19741,30697,30706), itching (12164,19741,30697), eczema (90122), erythema (19748,30706,90123), contact dermatitis (12163,12164,30695,30736,30737,30738,30740), popular eruption (30732), and urticaria (30712). Also, a case of generalized nummular and popular dermatitis attributed to hypersensitivity has been reported for a 47-year-old male who used aloe leaf gel, both topically and orally, for 4 years (30740).
Endocrine ...A case of severe hypokalemia has been reported for a male breast cancer patient who was undergoing chemotherapy and using aloe vera 1 liter daily orally for 2 weeks. The hypokalemia was attributed to the cathartic effects of aloe and resolved once aloe use was discontinued (30704).
Gastrointestinal
...Orally, aloe latex can cause abdominal pain and cramps.
Long-term use or abuse of aloe latex can cause diarrhea, sometimes with hypokalemia, albuminuria, hematuria, muscle weakness, weight loss, arrhythmia, and pseudomelanosis coli (pigment spots in intestinal mucosa). Pseudomelanosis coli is believed to be harmless, and usually reverses with discontinuation of aloe. It is not directly associated with an increased risk of developing colorectal adenoma or carcinoma (6138). Orally, aloe gel may cause nausea, stomach cramps, and other gastrointestinal complaints in some patients (104174,111921,111663).
Topically, applying aloe gel in the mouth may cause nausea within 5 minutes of application in some patients (90124).
Hematologic ...A case of Henoch-Schonlein purpura, characterized by abdominal pain, purpura, and severe arthralgia, has been reported in a 52-year-old male who drank aloe juice prepared from four to five leaflets for 10 days prior to symptom development (91598).
Hepatic ...Cases of acute hepatitis have been reported after ingestion of aloe leaf extracts for between 3 weeks and 5 years. This is thought to be a hypersensitivity reaction (15567,15569,16386,17419,90126,91598). A case of acute hepatitis has also been reported for a 45-year-old female who drank two ounces of Euforia juice (Nuverus International), a product containing green tea, noni, goji, and aloe, daily for one month (90125). However, one small clinical trial in healthy individuals shows that taking aloe gel 2 ounces twice daily for 60 days does not impair liver function (104174).
Renal ...Orally, aloe latex can cause hemorrhagic gastritis, nephritis, and acute kidney failure following prolonged use of high doses (1 gram daily or more) (8961).
General
...Orally, cat's claw seems to be well tolerated.
Topically, no adverse effects have been reported; however, a thorough safety evaluation has not been conducted.
Serious Adverse Effects (Rare):
Orally: Kidney injury.
Dermatologic ...Orally, itchy skin lesions occurred rarely in one clinical study. As the patients in this study had solid tumors with no further therapeutic options, it cannot be determined if any adverse effects were due to the course of disease or to cat's claw. No placebo was used in the study (92502).
Gastrointestinal ...Orally, cat's claw has been reported to cause nausea, vomiting, abdominal pain, abdominal distention, constipation, epigastric pain, and diarrhea in 2% to 10% of individuals in one clinical study. As the patients in this study had solid tumors with no further therapeutic options, it cannot be determined if any adverse effects were due to the course of disease or to cat's claw. No placebo was used in the study (92502).
Hematologic ...In one clinical study of oral cat's claw, anemia occurred in 12% of patients and leukopenia and thrombocytopenia each occurred in 2% of patients. As the patients in this study had solid tumors with no further therapeutic options, it cannot be determined if any adverse effects were due to the course of disease or to cat's claw. No placebo was used in the study (92502).
Neurologic/CNS ...In one clinical study of oral cat's claw, headache occurred in 2% of patients, fatigue and insomnia each occurred in 4% of patients, and neuropathy occurred in 8% of patients. As the patients in this study had solid tumors with no further therapeutic options, it cannot be determined if any adverse effects were due to the course of disease or to cat's claw. No placebo was used in the study (92502).
Renal
...Several case reports link cat's claw to kidney injury.
A patient with systemic lupus erythematosus developed acute kidney failure after taking cat's claw, which improved upon its discontinuation (40279). Another patient with a history of cancer who consumed keto-diet shakes containing cat's claw developed biopsy-confirmed acute interstitial nephritis requiring treatment with prednisone. The patient's serum creatinine normalized three months later after stopping the shake (111737). A separate case cited nephrolithiasis linked to a product containing cat's claw (Digestive Advantage and FlexProtex), likely due to its excipient silica dioxide. The patient's symptoms were reduced after discontinuation (40244).
A clinical study also reported a mild serum creatinine increase in 6% of patients taking oral cat's claw, but causality remains unclear due to the advanced disease states of the participants. No placebo was used in the study (92502).
General
...Orally and topically, German chamomile is well tolerated.
Most Common Adverse Effects:
Orally and topically: Allergic reactions and irritation.
Dermatologic ...Topically, German chamomile may cause allergic dermatitis and eczema (9766,9768,10377,110318).
Gastrointestinal ...When used topically as an oral rinse, German chamomile has been reported to cause nausea and burning in the mouth in some patients (99853).
Immunologic ...Orally, German chamomile tea can cause allergic reactions including severe hypersensitivity reactions and anaphylaxis in some patients (567). In one case report, a 47-year-old female who tolerated drinking chamomile tea, reported sneezing, nasal and ocular itching, red and watery eyes, and severe rhinorrhea after 10 years of occupational exposure to German chamomile dust (90542).
Ocular/Otic ...If used near the eyes, German chamomile can cause irritation (10377).
General
...Orally and intravenously, glutamine is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, constipation, cough, diarrhea, flatulence, gastrointestinal pain, headache, musculoskeletal pain, nausea, and vomiting.
Endocrine ...One case of hot flashes has been reported in a patient taking glutamine 5-15 grams orally twice daily for up to 1 year (96520).
Gastrointestinal ...Orally, glutamine has been associated with belching, bloating, constipation, flatulence, nausea, vomiting, diarrhea, and gastrointestinal (GI) pain. Nausea, vomiting, constipation, diarrhea, and GI pain have been reported in clinical trials using high-dose glutamine 10-30 grams (0.3 grams/kg) in two divided doses daily to treat sickle cell disease (99414). One case of dyspepsia and one case of abdominal pain have been reported in patients taking glutamine 5-15 grams twice daily orally for up to 1 year (96520). In a small trial of healthy males, taking a single dose of about 60 grams (0.9 grams/kg of fat free body mass [FFM]) was associated with a 50% to 79% incidence of GI discomfort, nausea, and belching, compared with a 7% to 28% incidence with a lower dose of about 20 grams (0.3 gram/kg FFM). Flatulence, bloating, lower GI pain, and urge to regurgitate occurred at similar rates regardless of dose, and there were no cases of heartburn, vomiting, or diarrhea/constipation (105013). It is possible that certain GI side effects occur only after multiple doses of glutamine.
Musculoskeletal ...Orally, glutamine 30 grams daily has been associated with cases of musculoskeletal pain and non-cardiac chest pain in clinical trials for patients with sickle cell disease (99414).
Neurologic/CNS ...Orally, glutamine has been associated with dizziness and headache. A single case of dizziness has been reported in a patient treated with oral glutamine 0.5 grams/kg. However, the symptom resolved after reducing the dose to 0.25 grams/kg (91356). Mania and hypomania have been reported in 2 patients with bipolar disorder taking commercially purchased glutamine up to 4 grams daily (7291). Glutamine is metabolized to glutamate and ammonia, both of which might have neurological effects in people with neurological and psychiatric diseases or in people predisposed to hepatic encephalopathy (7293).
Oncologic ...There is some concern that glutamine might be used by rapidly growing tumors and possibly stimulate tumor growth. Although tumors may utilize glutamine and other amino acids, preliminary research shows that glutamine supplementation does not increase tumor growth (5469,7233,7738). In fact, there is preliminary evidence that glutamine might actually reduce tumor growth (5469).
Other ...Orally, glutamine has been associated with cough when a powdered formulation is used. It is unclear if this was due to accidental inhalation. One case of a burning sensation and one case of hypersplenism has been reported in a patient taking glutamine 5-15 grams twice daily orally for up to 1 year (96520).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General ...Orally and topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, MSM is generally well tolerated.
Most Common Adverse Effects:
Orally: Bloating, diarrhea, gastrointestinal discomfort, nausea.
Dermatologic ...In rare cases, MSM has caused pruritus when taken orally (8574).
Gastrointestinal ...Orally, MSM may cause mild gastrointestinal discomfort, nausea, bloating, and diarrhea (8574,12469).
Immunologic ...Orally, MSM may increase allergy symptoms (8574).
Neurologic/CNS ...Orally, MSM may cause headache, fatigue, insomnia, and difficulty concentrating (8574,14335).
Ocular/Otic ...In a case report, a 35-year-old female presented with bilateral acute angle closure glaucoma, which resolved 4 days after discontinuing a multi-ingredient product. Although the product contained over 35 vitamins, minerals, and other ingredients, only MSM contained sulfur, which the authors suggest acted like a sulfa-drug to cause acute angle closure glaucoma (90613).
General
...Orally, pectin seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, gas, loose stools, and mild cramps.
Serious Adverse Effects (Rare):
All routes of administration: Allergic reactions, including anaphylaxis, in sensitive individuals.
Gastrointestinal ...Orally, pectin alone or in combination with guar gum and insoluble fiber can cause gastrointestinal adverse effects such as mild cramps, diarrhea, gas, and loose stools (12547,15020,92473).
Immunologic ...Orally and topically, pectin may cause allergic reactions in sensitive individuals. In one case, a 7-year-old boy with a history of oral allergy syndrome after consuming a pectin-containing beverage experienced anaphylaxis after taking a citrus bath containing pectin. Allergy testing confirmed sensitivity to pectin (106928).
Pulmonary/Respiratory ...The occupational inhalation of pectin dust can cause asthma (580,581,582,583,584).
General
...Orally, plum seems to be well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal effects, including flatulence and diarrhea.
Serious Adverse Effects (Rare):
Orally: Allergic reactions. Consumption of dried plums or plum pits has been reported to cause bowel obstruction and esophageal perforation.
Gastrointestinal
...Orally, plum has been reported to cause gastrointestinal issues (95272,95276,95285), including flatulence (95293) and diarrhea (95300).
In one case report, small bowel obstruction with impaction in the terminal ileum occurred in a 10-month old infant who consumed a dried plum. This was likely due to the infant being unable to properly chew the plum (95296).
Consumption of plum pits has also caused serious gastrointestinal adverse effects. Ileal obstruction occurred in a 71-year-old female who swallowed a plum pit (101250). In a young male, ileostomy obstruction due to plum pits has occurred (95298). Swallowing a plum pit has also caused an esophageal perforation in a 75-year-old male (95285).
Immunologic ...Orally, plum has been reported to cause allergic reaction in sensitive individuals (95286,95297).
General ...Orally and intravenously, quercetin seems to be well tolerated in appropriate doses. Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Gastrointestinal ...Intravenous administration of quercetin is associated with nausea and vomiting (9564).
Neurologic/CNS ...Orally, quercetin may cause headache and tingling of the extremities (481,111500). Intravenously, quercetin may cause pain at the injection site. Injection pain can be minimized by premedicating patients with 10 mg of morphine and administering amounts greater than 945 mg/m2 over 5 minutes (9564). In addition, intravenous administration of quercetin is associated with flushing and sweating (9564).
Pulmonary/Respiratory ...Intravenous administration of quercetin at doses as high as 2000 mg/m2 is associated with dyspnea that may persist for up to 5 minutes (9564).
Renal ...Intravenously, nephrotoxicity has been reported with quercetin in amounts greater than 945 mg/m2 (9563,9564,70304).
General ...Orally, slippery elm seems to be well tolerated. A thorough evaluation of safety outcomes with topical use of slippery elm has not been conducted.
Dermatologic ...Topically, slippery elm extracts can cause contact dermatitis. The pollen is an allergen (6). Contact dermatitis and urticaria have been reported after exposure to slippery elm or an oleoresin contained in the slippery elm bark (75131).
General
...Orally, zinc is well tolerated in doses below the tolerable upper intake level (UL), which is 40 mg daily for adults.
Topically, zinc is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, metallic taste, nausea and vomiting (dose-related).
Topically: Burning, discoloration, itching, stinging, and tingling when applied to irritated tissue.
Intranasally: Bad taste, dry mouth, headache, irritation, reduced sense of smell.
Serious Adverse Effects (Rare):
Orally: There have been cases of acute renal tubular necrosis, interstitial nephritis, neurological complications, severe vomiting, and sideroblastic anemia after zinc overdose.
Intranasally: There have been cases where intranasal zinc caused permanent loss of smell (anosmia).
Dermatologic
...Topically, zinc can cause burning, stinging, itching, and tingling when applied to inflamed tissue (6911,8623,87297).
Zinc oxide can be deposited in the submucosal tissue and cause dark discoloration of the skin. This can occur with prolonged topical application to intact skin, application to eroded or ulcerated skin, or penetrating traumatic exposure, and also parenteral administration (8618).
In rare cases, oral zinc has resulted in worsened acne (104056), skin sensitivity (6592), a leishmanial reaction with a macular rash that occurred on exposed parts of the body (86935), eczema (104055), systemic contact dermatitis (109457), and the development of severe seborrheic dermatitis (86946).
Gastrointestinal
...Orally, zinc can cause nausea (338,2663,2681,6592,6700,18216,106230,106233,106227,113661), vomiting (2663,2681,6519,6592,96069,96074), a metallic or objectionable taste in the mouth (336,338,6700,11350,18216,106902,113661), abdominal cramping (6592,96069), indigestion (87227), heartburn (96069), dry mouth (87533), and mouth irritation (336,2619).
When used orally in amounts above the tolerable upper intake level, zinc may cause irritation and corrosion of the gastrointestinal tract (331,86982,87315,106902), watery diarrhea (1352), epigastric pain (2663,2681), and severe vomiting (2663,2681).
Intranasally, zinc can cause bad taste, dry mouth, and burning and irritation of the throat (8628,8629).
When used topically as a mouth rinse, zinc may cause tooth staining (90206).
Hematologic ...There is concern that high daily doses of zinc, above the tolerable upper intake level (UL) of 40 mg per day, might increase the risk of copper deficiency, potentially leading to anemia and leukopenia (7135,112473). To prevent copper deficiency, some clinicians give a small dose of copper when zinc is used in high doses, long-term (7303).
Hepatic ...There are two cases of liver deterioration in patients with Wilson disease following initiation of treatment with zinc 50-200 mg three times daily. The mechanism of action is not understood, and the event is extremely uncommon (86927,87470).
Immunologic ...Daily doses of 300 mg of supplemental zinc for 6 weeks appear to impair immune response (7135). A case of erythematosus-like syndrome, including symptoms such as fever, leg ulcers, and rash, has been reported following intake of effervescent tablets (Solvezink) containing zinc 45 mg (87506). In another case, severe neutropenia was reported after taking supplemental zinc 900 mg daily for an unknown duration (112473).
Musculoskeletal ...Orally, zinc may cause body aches in children (113661).
Neurologic/CNS
...Zinc-containing denture adhesives can cause toxicity if used more frequently than recommended for several years.
Case reports describe hyperzincemia, low copper levels, blood dyscrasias, and neurological problems, including sensory disturbances, numbness, tingling, limb weakness, and difficulty walking in patients applying denture adhesive multiple times daily for several years (17092,17093,90205,90233). Due to reports of zinc toxicity associated with use of excessive amounts of zinc-containing denture adhesives for several years, GlaxoSmithKline has reformulated Polygrip products to remove their zinc content (17092,17093).
Intranasally (8628) and orally (87534), zinc can cause headache. When used orally in amounts above the tolerable upper intake level (UL), zinc may cause central nervous system (CNS) symptoms including lethargy, fatigue, neuropathy, dizziness, and paresthesia (2663,2681,87369,87470,87533,87534,112473).
Oncologic ...There is concern that zinc might worsen prostate disease. For example, some preliminary evidence suggests that higher dietary zinc intake increases the risk for benign prostatic hyperplasia (6908). Epidemiological evidence suggests that taking more than 100 mg of supplemental zinc daily or taking supplemental zinc for 10 or more years doubles the risk of developing prostate cancer (10306). Another large-scale population study also suggests that men who take a multivitamin more than 7 times per week and who also take a separate zinc supplement have a significantly increased risk of prostate cancer-related mortality (15607). However, a large analysis of population research suggests that there is no association between zinc intake and the risk of prostate cancer (96075).
Pulmonary/Respiratory
...There are several hundred reports of complete loss of sense of smell (anosmia) that may be permanent with use of zinc gluconate nasal gel, such as Zicam (11306,11155,11707,16800,16801,17083,86999,87535).
Loss of sense of smell is thought to be dose related but has also been reported following a single application (11306,11155,11707,16800). Patients often report having sniffed deeply when applying the gel, then experiencing an immediate burning sensation, and noticing anosmia within 48 hours (17083). On June 16, 2009, the US Food and Drug Administration (FDA) advised patients not to use a specific line of commercial zinc nasal products (Zicam) after receiving 130 reports of loss of smell (16800). The manufacturer of these products had also received several hundred reports of loss of smell related to its intranasal zinc products (16801). Zinc sulfate nasal spray was used unsuccessfully for polio prophylaxis before the polio vaccine was developed. It caused loss of smell and/or taste, which was sometimes permanent (11713). Animal studies suggest that zinc sulfate negatively affects smell, possibly by damaging the olfactory epithelium and neurons (11156,11703,11704,11705,11706). Zinc gluconate nasal spray has not been tested for safety in animals or humans. The clinical studies of intranasal zinc have not described anosmia as an adverse effect, but testing was not done to see if zinc use adversely affected sense of smell (6471,8628,8629,10247). Also, these clinical studies reported tingling or burning sensation in the nostril, dry nose, nose pain, and nosebleeds.
When used in amounts above the tolerable upper intake level (UL), zinc may cause flu-like symptoms including coughing (2663).
Renal ...In overdose, zinc can cause acute renal tubular necrosis and interstitial nephritis (331,1352,87338).
Other ...Occupational inhalation of zinc oxide fumes can cause metal fume fever with symptoms including fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, and salivation (331).