Ingredients | Amount Per Serving |
---|---|
Calories
|
2 Calorie(s) |
(Cu)
|
2 mg |
Proprietary Blend
|
302 mg |
(liver)
|
|
(root)
|
|
(whole root)
|
|
Honey, Copper liver Chelate, Cellulose, Calcium Stearate
Below is general information about the effectiveness of the known ingredients contained in the product Copper Liver Chelate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Copper Liver Chelate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Carrot has been used safely in doses of approximately 100 grams three times daily for up to 4 weeks (96308). There is insufficient reliable information available about the safety of carrot when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
CHILDREN: POSSIBLY UNSAFE
when carrot juices are used excessively in nursing bottles for small children.
Excessive use of carrot juice may cause carotenemia and dental caries (25817).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
There is insufficient reliable information available about the safety of carrot when used in medicinal amounts during pregnancy and lactation.
LIKELY SAFE ...when used orally and appropriately. Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 10 mg daily (7135).
POSSIBLY SAFE ...when copper oxide is used topically. A wound dressing impregnated with copper oxide in concentrations of 3% by weight has been used with apparent safety in one clinical trial (105363).
POSSIBLY UNSAFE ...when used orally in doses exceeding the UL of 10 mg daily. Higher intake can cause liver damage (7135,45865). Kidney failure and death can occur with ingestion of as little as 1 gram of copper sulfate (17).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1 mg daily for 1-3 years of age, 3 mg daily for 4-8 years of age, 5 mg daily for 9-13 years of age, and 8 mg daily for 14-18 years of age (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the UL (7135).
Higher intake can cause liver damage (7135).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
There is insufficient reliable information available about the safety of liver extract. However, since some preparations are derived from animals, there is concern about contamination with diseased animal parts (1825). So far, there are no reports of disease transmission to humans due to use of contaminated liver extract.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when unblemished, ripe potatoes are used as food (6).
POSSIBLY SAFE ...when unblemished, ripe potatoes are used orally for medicinal purposes (6). ...potato juice 200-300 mL has been consumed daily with apparent safety for up to 4 weeks (97757). ...a single dose of potato extract standardized to 15 mg or 30 mg protease inhibitor 2 (Slendesta, Kemin Foods) has been used with apparent safety (97755).
LIKELY UNSAFE ...when damaged, green potatoes and sprouts are consumed. These contain toxic solanum alkaloids that are not destroyed by cooking and can cause serious adverse effects (6). There is insufficient reliable information available about the safety of potato when used topically.
PREGNANCY AND LACTATION: LIKELY SAFE
when unblemished, ripe potatoes are used orally in food amounts.
There is insufficient reliable information available about the safety of medicinal use of potato in pregnancy and lactation.
Below is general information about the interactions of the known ingredients contained in the product Copper Liver Chelate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
Details
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Theoretically, taking copper with contraceptive drugs might increase the levels and toxic effects of copper.
Details
A meta-analysis of clinical studies suggests that chronic use of oral contraceptives increases serum copper levels by a mean of 57 mcg/dL. In most people, this resulted in levels above the normal reference range for copper (92395).
|
Theoretically, taking copper with penicillamine might decrease the absorption of penicillamine; separate dosing by at least 2 hours.
Details
|
In humans, consuming potatoes prior to preoperative fasting prolongs the duration of the succinylcholine-induced neuromuscular block and slows recovery from anesthesia. This interaction is possibly related to inhibition of the butyrylcholinesterase enzyme by potato glycoalkaloids (97756).
|
Theoretically, concomitant use of potato may enhance the effects of thrombolytic drugs. A carboxypeptidase inhibitor isolated from potato tubers may have inhibitory effects on thrombin-activatable thrombolysis inhibitor, and thereby enhance the activity of thrombolytic agents (474,475).
|
Below is general information about the adverse effects of the known ingredients contained in the product Copper Liver Chelate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, carrot is well tolerated when consumed as a food.
It also seems to be generally well-tolerated when consumed as a medicine. Some people are allergic to carrot; allergic symptoms include anaphylactic, cutaneous, respiratory, and gastrointestinal reactions such as hives, swelling of the larynx, asthma, or diarrhea (25820,93606,106560). In infants, excessive consumption of carrot products in nursing bottles has been reported to cause extensive caries in the primary teeth (25817).
Topically, carrot has been associated with a case of phytophotodermatitis (101716).
Dental ...Orally, feeding carrot juice to infants, with or without sugar- or acid-containing beverages, has been reported to damage teeth and cause dental caries (25817).
Dermatologic ...Orally, excessive consumption of carrots or carrot-containing products can cause yellowing of the skin, which results from increased beta-carotene levels in the blood (25817). Carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306).
Gastrointestinal ...Orally, carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods can include gastrointestinal symptoms, such as diarrhea (25820).
Immunologic
...Orally, carrots may cause allergic reactions in some patients (25820,96306,106560).
Allergic responses to carrot-containing foods can include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306). For one patient, treatment of skin lesions resolved after a month of oral antihistamines and topical steroids, and avoiding further contact with carrot (96306). Allergic responses to carrot-containing foods can also include gastrointestinal symptoms, such as diarrhea, and respiratory symptoms, such as swelling of the larynx or asthma (25820). In one case, a patient with a history of allergic rhinitis and asthma who had been successfully treated with subcutaneous immunotherapy and was tolerant of consumption of raw and cooked carrots developed rhinoconjunctivitis when handling carrots. Inhalation of dust particles and aerosols produced by food processing activities and containing allergens from the peel and pulp of carrots is thought to have sensitized the airway, producing a distinct form of respiratory food allergy in which there are typically no symptoms with ingestion (106560).
Topically, a female runner developed phytophotodermatitis, which was considered possibly associated with the inclusion of carrot in a sunscreen (Yes To Carrots Daily Facial Moisturizer with SPF 15; Yes to, Inc.) (101716).
Psychiatric ...Compulsive carrot eating is a rare condition in which the patient craves carrots. According to one case report, withdrawal symptoms include nervousness, cravings, insomnia, water brash, and irritability (25821).
General ...Orally, copper is generally well tolerated when consumed in doses below the tolerable upper intake level (UL).
Dermatologic
...Contact dermatitis caused by copper has been reported rarely.
A case report describes a 5-year-old male who developed recurrent fingertip dermatitis and a positive skin test to copper after playing with toy cars made with a copper-containing alloy (95538). Also, in a small clinical trial in children 1-3 months of age with umbilical granuloma, 3 of 33 children receiving a single topical application of copper sulfate developed superficial burns, whereas no superficial burns occurred in those receiving topical sodium chloride (109403).
In one case report, a 68-year-old male with type 2 diabetes and peripheral neuropathy developed second- and third-degree burns after wearing a copper-containing compression sock on the right leg for 3 hours while sitting in the sun. The patient received treatment with topical silver sulfadiazine and oral clindamycin. After 6 weeks, the patient was found to have multiple persistent wounds containing necrotic tissue which required debridement, daily dressing changes, and tubular compression. It is thought that the heat conductance of copper magnified the effects of sun exposure in this case (109402).
Endocrine ...There is evidence from observational studies that people with diabetes (type 1 or type 2) have higher copper levels in their blood than people without diabetes, although not all studies have shown this (95537). It is not known if elevated copper levels contribute to development or worsening of diabetes.
Hematologic ...A case report of copper overdose in a 28-year-old male resulted in hemolysis exacerbated by glucose-6-phosphate dehydrogenase deficiency. The patient was hospitalized, received D-penicillamine chelation, blood transfusion, and ultimately, 4 cycles of plasmapheresis which led to clinical recovery (112378).
General ...No adverse reactions have been reported. However, a thorough evaluation of safety outcomes has not been conducted, There is some concern about the possibility of contamination as liver extract is derived from raw animal liver gathered from slaughterhouses, possibly from sick or diseased animals (6616). There is also concern that liver extracts produced from cows in countries where bovine spongiform encephalitis (BSE) has been reported might be contaminated with diseased tissue (1825).
Immunologic ...There is concern that liver extracts produced from cows in countries where bovine spongiform encephalitis (BSE) has been reported might be contaminated with diseased tissue. Countries where BSE has been reported include Great Britain, France, The Netherlands, Portugal, Luxembourg, Ireland, Switzerland, Oman, and Belgium (1825). However, there have been no reports of BSE transfer to humans from contaminated liver extract products. Until more is known, tell patients to avoid these products unless the country of origin can be determined. Patients should avoid products that are produced in countries where BSE has been found.
Other ...There is some concern about the possibility of contamination of liver extract. Liver extract is derived from raw animal liver gathered from slaughterhouses, possibly from sick or diseased animals (6616). Products made from contaminated or diseased organs might present a human health hazard.
General
...Orally, consuming whole, unblemished, ripe potatoes has not been associated with adverse effects.
Drinking potato juice has resulted in heartburn, abdominal distension, diarrhea, and increased mucus production (97757). Potatoes absorb oil readily, increasing their energy content. Fried potatoes, potato chips, and French fries are commonly associated with weight gain (97752).
The solanum glycosides found in damaged, green potatoes and sprouts can cause sweating, headache, flushing, nausea, vomiting, diarrhea, abdominal pain, thirst, bronchospasm, and restlessness. Deaths have been reported (17,97758). These glycoalkaloids cannot be destroyed by cooking (97758).
When inhaled, potato dust is associated with a high incidence of respiratory symptoms due to bacterial and fungal contaminants (6).
Gastrointestinal
...Orally, potato juice has resulted in heartburn, abdominal distension, diarrhea, and increased mucus production (97757).
Glycoalkaloids found in damaged, green potatoes and sprouts can cause nausea, vomiting, diarrhea, abdominal pain, and thirst (17,97758). The glycoalkaloids in potato cannot be destroyed by cooking (97758).
Immunologic ...Orally, one case of food-dependent exercise-induced allergic reaction has been reported after potato consumption. A 31-year-old female experienced several acute, exercise-induced allergic reactions shortly after eating. Symptoms included widespread urticaria, palpitation, fever, faintness, vomiting, abdominal pain, and swelling of the eyelids, palms, and soles. Blood tests were positive for IgE antibodies to potato and negative for other foods she had eaten, suggesting that potato was the precipitating allergen (103260).
Neurologic/CNS ...Orally, glycoalkaloids found in damaged, green potatoes and sprouts affect the nervous system. This can cause sweating, headache, flushing, bronchospasm, and restlessness (17,97758). Severe poisoning can result in paralysis, respiratory insufficiency, cardiac failure, coma, and death (97758). The glycoalkaloids in potato cannot be destroyed by cooking (97758).
Pulmonary/Respiratory ...When inhaled, potato dust is associated with a high incidence of respiratory symptoms due to bacterial and fungal contaminants (6).
Other
...Potatoes absorb oil readily, increasing the energy content.
Fried potatoes, potato chips, and French fries are commonly associated with weight gain (97752).
The solanum glycosides (glycoalkaloids) found in damaged, green potatoes and sprouts can cause toxicity at doses of approximately 2 mg/kg, and lethal poisoning at doses of approximately 3 mg/kg (97758). Levels of glycoalkaloids can increase post-harvest due to improper storage at higher temperatures, lower humidity, or areas with light. Also, mechanical damage or exposure to gamma-radiation or fungi increases these levels. Glycoalkaloids are concentrated in the peel; although when levels are high they also increase in the flesh of the tuber. Peeling will remove about 30% of the glycoalkaloids (97758).