Ingredients | Amount Per Serving |
---|---|
(Pyridoxine Hydrochloride)
(Vitamin B6 (Form: as Pyridoxine Hydrochloride) )
|
30 mg |
Chloride
(An electrolyte)
|
182 mg |
(Potassium Amino Acid Chelate, as Potassium Chloride)
(Potassium (Form: as Potassium Chloride, Potassium Amino Acid Chelate Note: rice protein based) )
|
198 mg |
Botanical Blend
(Including:)
|
250 mg |
(root)
|
|
( uva ursi )
(leaf)
|
|
(leaf)
|
|
Maltodextrin
|
Cellulose, Stearic Acid (Alt. Name: C18:0), organic Coating (Form: Guar Gum, Sunflower Lecithin, sustainable Palm Oil, Tapioca Maltodextrin), Silica
Below is general information about the effectiveness of the known ingredients contained in the product Maximized Water Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
There is insufficient reliable information available about the effectiveness of buchu.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Maximized Water Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when the leaf is used in amounts commonly found in foods. Buchu has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when the leaf is used orally and appropriately in medicinal amounts (2,12).
POSSIBLY UNSAFE ...when excessive amounts of buchu leaf are taken orally or when the oil is ingested. Buchu contains pulegone, a known hepatotoxin (4). Pulegone is a major component of the oil. It is more abundant in buchu products that come from Agathosma crenulata (93681).
PREGNANCY: LIKELY UNSAFE
when used in medicinal amounts; buchu is reported to be an abortifacient (4).
LACTATION: POSSIBLY SAFE
when used in food amounts.
There is insufficient reliable information available about the safety of using larger amounts; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods (12659,12660). Burdock root is commonly eaten as a vegetable (37422,92153,92154)
POSSIBLY SAFE ...when used topically, short-term. An emulsion containing burdock fruit extract 1.2% has been safely applied to the face twice daily for 4 weeks (37420). There is insufficient reliable information available about the safety of burdock when used orally in supplemental doses.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Uva ursi has been used with apparent safety in doses of up to 3600 mg daily for 3-5 days (101815).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. There is concern about the safety of long-term or high-dose use because of the hydroquinone content of uva ursi. Hydroquinone is thought to have mutagenic and carcinogenic effects (7). At high doses (around 20 grams of dried herb) it can cause convulsions, cyanosis, delirium, shortness of breath, and collapse. At very high doses (30 grams of dried herb or more) it can be fatal (4).
CHILDREN: POSSIBLY UNSAFE
when used orally by children.
Uva ursi contains hydroquinone and high tannin levels, which can cause severe liver problems in children (4,18); avoid using.
PREGNANCY: LIKELY UNSAFE
when used orally.
Uva ursi can have oxytocic effects, increasing the speed of labor (4,7,19); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily in the form of pyridoxine for adults (15,6243). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 30 mg daily for children aged 1-3 years, 40 mg daily for 4-8 years, 60 mg daily for 9-13 years, and 80 mg daily for 14-18 years (6243).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (6243).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring. The tolerable upper intake level (UL) refers to vitamin B6 in the form of pyridoxine and is 80 mg daily for those aged 14-18 years and 100 mg daily for 19 years and older (6243).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 80 mg daily for those aged 14-18 years and 100 mg daily for those 19 years and older.
The recommended dietary allowance (RDA) in lactating women is 2 mg daily (6243). There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
Below is general information about the interactions of the known ingredients contained in the product Maximized Water Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Buchu may have antiplatelet effects (6002). Theoretically, buchu may enhance the effects of anticoagulant or antiplatelet drugs and increase the risk of bleeding in some patients. Some anticoagulant or antiplatelet drugs include aspirin, clopidogrel (Plavix), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, ticlopidine (Ticlid), warfarin (Coumadin), and others.
|
Buchu contains pulegone, a known hepatotoxin (4,93681). There is some concern that buchu may adversely affect the liver, especially when the leaf is used in large doses or the oil is ingested (93681). Theoretically, concomitant use with hepatotoxic drugs might increase the risk of liver damage. Some of these drugs include acarbose (Precose, Prandase), amiodarone (Cordarone), atorvastatin (Lipitor), azathioprine (Imuran), carbamazepine (Tegretol), cerivastatin (Baycol), diclofenac (Voltaren), felbamate (Felbatol), fenofibrate (Tricor), fluvastatin (Lescol), gemfibrozil (Lopid), isoniazid, itraconazole, (Sporanox), ketoconazole (Nizoral), leflunomide (Arava), lovastatin (Mevacor), methotrexate (Rheumatrex), nevirapine (Viramune), niacin, nitrofurantoin (Macrodantin), pioglitazone (Actos), pravastatin (Pravachol), pyrazinamide, rifampin (Rifadin), ritonavir (Norvir), rosiglitazone (Avandia), simvastatin (Zocor), tacrine (Cognex), tamoxifen, terbinafine (Lamisil), valproic acid, and zileuton (Zyflo)
|
Buchu is thought to have diuretic properties (93681). Theoretically, buchu might reduce excretion and increase levels of lithium. The dose of lithium might need to be decreased.
|
Theoretically, taking burdock with anticoagulant or antiplatelet drugs might increase the risk of bleeding.
In vitro research shows that lignans from burdock reduce rabbit platelet aggregation by inhibiting platelet activating factor (12619). This interaction has not been reported in humans. |
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Theoretically, uva ursi may decrease the metabolism of CYP2C19 substrates.
In vitro, uva ursi appears to inhibit cytochrome CYP2C19 (98550). This effect has not been reported in humans.
|
Theoretically, uva ursi may decrease the metabolism of CYP3A4 substrates.
In vitro, uva ursi appears to inhibit CYP3A4 (98550). This effect has not been reported in humans.
|
Theoretically, uva ursi may increase levels of drugs metabolized by glucuronidation.
In vitro, uva ursi extract appears to strongly inhibit UDP-glucuronosyltransferase (UGT) 1A1 (UGT1A1). However, uva ursi extract does not appear to inhibit UGT1A1 in animal models (98549). This effect has not been reported in humans.
|
Theoretically, uva ursi may increase lithium levels, necessitating a decrease in dose.
Uva ursi may have diuretic properties (81637). Diuretics may increase lithium reabsorption with sodium in the proximal tubule of the kidney. Theoretically, uva ursi might reduce excretion and increase levels of lithium.
|
Theoretically, uva ursi may alter the levels of drugs transported by P-glycoprotein.
In vitro, uva ursi appears to inhibit the multi-drug transporter protein, P-glycoprotein (98550). This effect has not been reported in humans.
|
Effects of uva ursi in the urinary tract may be reduced by urinary acidifying agents.
Uva ursi seems to work best in alkaline urine. Theoretically, taking uva ursi with medications known to acidify the urine may decrease any effects of uva ursi on the urinary tract (19).
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Maximized Water Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, buchu leaf can cause GI and kidney irritation (4,6) and increase menstrual flow (6). Buchu is also a reported abortifacient (4).
Gastrointestinal ...Orally, buchu may cause gastrointestinal irritation (4,6).
Genitourinary ...Orally, buchu may increase menstrual flow (6). Buchu is also a reported abortifacient (4).
General
...Orally, burdock is well tolerated when consumed as a food.
Although a thorough evaluation of safety outcomes is lacking, there has been long-standing historical use of burdock with few noted adverse effects.
Serious Adverse Effects (Rare):
All ROAs: Allergic reactions, including contact dermatitis and anaphylaxis.
Dermatologic ...Contact dermatitis has been reported secondary to burdock, especially after prolonged use of the root oil (37422). There are cases of allergic dermatitis secondary to using burdock plasters. Two males and a 14 year-old female developed erythematous and vesicular, pruritic, and exudative reactions in areas corresponding to the application of burdock root plasters (12667). Reactions occurred up to 7 days after initial use. Patch testing was positive for burdock sensitivity in all three patients and was nonreactive in matched controls.
Hematologic ...In one case report, a 38-year-old female developed immune-mediated thrombocytopenia after consuming a "cleansing" tea containing unknown amounts of burdock and yellow dock. The patient presented with bruising, mild weakness, and fatigue, which started 2-3 days after consuming the tea, and was found to have a platelet count of 5,000 per mcL. Symptoms resolved after platelet transfusion and treatment with oral dexamethasone (108971). It is unclear if these effects were caused by burdock, yellow dock, the combination, or other contributing factors.
Hepatic ...A case of idiosyncratic drug-induced liver disease (DILI) is reported in a 36-year-old female who presented with abdominal pain after 1 month of taking an herbal liver detox tea containing burdock and other ingredients. Remarkable laboratory values included elevated liver enzymes, alkaline phosphatase, and total bilirubin. The patient received a loading dose of N-acetylcysteine and was hospitalized for 12 days (112178). However, it is unclear if the adverse effect was due to burdock, other ingredients, or the combination.
Immunologic ...There is one case of anaphylactic shock secondary to eating boiled burdock. One hour after eating boiled burdock the patient presented with redness over the entire body and dyspnea. He was found to have low blood pressure and was treated with subcutaneous epinephrine 1 mg and intravenous lactated ringer's solution containing hydrocortisone 100 mg and dexamethasone 8 mg. The cause of anaphylactic shock was attributed to allergenicity to burdock based on positive skin prick test results. Previously, the patient had experienced urticaria after eating boiled burdock (12660).
Neurologic/CNS ...Anticholinergic reactions including dry mouth, dizziness, blurred vision, weakness, dilated pupils, inability to urinate, and bradycardia have been reported following the consumption of burdock products (12662,37421,37431,37434,37435). However, these anticholinergic reactions are believed result from contamination of burdock with belladonna alkaloids. Burdock itself does not contain atropine or other constituents that would be responsible for these reactions.
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Uva ursi is generally well tolerated in low doses, short-term.
Most Common Adverse Effects:
Orally: Diarrhea, nausea, stomach upset, and vomiting.
Serious Adverse Effects (Rare):
Orally: At high doses (20 grams of dried herb), uva ursi has been reported to cause collapse, convulsions, cyanosis, delirium, shortness of breath, and tinnitus. Very high doses of 30 grams or more may be fatal.
Gastrointestinal ...Orally, uva ursi may cause nausea, vomiting, diarrhea, and stomach upset (92148). It can also irritate the gastrointestinal tract (19).
Genitourinary ...Orally, uva ursi may cause the urine to be greenish-brown. It may also cause irritation and inflammation of the urinary tract mucous membranes (18).
Hepatic ...Uva ursi may be hepatotoxic. Theoretically, chronic use, especially in children, can cause liver impairment due its hydroquinone and high tannin content (4,18).
Neurologic/CNS ...Orally, around 20 grams of uva ursi is reported to supply up to one gram of hydroquinone, which can theoretically cause convulsions and delirium (4).
Ocular/Otic
...Orally, uva ursi may potentially cause retinal toxicity due to its hydroquinone content, which reduces melanin synthesis.
A 56-year-old female developed bilateral bull's-eye maculopathy, paracentral scotomas, and retinal thinning after 3 years of uva ursi tea ingestion (16900).
Taking around 20 grams of uva ursi orally is reported to supply up to one gram of hydroquinone, which can theoretically cause tinnitus (4).
Pulmonary/Respiratory ...Orally, around 20 grams of uva ursi is reported to supply up to one gram of hydroquinone, which can theoretically cause shortness of breath and cyanosis (4).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Daily doses of 100 mg or less are unlikely to cause these problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).