Ingredients | Amount Per Serving |
---|---|
(Ca)
(Calcium Carbonate)
|
63.84 mg |
1000 mg | |
300 mg | |
100 mg | |
100 mg | |
Siberian Root
(Eleutherococcus senticosus )
(root)
(Eleutherosides)
(0.2% Eleutherosides)
|
200 mg |
Vegetable Cellulose, Vegetable Stearic Acid, Silica
Below is general information about the effectiveness of the known ingredients contained in the product Bee/Ginseng. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Bee/Ginseng. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Bee pollen has been safely used in clinical trials lasting up to 30 days (7062,7063,12008,33973). There is also preliminary evidence that taking 2 tablets twice daily of a specific combination product containing royal jelly 6 mg, bee pollen extract 36 mg, and bee pollen plus pistil extract 120 mg (Femal, Natumin Pharma) per tablet for up to 2 months seems to be safe (12008).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is some concern that bee pollen might have uterine stimulant effects (5,6,11); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day and to consider total calcium intake from both dietary and supplemental sources (17484). Also, advise patients taking calcium supplements to take calcium along with vitamin D (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day and to consider total calcium intake from both dietary and supplemental sources (17484). Also, advise patients taking calcium supplements to take calcium along with vitamin D (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally and appropriately (13160,14319). Concerns about botulism pertain only to children under 12 months of age and not to adults (13160). ...when used topically and appropriately. A specific commercially available wound dressing containing manuka honey (Medihoney) is approved as a medical device by the US Food and Drug Administration (FDA) (16353,16355,16357,16362,16369,16371). Some evidence suggests other honey preparations can also be used safely when applied to the skin or used to rinse the mouth (395,396,397,398,399,7847,7849,13133,14317)(16358,16372,97704,101034,108530).
POSSIBLY SAFE ...when properly diluted honey is used intranasally. Manuka honey 16.5% solution has been used with apparent safety as a nasal rinse twice daily for 14 days (103969). ...when specific, medical-grade honey products are used in eye drops. A specific product (Optimel Manuka Plus Eye Drops, Melcare Biomedical Pty Ltd) has been used safely 2-3 times daily for up to 4 weeks (105231,105234).
LIKELY UNSAFE ...when honey produced from the nectar of rhododendrons is used orally. This type of honey contains grayanotoxins, which may lead to cardiovascular symptoms, such as arrhythmias, hypotension, chest pain, bradycardia, syncope, asystole, various types of heart block, and myocardial infarction (12220,55119,55122,55125,55126,55129,55141,55142,55157)(55163,55170,55171,55180,55183,55190,55224,55233,55234,55239)(55248,55260,55261,55280,55281).
CHILDREN: LIKELY SAFE
when used orally and appropriately, short-term in children at least 12 months of age (15910,17299,55210,55253,97693).
CHILDREN: POSSIBLY UNSAFE
when used orally in children less than 12 months of age.
Ingestion of raw honey contaminated with Clostridium botulinum spores can cause botulism poisoning in infants under 12 months of age (13160,55067,55290,91359). This is not a danger for older children or adults. Medical-grade, sterilized honey has been used with apparent safety in the formula of premature newborns at doses of up to 15 grams daily for up to 2 weeks (97697).
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in food amounts.
The concern about botulism pertains to children under 12 months of age and not to pregnant adults (13160). There is insufficient reliable information available about the safety of honey when used for medicinal purposes when pregnant or breast-feeding.
POSSIBLY SAFE ...when used orally and appropriately. Propolis has been used with apparent safety in clinical research at doses of up to 1500 mg daily (95883,99173,102520,102521). ...when used topically. Propolis as a 3% or 10% ointment, 0.5% cream, 30% mouth rinse, or 15% solution has been used with apparent safety in small clinical studies (799,1926,6602,8663,17629,17664,17665,92793,92800,95882)(99171,99173,102519,102521,105785,105786,108516,108523,109985).
PREGNANCY:
Insufficient reliable information available; avoid using.
LACTATION: POSSIBLY SAFE
when used orally and appropriately during lactation.
Propolis 300 mg daily has been used for 4-10 months in one clinical study with no apparent adverse effects to nursing infants (102518).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Royal jelly 1-4.8 grams daily for up to 1 year has been used in clinical research without reported adverse effects (95869,95870,102527,102528,105773,105774)....when used topically and appropriately for up to 6 months (71980,102526).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately for up to 6 months.
A specific royal jelly product (Bidro) 150 mg twice daily has been used with apparent safety for 3-6 months in children 5-16 years of age (71968).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Bee/Ginseng. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
There is some concern that bee pollen might interact with warfarin and increase the risk of bleeding.
Details
In one case report, a patient on warfarin had a stable international normalized ratio (INR) of 1.9-3.3 for 9 months. The patient's INR was found to be 7.1 after starting bee pollen granules one teaspoon twice daily for approximately one month. The patient's warfarin dose was decreased by approximately 11% in order to return the INR to the therapeutic range while continuing the bee pollen supplement (18063).
|
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Details
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Details
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Details
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Details
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Details
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
Details
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Details
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Details
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Details
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
Details
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Details
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
Details
|
Calcium may reduce levels of raltegravir.
Details
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Details
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Details
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Details
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Details
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, honey may increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
Details
In vitro, honey inhibits platelet aggregation and increases the time to clotting (55222). Furthermore, animal research suggests that feeding mice large doses of honey for 12 days increases bleeding time when compared with no intervention (103964). However, these effects have not been reported in humans.
|
Theoretically, honey might decrease levels of drugs metabolized by CYP3A4, but research is conflicting.
Details
|
Theoretically, honey might increase levels of phenytoin.
Details
In an animal model, the rate and extent of absorption of phenytoin was increased by honey (20352). This effect has not been reported in humans.
|
Theoretically, propolis might increase the risk of bleeding when taken with antiplatelet or anticoagulant drugs.
Details
In vitro research shows that propolis water extract and the propolis constituent, caffeic acid phenethyl ester, can inhibit platelet aggregation (50794,95885). Additionally, evidence from an animal model shows that taking propolis in addition to warfarin decreases INR, suggesting that propolis can decrease the effectiveness of warfarin (95874).
|
Theoretically, high doses of propolis might increase blood levels of drugs metabolized by CYP1A2.
Details
In vitro research shows that propolis extract can inhibit CYP1A2 (92797,92799). However, animal research shows that propolis extract does not significantly affect CYP1A2 activity when administered to rats at doses up to 250 mg/kg. It is postulated that the constituents of propolis that inhibit CYP1A2 in vitro do not have significant effects in vivo due to low bioavailability and hepatic first-pass effect (92797). This effect has not been reported in humans.
|
Theoretically, high doses of propolis might increase blood levels of drugs metabolized by CYP2C19.
Details
In vitro research shows that propolis extract can inhibit CYP2C19 (92797,92799). However, animal research shows that propolis extract does not significantly affect CYP2C19 activity when administered to rats at doses up to 250 mg/kg. It is postulated that the constituents of propolis that inhibit CYP2C19 in vitro do not have significant effects in vivo due to low bioavailability and hepatic first-pass effect (92797). This effect has not been reported in humans.
|
Theoretically, high doses of propolis might increase blood levels of drugs metabolized by CYP2C9.
Details
In vitro research shows that propolis extract can inhibit CYP2C9 (92797,92799). However, animal research shows that propolis extract does not significantly affect CYP2C9 activity when administered to rats at doses up to 250 mg/kg. It is postulated that the constituents of propolis that inhibit CYP2C9 in vitro do not have significant effects in vivo due to low bioavailability and hepatic first-pass effect (92797). This effect has not been reported in humans.
|
Theoretically, high doses of propolis might increase blood levels of drugs metabolized by CYP2D6.
Details
In vitro research shows that propolis extract can inhibit CYP2D6 (92797,92799). However, animal research shows that propolis extract does not significantly affect CYP2D6 activity when administered to rats at doses up to 250 mg/kg. It is postulated that the constituents of propolis that inhibit CYP2D6 in vitro do not have significant effects in vivo due to low bioavailability and hepatic first-pass effect (92797). This effect has not been reported in humans.
|
Theoretically, propolis might increase levels of drugs metabolized by CYP2E1.
Details
In vitro research shows that propolis can inhibit CYP2E1 (92799). This effect has not been reported in humans.
|
Theoretically, high doses of propolis might increase blood levels of drugs metabolized by CYP3A4.
Details
Some in vitro research shows that propolis extract can inhibit CYP3A4 (92797); however, other in vitro research shows that propolis has no effect on CYP3A4 activity (92799). Furthermore, animal research shows that propolis extract does not significantly affect CYP3A4 activity when administered to rats at doses up to 250 mg/kg. It is postulated that the constituents of propolis that might in inhibit CYP3A4 in vitro do not have significant effects in vivo due to low bioavailability and hepatic first-pass effect (92797). This effect has not been reported in humans.
|
Theoretically, propolis might decrease the effectiveness of warfarin.
Details
Animal research shows that taking propolis in addition to warfarin decreases the international normalized ratio (INR) (95874). This effect has not been reported in humans.
|
Theoretically, royal jelly might increase the risk of hypotension when taken with antihypertensive drugs.
Details
|
Royal jelly might increase the risk of bleeding when taken with warfarin.
Details
In one case, an 87-year-old male who was previously stabilized on warfarin developed hematuria and was found to have an INR of 7.29 after taking a royal jelly supplement for one week (14303).
|
Below is general information about the adverse effects of the known ingredients contained in the product Bee/Ginseng. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, bee pollen seems to be well tolerated in most patients.
Serious Adverse Effects (Rare):
Orally: Acute hepatitis, allergic reactions, interstitial nephritis, kidney failure.
Dermatologic ...Orally, a case of photosensitivity has been reported for a 32-year-old patient who took a dietary supplement containing ginseng, goldenseal, bee pollen, and other ingredients. Symptoms included a pruritic, erythematous rash that was localized to the sun-exposed surfaces of the neck and extremities. Following treatment with topical and subcutaneous corticosteroids and discontinuation of the supplement, the skin rash slowly resolved. It is not known if this effect was due to the bee pollen, one of the other ingredients, or their combination (33954).
Hepatic ...Orally, there have been two cases of acute hepatitis associated with bee pollen use. One case involved ingestion of two tablespoons of pure bee pollen daily for several months. Another case involved ingestion of 14 tablets per day of a combination herbal product containing bee pollen, chaparral, and 19 other herbs for 6 weeks (1351). In this case, it is not known if bee pollen or another herb might have caused the adverse event.
Immunologic
...Patients with a history of seasonal pollen allergies, particularly allergies to plants in the Asteraceae/Compositae family, including ragweed, chrysanthemums, marigolds, daisies, and many other herbs, are at risk for serious allergic reactions to oral bee pollen.
Allergic reactions can include itching, swelling, shortness of breath, lightheadedness, and anaphylaxis (5,6,11,13480,33952,33965,91981,91984,109991). In one case, exercise may have contributed to the reaction. A 15-year-old male developed generalized urticaria, facial angioedema, and dyspnea 30 minutes into a vigorous exercise session and an hour after ingesting bee pollen granules. The patient experienced abdominal cramps within minutes of consuming bee pollen on 3 previous occasions and had a positive skin prick test for bee pollen after the anaphylactic reaction (109991). Allergy symptoms due to chronic intake of bee pollen include gastrointestinal and neurologic symptoms and eosinophilia (2627,33964).
A case of allergic eosinophilic gastropathy has been reported for a 5 year-old child who was given bee pollen daily to strengthen the immune system. Symptoms included abdominal pain, vomiting, and swelling of the eyelids and legs (91981).
Neurologic/CNS ...Orally, there is one report of dizziness in a patient who took a combination product containing royal jelly, bee pollen extract, and a bee pollen plus pistil extract (12008). It is not known if this effect was due to the bee pollen, another ingredient, or the combination.
Renal ...Orally, there is one report of a patient taking a bee pollen-containing supplement for greater than 5 months who developed breathing difficulties, edema with weight gain, and loss of appetite. The patient was diagnosed with interstitial nephritis and drug-induced acute kidney failure. The supplement was discontinued and the patient was started on hemodialysis. The patient improved after several sessions of hemodialysis (18068).
Other ...Although some research has shown a lack of mycotoxins in twenty samples of bee pollen, analysis of other ready-to-eat bee pollen products have revealed contamination with potential mycotoxin producing species, including Penicillium verrucosum, Aspergillus niger aggregate, Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus flavus, Aspergillus parasiticus, and Alternaria spp. (33959,33961).
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally and topically, honey is generally well tolerated in those at least 1 year of age.
When given intranasally or into the eyes, honey seems to be well tolerated. However, honey containing grayanotoxins, which are found in rhododendrons, is likely unsafe and should be avoided.
Most Common Adverse Effects:
Orally: Nausea, stomach pain, and vomiting.
Topically: Burning, pain, and stinging.
Intranasally: Burning and nausea.
Ocular: Stinging.
Serious Adverse Effects (Rare):
Orally: Case reports of botulism in infants have occurred. Anaphylaxis has been reported in sensitive individuals. Honey from the Black Sea coast of Turkey, which is derived from the nectar of rhododendrons, has caused respiratory depression, dizziness, sweating, weakness, bradycardia, atrioventricular (AV) block, hypotension, cardiac arrhythmias, and myocardial infarction within a few minutes to several hours after consumption.
Cardiovascular ...Honey from the Black Sea coast of Turkey has been linked with a unique form of poisoning. Honey from this region sometimes contains excessive concentrations of grayanotoxins from rhododendrons, which can cause bradycardia, atrioventricular (AV) block, cardiac arrhythmias, myocardial infarction, and hypotension within a few minutes to several hours after consumption (12220,55110,55126,55129,55238,55269,55270,55280). Fatalities have not been reported. Patients typically respond to fluids and reversal of cardiac conduction abnormalities with atropine.
Dermatologic ...Topically, the use of honey applied to wounds can cause local pain, stinging, and burning in about 5% of patients, some of whom stop treatment as a result (16356,16357,16358,16361,91362,97694,96595). Theoretically, honey may cause excessive drying of wounds, which could delay healing. This can be managed by application of saline packs as needed (7850).
Gastrointestinal ...Orally, honey may cause mild nausea, vomiting, and stomach ache (12220,55119,55190,55294,97693). Honey from the Black Sea coast of Turkey has been linked with a unique form of poisoning. Honey from this region sometimes contains excessive concentrations of grayanotoxins. These toxins can cause increased salivation, nausea, and vomiting within a few minutes to several hours after consumption (12220,55119,55190,55294). Intranasally, honey may cause nausea (55216).
Immunologic ...Orally, honey can cause allergic reactions, including anaphylaxis (6,11,108531,108532). These reactions may be due to various components of the honey, including the honey itself, pollen, or bee secretions (91370). When used topically, local allergic reactions have been reported in people with pre-existing atopy (16356,55118). Allergic contact dermatitis related to honey enriched with propolis has been reported (91365).
Neurologic/CNS ...Orally, honey may cause nervousness, insomnia, and hyperactivity in children (91366,97693). Honey from the Black Sea coast of Turkey has been linked with a unique form of poisoning. Honey from this region sometimes contains excessive concentrations of grayanotoxins, which can cause dizziness, sweating, and weakness within a few minutes to several hours after consumption (12220,55110,55119,55296).
Ocular/Otic ...When used in eye drops, transient stinging has been reported rarely (105231,105234).
Pulmonary/Respiratory ...When used intranasally, a burning sensation of the nasal passages has been reported (55216). Honey from the Black Sea coast of Turkey, which sometimes contains excessive concentrations of grayanotoxins, can cause respiratory depression within a few minutes to several hours after consumption (12220,55110,55119,55296).
Other ...Some honey is contaminated with Clostridium botulinum spores, which poses a risk to infants (6,11,13160,55067,55290,91359). Botulinum spores can proliferate in the intestines of infants and cause botulism poisoning (55112). However, this is not a concern for older children and adults.
General
...Orally and topically, propolis seems to be well tolerated.
Most Common Adverse Effects:
Orally: Headache.
Topically: Contact cheilitis and contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions in sensitive individuals.
Dermatologic
...Propolis can cause allergic reactions and acute oral mucositis with ulceration from the use of the propolis-containing lozenges (2632).
Topically, propolis-containing products, including some cosmetics, can cause eczematous contact dermatitis, erythema multiforme-like contact dermatitis, or allergic contact cheilitis (2632,15647,92796,92798,95878,95882,102517).
Patients allergic to bees or bee products may be more likely to experience allergic reactions to propolis.
Genitourinary ...Vulvar eczema caused by propolis sensitization after topical therapy has been reported (70067).
Hepatic ...Orally, propolis may cause an increase in liver enzymes when used long-term at high doses. In one case, a 30-year-old male presented with persistent abnormal liver enzymes for six months. With other causes ruled out, the patient disclosed using more than 10 propolis lozenges per day for several months to treat a sore throat. Upon discontinuation of the propolis lozenges, liver enzymes returned to normal (105788). Despite concerns presented in this case, analyses of small clinical studies suggest that propolis may have hepatoprotective effects when used at doses of 500-1000 mg daily for up to one year (108521,108522).
Immunologic
...In one case report, a 36-year-old female developed severe erythematous papules and patches with edema of the face, neck, arms, abdomen, and thighs after consuming propolis solution for a few weeks.
After symptom resolution, a patch test showed an extreme positive reaction to propolis (106443). In another case, laryngeal edema and severe anaphylactic reaction has been reported in a patient who used topical propolis for the treatment of acute pharyngitis. The patient died due to complications of hypoxia that resulted from the allergic reaction (70063).
Topically, propolis-containing products can cause allergic contact dermatitis, including cheilitis, when used on or near the lips or mouth (15647,92796,92798,102517). Propolis-containing lozenges can cause allergic reactions as well as acute oral mucositis with ulceration (2632).
Patients allergic to bees or bee products may be more likely to experience allergic reactions to propolis.
Neurologic/CNS ...Orally, propolis may cause headache in some patients. In one clinical trial, around 7% of patients taking propolis 250 mg twice daily for 4 months reported mild headache (105786).
Renal ...In one case report, a 59-year-old male with cholangiocarcinoma developed acute kidney failure requiring hemodialysis after taking a Brazilian preparation of propolis 5 mL three times daily for 2 weeks. Renal function improved when propolis was discontinued. The patient restarted taking propolis and symptoms developed again and the patient again required hemodialysis. Symptoms of renal failure improved when propolis was finally discontinued. This product was not screened for contaminants; however, family members of this patient used the same product without apparent adverse effects (14300).
General
...Orally and topically, royal jelly seems to be well tolerated.
Most Common Adverse Effects:
Orally: Dyspnea, eczema, oral allergy syndrome, pruritus, and urticaria in people with a history of asthma or atopy.
Topically: Contact dermatitis and skin irritation.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, status asthmaticus, and death in people with a history of asthma or atopy.
Gastrointestinal ...There is one case report of hemorrhagic colitis with abdominal pain, bloody diarrhea with concomitant hemorrhagic and edematous mucosa of the sigmoid colon after ingestion of royal jelly. Symptoms resolved within 2 weeks following discontinuation of royal jelly and conservative treatment (3516).
Immunologic
...In people with a history of atopy or asthma, royal jelly taken orally appears to cause a high rate of allergic symptoms including pruritus, urticaria, eczema, eyelid and facial edema, conjunctivitis, rhinorrhea, dyspnea, oral allergy syndrome, and asthma (7314,7315,7316,10623,95872).
In severe cases, royal jelly can cause status asthmaticus, anaphylaxis, and death (792,7315,7316,10623,10624,108511). Allergic symptoms are associated with IgE-mediated hypersensitivity reactions (3513,10623).
Topically, skin irritation, exacerbation of dermatitis, or contact dermatitis may occur (791).
From occupational exposure, royal jelly can cause allergic rhinoconjunctivitis and asthma (95868).
Neurologic/CNS ...There is one report of dizziness in a patient who took a combination product containing royal jelly, bee pollen extract, and a bee pollen plus pistil extract (12008).