Ingredients | Amount Per Serving |
---|---|
(GABA)
|
500 mg |
(Melissa officinalis )
|
150 mg |
(Ashwagandha Extract)
|
120 mg |
(L-Theanine)
|
100 mg |
5 mg |
Hypromellose, Microcrystalline Cellulose, Leucine
Below is general information about the effectiveness of the known ingredients contained in the product Sleep Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Sleep Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Ashwagandha has been used with apparent safety in doses of up to 1250 mg daily for up to 6 months (3710,11301,19271,90649,90652,90653,97292,101816,102682,102683) (102684,102685,102687,103476,105824,109586,109588,109589,109590). ...when used topically. Ashwagandha lotion has been used with apparent safety in concentrations up to 8% for up to 2 months (111538).
PREGNANCY: LIKELY UNSAFE
when used orally.
Ashwagandha has abortifacient effects (12).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. GABA has been used with apparent safety in doses of 75 mg to 1.5 grams daily for up to one month in small clinical studies (19361,19363,19369,110134,110135). There is insufficient reliable information available about the safety of GABA when used orally for longer than one month or when used sublingually or intravenously.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Lemon balm has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Lemon balm extract has been used with apparent safety at a dose of 500 mg daily for 6 months or at a dose of 3000 mg daily for 2 months (9993,9994,104435,104435,110136). ...when used topically and appropriately, short-term. Lemon balm 1% dried leaf extract has been used up to 4 times daily with apparent safety for a few days (790,9995).
CHILDREN: POSSIBLY SAFE
when used orally and appropriate, short-term.
A single dose of lemon balm extract 3-6 mg/kg has been safely used in children aged 6-7 years (19525). A specific combination product providing lemon balm leaf extract 80 mg and valerian root extract 160 mg (Euvegal forte, Dr. Willmar Schwabe Pharmaceuticals) 1-2 tablets once or twice daily has been safely used in children under 12 years of age for 30 days (14416). In infants up to 4 weeks old, multi-ingredient products (ColiMil, ColiMil Plus) containing lemon balm 64-97 mg daily have been used with apparent safety for up to 7 days (16735,96278).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term or as a single dose. Melatonin seems to be safe when used up to 8 mg daily for up to 6 months. Melatonin 10 mg daily has been used safely for up to 2 months (1049,1068,1077,1085,1738,1754,5854,5855,5857,12226), (14283,15005,62850,89502,89503,88285,88289,88293,88294,88295)(88296,88299,89508,89510,89511,96313,96314,96316,96317,96319)(96321,97438,99345,103484,106301,106303,107811,110286,110299). ...when used topically and appropriately (1066,1768,1769,4713,4714,96314).
POSSIBLY SAFE ...when doses of up to 8 mg daily are used orally and appropriately for longer than 6 months, doses of 10 mg daily are used for longer than 2 months, or doses of 50 mg daily are used for up to 5 days (7040,7043,62435,106296,107811). There is some evidence melatonin can be used safely in doses of up to 10 mg daily for up to 2 years in some patients (7040,7043,62435). ...when used intravenously under the supervision of a healthcare professional. A one-time dose of intravenous melatonin combined with a single bolus of intracoronary melatonin has been used with apparent safety in one clinical trial (96324).
CHILDREN: POSSIBLY SAFE
when used orally in low doses, short-term (9980,15034,62792,88282,88283,88286,88288,95748,96318,97434)(97439,97446,106293,110292,113216,113223,113224).
Although melatonin has been safely used in clinical research in doses up to 12 mg daily (88283), it is often advised that daily doses of melatonin be limited to 3 mg daily for children and infants 6 months or older and 5 mg daily for adolescents (95746). There is some concern that taking melatonin might adversely affect gonadal development in children (1739,1740,1742,1743). While some evidence suggests that long-term use of melatonin in children may delay puberty, the available research includes only three small, observational studies with incomplete follow-up and poor measures of pubertal timing (95747). Although rare, pediatric overdose with melatonin has resulted in hospitalization, mechanical ventilation, and death (108145). Due to potential risks, melatonin should be used only in children with a medical reason for use; it should not be used to promote sleep in otherwise healthy children. There is insufficient reliable information available about the safety of melatonin when used long-term.
PREGNANCY: POSSIBLY UNSAFE
when used orally or parenterally in high doses or with frequent use.
High doses of melatonin 75-300 mg daily seem to inhibit ovulation, causing a contraceptive effect (769,1740,6002,8271,95728). Advise pregnant patients and patients wishing to become pregnant to avoid using melatonin frequently or in high doses.
There is insufficient reliable information available about the safety of melatonin in lower doses during pregnancy. Some research shows that taking melatonin 2 mg daily does not affect anterior pituitary hormone levels in females who are not pregnant; this suggests that low doses may not have a contraceptive effect (62898). Other research shows that taking melatonin 3 mg daily during the follicle stimulating stage of in vitro fertilization does not negatively impact pregnancy rates (62818,62819,88297,89512,88297). However, it is not known if melatonin is safe for use throughout pregnancy (95729). Until more is known about the safety of melatonin, avoid using during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. L-theanine has been used safely in clinical research in doses of up to 900 mg daily for 8 weeks (12188,36439,96331,96332,96334,96341,97923,101986,104976). There is insufficient reliable information available about the safety of L-theanine when used long-term.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A specific L-theanine product (Suntheanine, Taiyo Kagaku) 200 mg twice daily has been used safely in males aged 8-12 years for up to 6 weeks (91744).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Sleep Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking ashwagandha with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ashwagandha with antihypertensive drugs might increase the risk of hypotension.
Animal research suggests that ashwagandha might lower systolic and diastolic blood pressure (19279). Theoretically, ashwagandha might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking ashwagandha might increase the sedative effects of benzodiazepines.
There is preliminary evidence that ashwagandha might have an additive effect with diazepam (Valium) and clonazepam (Klonopin) (3710). This may also occur with other benzodiazepines.
|
Theoretically, taking ashwagandha might increase the sedative effects of CNS depressants.
Ashwagandha seems to have sedative effects. Theoretically, this may potentiate the effects of barbiturates, other sedatives, and anxiolytics (3710).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that ashwagandha extract induces CYP1A2 enzymes (111404).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that ashwagandha extract induces CYP3A4 enzymes (111404).
|
Theoretically, taking ashwagandha with hepatotoxic drugs might increase the risk of liver damage.
|
Theoretically, taking ashwagandha might decrease the effects of immunosuppressants.
|
Ashwagandha might increase the effects and adverse effects of thyroid hormone.
Concomitant use of ashwagandha with thyroid hormones may cause additive therapeutic and adverse effects. Preliminary clinical research and animal studies suggest that ashwagandha boosts thyroid hormone synthesis and secretion (19281,19282,97292). In one clinical study, ashwagandha increased triiodothyronine (T3) and thyroxine (T4) levels by 41.5% and 19.6%, respectively, and reduced serum TSH levels by 17.4% from baseline in adults with subclinical hypothyroidism (97292).
|
Theoretically, taking GABA with antihypertensive drugs might increase the risk of hypotension.
Some clinical research shows that GABA can decrease blood pressure in patients with hypertension (19367).
|
Theoretically, GABA might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
Endogenous GABA has well-established relaxant effects (51152) and GABA(A) receptors have an established physiological role in sleep (51143). However, the effects of GABA supplements are unclear, as it is unknown whether exogenous GABA crosses the blood-brain barrier (51120,51153,90570). Although there have been limited reports of drowsiness or tiredness with GABA supplements (5115,19364), these effects have not been widely reported in clinical studies. Additionally, intravenous GABA 0.1-1 mg/kg has been shown to induce anxiety in a dose-dependent manner (5116).
|
Theoretically, concomitant use of lemon balm might have additive effects with CNS depressant drugs.
|
Theoretically, lemon balm might interfere with thyroid hormone replacement therapy.
In vitro, constituents of lemon balm extract bind to thyroid stimulating hormone (TSH), preventing TSH receptor-binding and leading to the inhibition of TSH-stimulated adenylate cyclase activity (19727,19728). In animals, lemon balm extract has been shown to decrease levels of circulating TSH and inhibit thyroid secretion (19726).
|
Theoretically, melatonin may have anticoagulant effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
There are isolated case reports of minor bleeding and decreased prothrombin activity in people taking melatonin with warfarin (Coumadin) (63067). The mechanism, if any, of this interaction is unknown (9181). Taking melatonin orally seems to decrease coagulation activity within one hour of dosing in healthy men (62481).
|
Theoretically, melatonin may reduce the effects of anticonvulsants.
Some clinical research suggests that melatonin may increase the frequency of seizures in certain patients, particularly children with neurological impairment (8248,9744).
|
Theoretically, taking melatonin with antidiabetes drugs might increase the risk of hypoglycemia.
Some clinical research shows that melatonin reduces levels of fasting blood glucose and improves glycemic control (19034,19035,103490). However, other research suggests that melatonin might impair glucose utilization and increase insulin resistance (9713), while other research has found no effect on glucose levels (19036,104368). Until more is known, use melatonin cautiously in combination with antidiabetes drugs.
|
Theoretically, taking melatonin with antihypertensive drugs might increase the risk of hypotension or hypertension.
Some clinical research suggests that taking melatonin decreases blood pressure in healthy adults (1724,62165,62187,63042). Also, melatonin seems to lower systolic and diastolic blood pressure in individuals with high blood pressure at nighttime or untreated essential hypertension (62359,62416,62441,62826). However, melatonin seems to worsen blood pressure in patients who are taking antihypertensive medications. Immediate-release melatonin 5 mg at night in combination with nifedipine GITS (Procardia XL) increases systolic blood pressure an average of 6.5 mmHg, diastolic blood pressure by an average of 4.9 mmHg, and heart rate by 3.9 bpm (6436). Also, results from animal research suggest that melatonin reduces the effectiveness of certain antihypertensive drugs, including methoxamine and clonidine (62432).
|
Theoretically, taking caffeine with melatonin might increase levels of melatonin.
Some evidence suggests that caffeine consumption can decrease endogenous melatonin levels (8265,22303,37585), while other evidence suggests that caffeine increases endogenous melatonin levels (62328). When administered in combination with melatonin supplements, caffeine seems to increase melatonin effects and levels (62352,96315). The reason for this discrepancy is not completely clear. Part of the discrepancy may result from the fact that caffeine can inhibit melatonin synthesis as well as inhibit melatonin metabolism. By functioning as an adenosine receptor antagonist, caffeine may indirectly inhibit the synthesis of melatonin. Conversely, because melatonin and caffeine are both metabolized by cytochrome P450 1A2 (CYP1A2) enzyme, concomitant use of melatonin and caffeine may reduce the metabolism of melatonin, resulting in higher serum levels (22306,96315).
|
Theoretically, taking melatonin might increase the sedative effects of CNS depressants.
Melatonin has sedative effects. Theoretically, concomitant use of melatonin with alcohol, benzodiazepines, or other sedative drugs might cause additive sedation (96315).
|
Theoretically, taking contraceptive drugs with melatonin might increase the effects and adverse effects of melatonin.
Contraceptive drugs can increase the levels of endogenous melatonin (8265). Theoretically, these drugs may increase the effects and adverse effects of oral melatonin.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP1A2. Also, other CYP1A2 substrates might decrease the metabolism of melatonin, increasing melatonin levels.
Melatonin is metabolized in the liver primarily by the CYP2C19 and CYP1A2 enzymes (62118,62405,96315). Theoretically, combined administration of melatonin with drugs metabolized by the CYP1A2 enzyme might reduce the metabolism of these drugs, resulting in increased serum levels. Conversely, some drugs metabolized by CYP1A2 may inhibit the metabolism of melatonin, resulting in increased serum levels of melatonin. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP2C19. Also, other CYP2C19 substrates might decrease the metabolism of melatonin, increasing melatonin levels.
Melatonin is metabolized in the liver primarily by the CYP2C19 and CYP1A2 enzymes (62118,62405). Theoretically, combined administration of melatonin with certain drugs metabolized by the CYP2C19 enzyme may reduce the metabolism of these drugs, resulting in increased serum levels. Conversely, some drugs metabolized by CYP2C19 may inhibit the metabolism of melatonin, resulting in increased serum levels of melatonin. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP2D6.
Laboratory research suggests that certain lots of melatonin inhibit CYP2D6 (96315). Theoretically, combined administration of melatonin with certain drugs metabolized by the CYP2D6 enzyme may reduce the metabolism of these drugs, resulting in increased serum levels. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, melatonin might increase levels of drugs metabolized by CYP3A4.
Laboratory research shows that certain lots of melatonin inhibit CYP3A4 (96315). Theoretically, combined administration of melatonin with certain drugs metabolized by CYP3A4 may reduce the metabolism of these drugs, resulting in increased serum levels. Until more is known, use melatonin cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, taking flumazenil with melatonin might reduce the effects of melatonin.
Animal research shows that flumazenil may inhibit the effect of melatonin (9703).
|
Theoretically, taking fluvoxamine with melatonin might increase levels of melatonin.
Fluvoxamine can significantly increase melatonin levels. In some cases, fluvoxamine might increase bioavailability of exogenously administered melatonin by up to 20 times (5038,6499,8251). Some researchers think this might be a beneficial interaction and be potentially useful for cases of refractory insomnia (6499). However, this interaction might also cause unwanted excessive drowsiness and possibly other adverse effects. Fluvoxamine is known to increase endogenous melatonin secretion (6498,22313). It seems to increase serum levels of exogenously administered melatonin possibly by decreasing melatonin metabolism by inhibiting cytochrome P450 (CYP450) 1A2 and 2C19 or by inhibiting melatonin elimination. This effect has been found in healthy people taking fluvoxamine 50-75 mg and melatonin 5 mg (5038,6498,6499,8251).
|
Theoretically, melatonin might interfere with immunosuppressive therapy.
Melatonin can stimulate immune function. Theoretically, melatonin might interfere with immunosuppressive therapy (7040).
|
Theoretically, taking melatonin with methamphetamine may increase the adverse effects of methamphetamine.
Animal research suggests that melatonin exacerbates the adverse effects of methamphetamine, resulting in greater depression of tryptophan hydroxylase (TPH) and tyrosine hydroxylase (TH) activity, as well as a significant reduction in dopamine levels (22307). This has not been shown in humans.
|
Theoretically, taking melatonin with extended release nifedipine reduces the effects of nifedipine.
Melatonin can decrease the effectiveness of extended release nifedipine (GITS). Immediate-release melatonin 5 mg at night in combination with nifedipine GITS 30-60 mg daily increases systolic and blood pressure by an average of 6.5 mmHg and 4.9 mmHg, respectively. Concomitant use with melatonin also increases heart rate by 3.9 bpm (6436). The mechanism of this interaction is not known.
|
Theoretically, taking melatonin with drugs that lower the seizure threshold might increase the risk of seizure activity.
|
Theoretically, melatonin may have antiplatelet effects and may increase the risk of bleeding with warfarin.
Three cases of increased prothrombin time have been reported for patients aged 48-72 years who took melatonin orally in combination with warfarin (9181). However, three cases of decreased prothrombin time have also been reported for patients aged 51-84 years who took melatonin orally in combination with warfarin (9181). Until more is known, use melatonin cautiously in patients taking warfarin.
|
Theanine might lower blood pressure, potentiating the effects of antihypertensive drugs.
|
Theoretically, theanine might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
|
Below is general information about the adverse effects of the known ingredients contained in the product Sleep Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, ashwagandha seems to be well-tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, nausea, and vomiting. However, these adverse effects do not commonly occur with typical doses.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about acute hepatitis, acute liver failure, hepatic encephalopathy, the need for liver transplantation, and death due to liver failure with ashwagandha treatment.
Dermatologic ...Orally, dermatitis has been reported in three of 42 patients in a clinical trial (19276).
Endocrine ...A case report describes a 73-year-old female who had taken an ashwagandha root extract (unspecified dose) for 2 years to treat hypothyroidism which had been previously managed with levothyroxine. The patient was diagnosed with hyperthyroidism after presenting with supraventricular tachycardia, chest pain, tremor, dizziness, fatigue, irritability, hair thinning, and low thyroid stimulating hormone (TSH) levels. Hyperthyroidism resolved after discontinuing ashwagandha (108745). Additionally, an otherwise healthy adult who was taking ashwagandha extract orally for 2 months experienced clinical and laboratory-confirmed thyrotoxicosis. Thyrotoxicosis resolved 50 days after discontinuing ashwagandha, without other treatment (114111). Another case report describes a 37-year-old female who presented with moderate symptomatic hyponatremia secondary to adrenal insufficiency after chronic consumption of ashwagandha for 2 years. This subject was effectively managed with oral hydrocortisone (114790).
Gastrointestinal ...Orally, large doses may cause gastrointestinal upset, diarrhea, and vomiting secondary to irritation of the mucous and serous membranes (3710). When taken orally, nausea and abdominal pain (19276,110490,113609) and gastritis and flatulence (90651) have been reported.
Genitourinary ...In one case report, a 28-year-old male with a decrease in libido who was taking ashwagandha 5 grams daily over 10 days subsequently experienced burning, itching, and skin and mucous membrane discoloration of the penis, as well as an oval, dusky, eroded plaque (3 cm) with erythema on the glans penis and prepuce (32537).
Hepatic ...Orally, ashwagandha in doses of 154 mg to 20 grams daily has played a role in several case reports of cholestatic, hepatocellular, and mixed liver injuries. In most of these cases, other causes of liver injury were excluded, and liver failure did not occur. Symptoms included jaundice, pruritus, malaise, fatigue, lethargy, weight loss, nausea, diarrhea, abdominal pain and distension, stool discoloration, and dark urine. Symptom onset was typically 5-180 days from first intake, although in some cases onset occurred after more than 12 months of use (102686,107372,110490,110491,111533,111535,112111,113610,114113). Laboratory findings include elevated aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, serum bilirubin, and international normalized ratio (INR) (112111,113610,114113). In most cases, liver enzymes normalized within 1-5 months after discontinuation of ashwagandha (102686,107372,110491,111535,112111,114113). However, treatment with corticosteroids, lactulose, ornithine, ursodeoxycholic acid, and plasmapheresis, among other interventions, was required in one case (111533). Rarely, use of oral ashwagandha has been reported to cause hepatic encephalopathy, liver failure requiring liver transplantation, and acute-on-chronic liver failure resulting in death (110490,113610).
Neurologic/CNS ...Orally, ashwagandha has been reported to cause drowsiness (110492,113609). Headache, neck pain, and blurry vision have been reported in a 47-year-old female taking ashwagandha, cannabis, and venlafaxine. Imaging over the course of multiple years and hospital admissions indicated numerous instances of intracranial hemorrhage and multifocal stenosis of intracranial arteries, likely secondary to reversible cerebral vasoconstriction syndrome (RCVS) (112113). It is unclear whether the RCVS and subsequent intracranial hemorrhages were precipitated by ashwagandha, cannabis, or venlafaxine.
General
...Orally, GABA seems to be generally well tolerated.
Sublingually, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Drowsiness, gastric upset, minor throat burning, muscle weakness, and nausea.
Cardiovascular ...Intravenously, GABA can cause dose-related increases in blood pressure and pulse (5116).
Gastrointestinal ...Orally, minor throat burning has been associated with GABA in one study (5115). In another study in which GABA was administered with phosphatidylserine, one patient experienced severe gastric distress, two patients reported moderate nausea, and one reported constipation (19364). Children with cerebral palsy taking GABA experienced nausea and decreased appetite (19362).
Genitourinary ...In one study, one patient treated with oral GABA and phosphatidylserine reported transient amenorrhea (19364).
Musculoskeletal ...Orally, minor adverse effects associated with GABA included muscle weakness (5115).
Neurologic/CNS ...Orally, GABA may cause drowsiness, headache, or tiredness (5115,19364,112830). Four children with cerebral palsy taking GABA had convulsions, and an unspecified number experienced motor restlessness. However, causality of these adverse effects was not clear, and the dose of GABA was not specified (19362). Intravenously, GABA 50 mg has been associated with a "lack of alertness" in healthy female volunteers (51159).
Psychiatric ...Intravenously, GABA 0. 1-1.0 mg/kg has been shown to induce anxiety, dysphoria, and mood disturbances in a dose-dependent manner (5116).
Other ...In one study, patients taking GABA experienced a slight warming of the body (19370).
General
...Orally, lemon balm seems to be well tolerated in food amounts and larger, medicinal amounts.
Topically, lemon balm seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Wheezing has been rarely reported.
Cardiovascular ...Orally, a case of transient complete atrioventricular block and QT prolongation is reported in a 25-year-old female following the post-workout use of a specific product (Muscle Eze Advanced) containing lemon balm and several other ingredients. Symptoms of fatigue and lightheadedness started 1 week into use of the product. Product discontinuation led to restoration of normal sinus rhythm within 24 hours and normalization of the electrocardiogram within 2 weeks (112556). It is unclear whether this occurrence is due to lemon balm, other ingredients, or the combination.
Dermatologic ...Topically, lemon balm 1% cream applied 5 times daily to cold sores has been associated with two cases of irritation and one case of cold sore exacerbation. However, these effects do not appear to occur more often with lemon balm than with placebo (790).
Gastrointestinal ...Orally, lemon balm might increase appetite in some patients (91732,104433). Nausea, vomiting, and abdominal pain have been reported rarely and do not seem to occur more often than in patients taking placebo (9993).
Neurologic/CNS ...Orally, lemon balm has been reported to cause dizziness and sedation; however, it does not seem to occur more often with lemon balm than placebo (9993,104433). Additionally, other clinical research shows that using lemon balm in conjunction with alcohol does not affect reaction time or influence cognitive performance (19427,19723).
Pulmonary/Respiratory ...Orally, lemon balm has been associated with rare cases of wheezing (9993).
General
...Orally, melatonin is generally well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, drowsiness, headache, and nausea.
Serious Adverse Effects (Rare):
Orally: There is concern that melatonin may increase the risk for seizure.
Cardiovascular ...Melatonin might increase levels of very low-density lipoprotein (VLDL) cholesterol and triglycerides (62176). Several rare or poorly described cases of abnormal heart rhythms, palpitations, fast heart rate, or chest pain have been reported. However, in these cases, the patients were taking other drugs that could account for the symptoms, and melatonin was not thought to be the cause (1079,9181,62776,62789,63067).
Dermatologic ...Papular skin rash and pruritus has been reported with melatonin use. However, the effect was generally mild and did not require cessation of melatonin treatment (62450,62754,109696), and had similar rates as placebo (96316). Cutaneous flushing has also been reported (62770,62914). Two cases of fixed drug eruption on the genitalia have been reported for patients who used oral melatonin (Nature's Bounty Natural melatonin) for preventing jet lag (88284).
Endocrine ...A case of gynecomastia (increased breast size) has been reported for a 56 year-old patient with amyotrophic lateral sclerosis (ALS) who used oral melatonin, long-term (89430). Also, reduced sperm concentration and sperm motility has been reported for two men who used oral melatonin 3 mg daily for 6 months. Improvement in sperm quality was observed for only one of the two men following melatonin cessation (62231).
Gastrointestinal ...Orally, melatonin may cause nausea (62384,62770), abdominal cramps, or mild abdominal pain (62450,62754,62914,96316), diarrhea (62804,62811,62914), constipation (96316), or decreased appetite (62345,62792). Often these symptoms occur during the first few days of treatment and subside after a few days (62804). In some cases, rates of symptoms are similar between melatonin and placebo (96316). Less often, melatonin has been reported to cause abnormal feces (62450), odd taste in the mouth (1070), or reflux esophagitis (1745) when used orally. A case of exacerbated symptoms of Crohn disease, including increased diarrhea and abdominal cramps, has been reported for a patient who took oral melatonin 3 mg at bedtime for 4 days. Symptoms resolved within 24 hours of melatonin treatment cessation (62218).
Genitourinary ...Orally, melatonin may increase enuresis in adults and children (58685,62450,62710,62770,62804,62804,62811). In perimenopausal adults, melatonin has caused a resumption of spotting or menstrual flow (11806). Decreased libido has been noted for one patient treated with melatonin 3 mg daily for 8 weeks (15216).
Hematologic ...A case of nose bleed has been reported with oral melatonin (62450). Some melatonin preparations contain contaminants that are associated with eosinophilia-myalgia syndrome (9715,9716).
Hepatic ...A case of autoimmune hepatitis has been reported for a patient who took melatonin orally to treat insomnia (63037).
Musculoskeletal ...Preliminary clinical evidence shows that a single dose of melatonin 3 mg may increase fall risk due to increased postural swaying while standing on one or both feet in healthy adults ages 60-71 years (97442). A single case of ataxia has been reported for an 81-year-old female who used melatonin for 4 days (9181). Weakened muscle power has been reported for two patients treated with melatonin 5 mg in the evening (62456). Some melatonin preparations contain contaminants that are associated with eosinophilia-myalgia syndrome (9715,9716).
Neurologic/CNS
...Orally, melatonin may cause migraine-like headache (1070,1077,15034,62384,62450,62710,62754,62804,62792,62914,88288,88293,88294,96318)(106297) or dizziness (62345,62384,62450,62456,62770,62784,62792,62804,62811,89510)(110297).
Often these symptoms occur during the first few days of treatment and subside after a few days (62804). Melatonin may also cause drowsiness or fatigue when taken orally (1077,8273,15216,62384,62456,62784,62804,62811,88288,89510,96314,96316,96318,97446)(106293,106297). These symptoms appear to be more common if melatonin is taken in the morning or at very high doses (greater than 50 mg) (8269,62874). A case of excessive drowsiness has been reported when melatonin was combined with citalopram, nortriptyline, and oxycodone. Sedation improved with discontinuation of melatonin (96315). Indiscriminate use of melatonin may cause irregular sleep-wake cycles to occur (62998). Less commonly, melatonin may also cause behavior worsening (62811), confusion or disorientation (63014,63067), nighttime awakening (62710,62811), mood swings or agitation (96318), stereotypy (96318), excitement before bedtime (62811), nightmares or more intense dreams (62401,62462,62780,62784,88283), feelings of a "rocking" sensation (62155), or reduced alertness when taken orally.
A case of generalized epilepsy has reportedly occurred after treatment with melatonin for 4 months (9708). Also, some case reports raise concerns about increased risk of seizure with melatonin treatment, but conflicting evidence suggests that melatonin may decrease the risk of seizures (1699,8248,9695,9697,9744,9746,62123,62256,62384,62754)(63070,63071,89431). One patient experienced hyponatremia with confusion and seizures after taking prolonged-release melatonin 2 mg. However, malnutrition and cannabis abuse were also thought to contribute to this reaction (96321).
Although there is concern that melatonin might affect cognitive function in healthy adults, research in humans suggests that oral or topical melatonin do not impact most measures of cognitive function (97442,97448).
Psychiatric ...Orally, melatonin may cause mood changes, including dysphoria (sadness) (1764), dips in mood (62345,62450,62792), nervousness (62784), or transient depression (1077). Delusions and hallucinations have also been reported in clinical research (62347). An isolated incident of aggressiveness was also noted in a child diagnosed with attention deficit-hyperactivity disorder (ADHD) who took melatonin in combination with methylphenidate (9980). Severe irritability has been reported in two children with autism spectrum disorder who had abruptly discontinued melatonin due to the completion of a clinical trial (106293).
General
...Orally, L-theanine seems to be well tolerated.
Most Common Adverse Effects:
Orally: Drowsiness, headaches.
Neurologic/CNS
...Orally, L-theanine may cause headaches (36439).
Patients have also reported drowsiness, increased duration of sleep, and increased dream activity after oral L-theanine use (96331).
A case of subtle facial tic starting within 4 days of taking L-theanine 400 mg daily has been reported for a pediatric patient. Although the tics reportedly ceased once theanine was discontinued, the child had exhibited tics in the past. Therefore, the adverse effect was not thought to be related to L-theanine (91744).