Ingredients | Two Capsules Contain: |
---|---|
(as Chromium Chelidamate Arginate)
(Chromium (Form: as Chromium Chelidamate Arginate) )
|
200 mcg |
Quercetin Phytosome
|
400 mg |
(Gymnema sylvestre )
(leaf)
|
200 mg |
100 mg | |
(Vaccinium myrtillus )
(fruit)
|
80 mg |
(Momordica charantia )
(fruit)
|
80 mg |
3 mg |
Hypromellose (Form: derived from Cellulose) Note: capsule, Microcrystalline Cellulose, Silicon Dioxide (Alt. Name: SiO2), Leucine
Below is general information about the effectiveness of the known ingredients contained in the product Diabenil. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Diabenil. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Alpha-lipoic acid has been used with apparent safety in doses of up to 2 grams daily for 3 months to 2 years. Lower doses of 600 mg daily have been used with apparent safety for up to 4 years (3540,3541,3542,20479,96449,97630,101867,101869,103327,103333)(103335,104651,104660,113892,113897). ...when used topically and appropriately. A cream containing alpha-lipoic acid 5% has been used with apparent safety in clinical trials lasting up to 12 weeks (12021). ...when given intravenously and appropriately. Intravenous alpha-lipoic acid has been used safely in doses of up to 6000 mg weekly in clinical trials lasting up to 3 weeks (3540,3557,10148,12106).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Alpha-lipoic acid has been used with apparent safety in doses of up to 600 mg daily for 3 months in children aged 10-17 years (103330).
CHILDREN: POSSIBLY UNSAFE
when used orally in amounts over 600 mg daily.
At least five cases of alpha-lipoic acid intoxication have been reported for children aged 14 months to 16 years who consumed alpha-lipoic acid at doses up to 226 mg/kg (approximately 2400 mg). Symptoms of alpha-lipoic acid-induced intoxication included seizures, acidosis, vomiting, and unconsciousness (90444,96227,96234,104653).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Alpha-lipoic acid has been used safely during pregnancy at doses up to 600 mg daily for up to 4 weeks (96222).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Bilberry has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. Bilberry fruit extracts have been used with apparent safety in clinical trials at a dose of up to 160 mg daily for up to 6 months (39,40,8139,9739,14280,35472,35510,35512,103190,104192,104195). A higher bilberry extract dose of 1.4 grams daily has been used with apparent safety for up to 4 weeks (104194). Whole bilberries or bilberry juice have also been consumed with apparent safety in quantities of 100-160 grams daily for up to 35 days (35463,91506).
POSSIBLY UNSAFE ...when the leaves are used orally in high doses or for a prolonged period. Death can occur with chronic use of 1.5 gram/kg daily (2).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts commonly found in foods.
However, there is insufficient reliable information available about the safety of bilberry when used in medicinal amounts during pregnancy and lactation; avoid using.
POSSIBLY SAFE ...when the fruit is used orally and appropriately, short-term. Powdered bitter melon fruit 0.5-12 grams daily for up to 4 months has been used (92126,100631,100632,109583). Extracts of bitter melon fruit have also been used safely for up to 3 months (36,15566,106408). There is insufficient reliable information available about long-term use of bitter melon or the safety of bitter melon when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Animal research shows that two proteins isolated from the raw fruit of bitter melon possess abortifacient properties (3724,35719,35722,35728). Also, one animal study shows that bitter melon juice significantly reduces the fertility rate of mice (35728). However, these effects of bitter melon have not been assessed in humans.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chromium has been safely used in doses up to 1000 mcg daily for up to 6 months (1934,5039,5040,6858,6859,6860,6861,6862,6867,6868)(7135,7137,10309,13053,14325,14440,17224,90057,90061)(90063,94234,95095,95096,95097,98687); however, most of these studies have used chromium doses in a range of 150-600 mcg. The Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, long-term. Chromium has been safely used in a small number of studies at doses of 200-1000 mcg daily for up to 2 years (7060,7135,42618,42628,42666,110605,110607,110609). However, the Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts not exceeding the daily adequate intake (AI) levels by age: 0-6 months, 0.
2 mcg; 7-12 months, 5.5 mcg; 1-3 years, 11 mcg; 4-8 years, 15 mcg; males 9-13 years, 25 mcg; males 14-18 years, 35 mcg; females 9-13 years, 21 mcg; females 14-18 years, 24 mcg (7135). POSSIBLY SAFE...when used orally and appropriately in amounts exceeding AI levels. Chromium 400 mcg daily has been used safely for up to 6 weeks (42680).
PREGNANCY: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for pregnancy is 28 mcg daily for those 14-18 years of age and 30 mcg daily for those 19-50 years of age (7135).
PREGNANCY: POSSIBLY SAFE
when used orally in amounts exceeding the adequate intake (AI) levels.
There is some evidence that patients with gestational diabetes can safely use chromium in doses of 4-8 mcg/kg (1953); however, patients should not take chromium supplements during pregnancy without medical supervision.
LACTATION: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for lactation is 44 mcg daily for those 14-18 years of age and 45 mcg daily for those 19-50 years of age (7135). Chromium supplements do not seem to increase normal chromium concentration in human breast milk (1937). There is insufficient reliable information available about the safety of chromium when used in higher amounts while breast-feeding.
POSSIBLY SAFE ...when used orally and appropriately. Gymnema leaf extract has been used safely in doses of 200 mg twice daily for up to 20 months or 300 mg twice daily for 12 weeks (45,46,42604,105346).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Vanadium is safe when taken in amounts below the tolerable upper intake level (UL) of 1.8 mg daily (7135).
POSSIBLY UNSAFE ...when used orally in high doses. Taking more than the tolerable upper intake level (UL) of 1.8 mg daily can increase the risk of gastrointestinal side effects and theoretically, kidney toxicity (7135). In some cases, patients with diabetes have used very high doses (100 mg daily) safely for up to 4 weeks (3055,3056,3057). However, there is concern that prolonged use of high doses might cause serious side effects including kidney damage (7135). Doses of 22.5 mg daily for five months can cause cramps and diarrhea (3012).
CHILDREN: LIKELY SAFE
when used orally in amounts found in foods (7135).
There is insufficient reliable information available about the safety of vanadium when used in amounts greater than those typically found in foods.
PREGNANCY: LIKELY SAFE
when used orally in amounts found in foods (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Epidemiological research has found that increased urinary levels of vanadium are associated with an increased risk of both term and preterm premature rupture of membranes (PROM). When comparing tertiles of urinary vanadium levels, patients in the middle tertile had 1.66 times the risk of term PROM when compared with the lowest tertile, and those in the highest tertile had 3.75 times the risk. For preterm PROM (rupture prior to 37 weeks' gestation), those in the highest tertile had an 8.14 times increased risk when compared with those in the lowest tertile (99052). Epidemiological research has also found that higher prenatal serum levels of vanadium are associated with impaired fetal growth, particularly in male newborns. The risk appears greatest with vanadium exposure in the second trimester (102096).
LACTATION: LIKELY SAFE
when used orally in amounts found in foods (7135).
There is insufficient reliable information available about the safety of vanadium when used in amounts greater than those typically found in foods; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Diabenil. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, the antioxidant effects of alpha-lipoic acid might alter the effectiveness of alkylating agents.
The use of antioxidants like alpha-lipoic acid during chemotherapy is controversial. There are concerns that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as alpha-lipoic acid have on chemotherapy. Advise patients to consult their oncologist before using alpha-lipoic acid.
|
Theoretically, alpha-lipoic acid may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
In vitro, alpha-lipoic acid inhibits platelet aggregation (98682).
|
Theoretically, taking alpha-lipoic acid with antidiabetes drugs might increase the risk of hypoglycemia.
Although some small clinical studies have suggested that alpha-lipoic acid can lower blood glucose levels (3545,3874,3875,3876,20490,20493,104650), larger clinical studies in patients with diabetes have shown no clinically meaningful effect (20494,20495,20496,90443,90445,110118). Additionally, co-administration of single doses of alpha-lipoic acid and glyburide or acarbose did not cause detectable drug interactions in healthy volunteers (3870).
|
Theoretically, the antioxidant effects of alpha-lipoic acid might alter the effectiveness of antitumor antibiotics.
The use of antioxidants like alpha-lipoic acid during chemotherapy is controversial. There are concerns that antioxidants could reduce the activity of antitumor antibiotic drugs, which work by generating free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as alpha-lipoic acid have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using alpha-lipoic acid.
|
Theoretically, alpha-lipoic acid might decrease the effects of thyroid hormone drugs.
Animal research suggests that co-administration of thyroxine with alpha-lipoic acid reduces conversion into the active T3 form (8946).
|
Theoretically, bilberry fruit extract might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, bilberry leaf or fruit extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal research suggests that bilberry leaf extract might have blood glucose-lowering activity (1264). Also, one small clinical trial in patients with type 2 diabetes shows that taking bilberry fruit extract 470 mg as a single dose prior to an oral glucose tolerance test lowers plasma glucose levels when compared with placebo (91507).
|
Theoretically, bilberry fruit extract might decrease levels of drugs metabolized by CYP2E1.
Animal research shows that exposure to small concentrations of bilberry extract in drinking water for around one month increased CYP2E1 activity by 31%. However, exposure over a 2-month period did not increase CYP2E1 activity (103191). This effect has not been reported in humans.
|
Theoretically, bilberry fruit extract might reduce the efficacy of erlotinib.
In vitro research suggests that bilberry fruit extract and its constituents, delphinidin and delphinidin-3-O-glucoside, inhibit the activity of erlotinib (97031). This interaction has not been reported in humans.
|
Taking bitter melon with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, bitter melon might increase levels of P-glycoprotein substrates.
Bitter melon might inhibit the p-glycoprotein (P-gp) intestinal pump and increase intracellular levels of P-gp substrates. In vitro research in intestinal cells shows that 1-monopalmitin, a constituent of bitter melon, increases levels of daunomycin, a P-gp substrate (97509). Additionally, drinking bitter melon juice has been associated with a case of acute pancreatitis in a patient who had been taking pazopanib, a P-gp substrate, for 8 years. Researchers theorize that inhibition of P-gp led to increased levels of pazopanib, resulting in pazopanib-induced pancreatitis (109581).
|
Theoretically, bitter melon might increase levels of pazopanib, potentially increasing the risk of adverse effects.
In one case, a 65-year-old patient taking pazopanib for 8 years for renal cell carcinoma experienced signs and symptoms consistent with acute pancreatitis 4 days after drinking bitter melon juice at a dose of 100-150 mL daily. The patient's symptoms, amylase levels, and lipase levels improved upon discontinuation of bitter melon and pazopanib. Pazopanib treatment was re-initiated with no further evidence of pancreatitis. Researchers theorize that inhibition of P-glycoprotein by bitter melon led to increased levels of pazopanib, a P-glycoprotein substrate, resulting in pazopanib-induced pancreatitis (109581).
|
Theoretically, chromium may have additive effects with antidiabetic agents and increase the risk of hypoglycemia.
|
Theoretically, aspirin might increase chromium absorption.
Animal research suggests that aspirin may increase chromium absorption and chromium levels in the blood (21055).
|
Theoretically, concomitant use of chromium and insulin might increase the risk of hypoglycemia.
|
Chromium might bind levothyroxine in the intestinal tract and decrease levothyroxine absorption.
Clinical research in healthy volunteers shows that taking chromium picolinate 1000 mcg with levothyroxine 1 mg decreases serum levels of levothyroxine by 17% when compared to taking levothyroxine alone (16012). Advise patients to take levothyroxine at least 30 minutes before or 3-4 hours after taking chromium.
|
NSAIDs might increase chromium levels in the body.
Drugs that are prostaglandin inhibitors, such as NSAIDs, seem to increase chromium absorption and retention (7135).
|
Theoretically, taking gymnema with antidiabetes drugs might increase the risk of hypoglycemia.
Gymnema reduces blood glucose levels in some human and animal research. In human studies, it has been shown to enhance the blood glucose lowering effects of hypoglycemic drugs (45,46,92119,92121,92123). However, other research in adults with prediabetes or metabolic syndrome suggests that gymnema does not reduce fasting levels of blood glucose (96235,105346). Until more is known, monitor blood glucose levels closely.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP1A2.
Animal and in vitro research shows that gymnema can inhibit the CYP1A2 enzyme (96236,96237,96238). In one animal study, oral administration of gymnema for 7 days increased the plasma concentrations of phenacetin, a CYP1A2 substrate, by about 1.4-fold and reduced the clearance of phenacetin by about 29% (96237).
|
Theoretically, gymnema might increase or decrease levels of drugs metabolized by CYP2C9.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP3A4.
One in vitro study using rat liver microsomes shows that gymnema can modestly inhibit the CYP3A4 enzyme (96238). However, other in vitro research using human liver microsomes shows that gymnema does not affect CYP3A4 activity (96236). Animal research also shows that gymnema does not alter the function of CYP3A4. In one study in rats, oral administration of gymnema for 7 days did not alter the clearance of amlodipine, a CYP3A4 substrate (96237).
|
Theoretically, taking gymnema with phenacetin might increase the levels of phenacetin.
|
Theoretically, taking gymnema with tolbutamide might the decrease levels of tolbutamide.
Animal research shows that gymnema, administered orally for 7 days, increases the clearance of tolbutamide by 2.4-fold when compared to control (96237).
|
Theoretically, vanadium might increase the risk of bleeding when taken with anticoagulant/antiplatelet drugs.
In vitro research shows that the sodium orthovanadate form of vanadium prolongs clotting time, likely through inhibition of thrombin and factor Xa (3054).
|
Theoretically, vanadium might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Below is general information about the adverse effects of the known ingredients contained in the product Diabenil. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Alpha-lipoic acid appears to be generally well tolerated when used orally, intravenously, or topically.
Most Common Adverse Effects:
Orally: Headache, heartburn, nausea, and vomiting.
Topically: Irritation and rash.
Intravenously: Nausea and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about insulin autoimmune syndrome (IAS).
Cardiovascular ...Orally, hypotension has been reported rarely in a clinical trial (104650).
Dermatologic ...Orally, skin rash and itching have been reported after use of alpha-lipoic acid (16391,20490,21674,96233,104650). Topically, alpha-lipoic acid can cause local irritation, including burning, stinging, mild rash, or contact dermatitis (12021,30836,111701). In one case, an 86-year-old female developed allergic contact dermatitis with severe itching and oozing after applying alpha-lipoic acid 5% cream to her lower extremities. The patient had a positive skin patch test for alpha-lipoic acid, confirming the causative agent (111701). In another case, a 47-year-old female developed contact dermatitis characterized by a pruritic rash and labial adhesions hours after applying a 5% vulvar serum containing lipoic acid 0.9 grams, vitamin E, vitamin C, hyaluronic acid, and retinol palmitate to the vulva to treat vulvar lichen sclerosis. Testing confirmed that the causative agent was alpha-lipoic acid (111704). Intravenously, local allergic reactions have occurred at the injection site (1547).
Endocrine ...Orally, at least 50 published cases of insulin autoimmune syndrome (IAS) thought to be associated with use of alpha-lipoic acid have been reported (16392,104656,104657,104658,104659,107893,112941). Most reported cases have been associated with alpha-lipoic acid supplements or enriched foods; IAS has not been reported with intake of alpha-lipoic acid in food. IAS has been linked to compounds, such as alpha-lipoic acid, that contain sulfhydryl groups, but it is unclear if taking alpha-lipoic acid with other drugs known to trigger IAS increases the risk (107893,112941). IAS is characterized by very high serum insulin levels and high titers of autoantibodies against endogenous insulin. Sulfhydryl groups interact with disulfide bonds of insulin, increasing its immunogenicity (112941). Symptoms include severe spontaneous hypoglycemic episodes, as well as hunger and neuroglycopenic symptoms such as blurred vision, weakness, confusion, dizziness, sweating, and palpitations (104656,104657,107893,112941). Time to onset of IAS ranges from 1 week to 4 months (107893). Most cases of IAS have been reported in Japan and have occurred in individuals with the human leucocyte antigen (HLA)-DRB1*04:06 allele (16392,104656,107893). For patients of European decent, cases of IAS have mainly occurred in individuals with the HLA-DRB1*04:03 allele (104656,104658,104659,107893). This suggests that either of these alleles might produce a genetic predisposition to alpha-lipoic acid-associated IAS. Reported doses of alpha-lipoic acid have ranged from 200-800 mg daily, most commonly 600 mg daily (104656,104658,104659,107893). IAS-related hypoglycemic episodes have been treated with oral or intravenous glucose or sucrose, as well as prednisone. Episodes decline following discontinuation of alpha-lipoic acid, and insulin values normalize within 3-9 months (104656,104658,104659,107893).
Gastrointestinal ...Orally, heartburn, nausea, and vomiting have been reported after use of alpha-lipoic acid (3557,12106,16391,20475,30844,96225,101868,103327,103328,103333)(103335,104650,104654,104655). Higher doses (1200-1800 mg daily) seem to cause more severe effects than lower doses (600 mg daily) (3557,20475,30844,96225). Alpha-lipoic acid may also cause a burning sensation from the throat to the stomach, abdominal discomfort, or bitter taste when used orally (20478,20490,21664,96225). Intravenously, alpha-lipoic acid can cause gastrointestinal upset, including nausea and vomiting. Adverse effects are more common in patients receiving higher intravenous doses (3557) and may be more common in the elderly (96225).
Genitourinary ...Orally, alpha-lipoic acid may cause urinary disorders (20479). Oral alpha-lipoic acid has also been associated with a change in urine odor (96225,103327).
Neurologic/CNS
...Orally, alpha-lipoic acid may cause headache (21664,103328,104655) or dizziness (104650).
Intravenously, paresthesias have been reported to worsen temporarily at the beginning of therapy. Also, intravenous alpha-lipoic acid can cause headache. Adverse effects are more common in patients receiving higher intravenous doses (3557).
General
...Orally, bilberry fruit, juice, and extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Dark-colored stools, flatulence, and gastrointestinal discomfort.
Gastrointestinal
...In one small clinical trial, mild-to-moderate flatulence was reported in 33% of patients taking sieved bilberries and concentrated bilberry juice (91506).
However, the patients in this study had ulcerative colitis, and the study lacked a control group, limiting the validity of this finding. In another small clinical study of males with age-related cognitive impairment, temporary adverse gastrointestinal (GI) effects were reported in 13% of patients drinking a combination of bilberry and grape juice. However, the adverse GI effect rate was identical in patients drinking a placebo juice (110641). A post-marketing surveillance report of 2295 patients using bilberry extract (Tegens) found that 1% of patients complained of GI discomfort and less than 1% experienced nausea or heartburn (35500).
Theoretically, fresh bilberry fruit may have laxative effects. One clinical trial noted an increased frequency of bowel movements following the administration of a combination formulation containing aerial agrimony parts, cinnamon quills, powdered bilberry fruit, and slippery elm bark (35462). It is unclear if these effects were due to bilberry, other ingredients, or the combination.
Other ...Orally, bilberry may cause discoloration of feces and the tongue. In one study, a dark-bluish to black discoloration of both the feces and the tongue was observed following consumption of sieved bilberries and concentrated bilberry juice. In one patient, a slight discoloration of the teeth has also been observed (91506). In another study, 50% of patients reported dark green stools after taking bilberry extract 700 mg twice daily for 4 weeks (104194).
General
...Orally, bitter melon is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, constipation, diarrhea, dizziness, fatigue, flatulence, headache, heartburn, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Hypoglycemic coma and seizures (in children).
Dermatologic ...In one clinical study, two out of 31 patients taking bitter melon 4 grams daily experienced skin rash. Reports of skin rashes did not occur for patients taking bitter melon 2 grams daily (92126).
Endocrine ...Two cases of hypoglycemic coma have occurred in children after administration of a bitter melon tea (15568).
Gastrointestinal ...The most common adverse effects associated with bitter melon in clinical studies are gastrointestinal, such as heartburn, anorexia, nausea, vomiting, diarrhea, constipation, flatulence, and abdominal discomfort (92126,100632,100633,106408). In one study, these events occurred in about 3% to 16% of patients taking bitter melon (92126).
Neurologic/CNS ...Headaches, dizziness, and fatigue have been reported after the ingestion of bitter melon (15568,92126,100633,112372). In one clinical study, about 5% of patients taking bitter melon 2-4 grams daily reported dizziness (92126). Two cases of seizures have occurred in children after administration of a bitter melon tea (15568).
Renal ...In one case report, a 60-year-old female was diagnosed with acute interstitial nephritis after a gradual decline in renal function over 9 months. The patient later admitted to taking bitter melon extract 600 mg daily for 3 months followed by 1200 mg daily for 4 months for diabetes. Upon discontinuation of bitter melon and treatment with prednisolone, serum creatinine levels returned to baseline within 3 months (109582).
General
...Orally, chromium is generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal irritation, headaches, insomnia, irritability, mood changes.
Serious Adverse Effects (Rare):
Orally: Rare cases of kidney and liver damage, rhabdomyolysis, and thrombocytopenia have been reported.
Dermatologic
...Orally, chromium-containing supplements may cause acute generalized exanthematous pustulosis (42561), skin rashes (42679), and urticaria (17224).
Also, chromium picolinate or chromium chloride may cause systemic contact dermatitis when taken orally, especially in patients with contact allergy to chromium (6624,90058). In one clinical study, a patient taking chromium nicotinate 50 mcg daily reported itchy palms that improved after the intervention was discontinued. It is unclear of this effect was due to the chromium or another factor (95096).
Topically, hexavalent chromium, which can be present in some cement, leather products, or contaminated soil, may cause allergic contact dermatitis (42645,42789,90060,90064,110606).
A case of lichen planus has been reported for a patient following long-term occupational exposure to chromium (42688).
Endocrine ...Orally, cases of hypoglycemia have been reported for patients taking chromium picolinate 200-1000 mcg daily alone or 200-300 mcg two or three times weekly in combination with insulin (42672,42783). Chromium picolinate has also been associated with weight gain in young females who do not exercise and in those following a weight-lifting program (1938).
Gastrointestinal
...Orally, chromium in the form of chromium picolinate, chromium polynicotinate, chromium-containing brewer's yeast, or chromium-containing milk powder may cause nausea, vomiting, diarrhea, decreased appetite, constipation, flatulence, or gastrointestinal upset (14325,42594,42607,42622,42643,42679).
Long-term exposure to heavy metals, including chromium, has been associated with increased risk of gallbladder disease and cancer (42682,42704).
Genitourinary ...Orally, chromium polynicotinate has been associated with disrupted menstrual cycles in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Hematologic ...Anemia, hemolysis, and thrombocytopenia were reported in a 33 year-old female taking chromium picolinate 1200-2400 mcg daily for 4-5 months (554). The patient received supportive care, blood product transfusions, and hemodialysis and was stabilized and discharged a few days later. Lab values were normal at a one-year follow-up.
Hepatic ...Liver damage has been reported for a 33-year-old female taking chromium picolinate 1200 mcg daily for 4-5 months (554). Also, acute hepatitis has been reported in a patient taking chromium polynicotinate 200 mcg daily for 5 months (9141). Symptoms resolved when the product was discontinued. Two cases of hepatotoxicity have been reported in patients who took a specific combination product (Hydroxycut), which also contained chromium polynicotinate in addition to several herbs (13037).
Musculoskeletal ...Acute rhabdomyolysis has been reported for a previously healthy 24-year-old female who ingested chromium picolinate 1200 mcg over a 48-hour time period (42786). Also, chromium polynicotinate has been associated with leg pain and paresthesia in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Neurologic/CNS ...Orally, chromium picolinate may cause headache, paresthesia, insomnia, dizziness, and vertigo (6860,10309,14325,42594). Vague cognitive symptoms, slowed thought processes, and difficulty driving occurred on three separate occasions in a healthy 35-year-old male after oral intake of chromium picolinate 200-400 mcg (42751). Transient increases in dreaming have been reported in three patients with dysthymia treated with chromium picolinate in combination with sertraline (2659). A specific combination product (Hydroxycut) containing chromium, caffeine, and ephedra has been associated with seizures (10307). But the most likely causative agent in this case is ephedra.
Psychiatric ...Orally, chromium picolinate has been associated with irritability and mood changes in patients taking the supplement to lose weight, while chromium polynicotinate has been associated with agitation and mood changes in patients taking the supplement to prevent weight gain during smoking cessation (6860,42643).
Renal
...Orally, chromium picolinate has been associated with at least one report of chronic interstitial nephritis and two reports of acute tubular necrosis (554,1951,14312).
Laboratory evidence suggests that chromium does not cause kidney tissue damage even after long-term, high-dose exposure (7135); however, patient- or product-specific factors could potentially increase the risk of chromium-related kidney damage. More evidence is needed to determine what role, if any, chromium has in potentially causing kidney damage.
Intravenously, chromium is associated with decreased glomerular filtration rate (GFR) in children who receive long-term chromium-containing total parenteral nutrition - TPN (11787).
Topically, burns caused by chromic acid, a hexavalent form of chromium, have been associated with acute chromium poisoning with acute renal failure (42699). Early excision of affected skin and dialysis are performed to prevent systemic toxicity.
Other ...Another form of chromium, called hexavalent chromium, is unsafe. This type of chromium is a by-product of some manufacturing processes. Chronic exposure can cause liver, kidney, or cardiac failure, pulmonary complications, anemia, and hemolysis (9141,11786,42572,42573,42699). Occupational inhalation of hexavalent chromium can cause ulceration of the nasal mucosa and perforation of the nasal septum, and has been associated with pneumoconiosis, allergic asthma, cough, shortness of breath, wheezing, and increased susceptibility to respiratory tract cancer and even stomach and germ cell cancers (42572,42573,42601,42610,42636,42667,42648,42601,42788,90056,90066). Although rare, cases of interstitial pneumonia associated with chromium inhalation have been reported. Symptoms resolved with corticosteroid treatment (42614).
General ...Orally, gymnema seems to be well tolerated.
Hepatic ...A case of drug-induced hepatitis characterized by weakness, fatigue, jaundice, and elevated liver enzymes, has been reported for a patient who consumed gymnema tea three times daily for 10 days. The patient was administered prednisone 60 mg once daily and was eventually tapered off prednisone and discharged. Laboratory values normalized after 6 months (95005). A case of hepatitis-associated aplastic anemia characterized by jaundice, elevated liver function tests, and pancytopenia has been reported for a patient who consumed gymnema 2 grams twice daily for at least a month. Treatment with ursodeoxycholic acid for 8 weeks led to resolution of cholestatic hepatitis; however, the pancytopenia was not responsive to treatment with immunosuppressive drugs and the patient died 5 months after presentation (110021). The exact reason for these adverse effects is not clear; they may have been idiosyncratic.
General
...Orally, vanadium is well tolerated when taken in amounts below the tolerable upper intake level (UL) of 1.
8 mg daily. Higher doses may cause adverse effects.
Most Common Adverse Effects:
Orally: Gastrointestinal adverse effects, including abdominal discomfort, diarrhea, flatulence, and nausea, when taken at doses above the UL.
Serious Adverse Effects (Rare):
Orally: Kidney damage, when taken long-term at high doses.
Topically: Contact dermatitis and other allergic reactions in sensitive individuals.
Cardiovascular ...Higher levels of vanadium in the body have been associated with a greater risk for hypertension (107923). However, it is unclear if oral supplementation with vanadium causes elevated blood pressure.
Dermatologic ...Allergic reactions to vanadium metal have been reported (99051,102095). A 68-year-old female developed an itchy, erythematous rash, ocular pruritus, and a positive skin test to vanadium after implantation of a vanadium-containing knee prosthesis (99051). Contact dermatitis, presenting as pruritic eczema of the hand, and a positive skin patch test to vanadium was reported in a 39-year-old male who worked with vanadium-containing tools (102095).
Endocrine ...In some cases, patients with diabetes have used very high doses (100 mg daily) safely for up to 4 weeks (3055,3056,3057). However, high body levels of vanadium have been associated with an increased incidence malnutrition-related diabetes mellitus (3020).
Gastrointestinal ...Orally, vanadium most commonly causes mild gastrointestinal upset (7135). There is concern that taking doses exceeding the tolerable upper intake level (UL) of 1.8 mg per day can increase the risk of gastrointestinal side effects and possibly lead to more severe toxicity. At higher doses, vanadium frequently causes gastrointestinal effects including abdominal discomfort, diarrhea, nausea, and flatulence (3012,3055,3056,3057,12557,12558). Doses of 22.5 mg daily can also cause cramps (3012). Vanadium has also been associated with green discoloration of the tongue, which is unrelated to dose (7135).
Immunologic
...Allergic reactions to vanadium metal have been reported (99051,102095).
A 68-year-old female developed an itchy, erythematous rash, ocular pruritus, and a positive skin test to vanadium after implantation of a vanadium-containing knee prosthesis (99051). Contact dermatitis, presenting as pruritic eczema of the hand, and a positive skin patch test to vanadium was reported in a 39-year-old male who worked with vanadium-containing tools (102095).
Higher levels of vanadium in the body have been associated with a weakened immune system in children, as measured by reductions in CD3+ and CD4+ cell counts (107924). However, it is unclear if oral supplementation with vanadium causes a weakened immune system or increases the risk of infection.
Neurologic/CNS ...Orally, vanadium has been rarely associated with fatigue, lethargy, and focal neurological lesions, which are unrelated to dose (7135).
Pulmonary/Respiratory ...Severe and chronic respiratory tract disorders have been reported from occupational exposure to vanadium dusts (17).
Renal ...In some cases, patients with diabetes have used very high doses (100 mg daily) of vanadium safely for up to 4 weeks (3055,3056,3057). However, there is concern based on animal research that prolonged use of high doses might cause serious side effects including kidney damage (7135). High body levels of vanadium have also been associated with an increased incidence of kidney stones, distal renal tubular acidosis, hypokalemic periodic paralysis, and sudden unexplained nocturnal death (3020).