Four tablets contain: L-Glutamine 1000 mg • L-Arginine (pyroglutamate) 900 mg • Creatine Monohydrate 500 mg • L-Citrulline 300 mg • Taurine 300 mg • Betaine HCl 300 mg • Cinnamon extract 250 mg • Green Tea extract 100 mg • Panax ginseng Docosahexaenoic Acid (docosahexaenoic acid) 100 mg • Ginseng (panax ginseng) 50 mg • PAK (pyridoxine, alpha-ketoglutarate) 25 mg • Niacin 25 mg • Pantothenic Acid / Pantethine 90/10 25 mg. L-Citrulline
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product BioChem Anabolic Max. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product BioChem Anabolic Max. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when taken orally as a single dose of up to 1500 mg (93328,93329). There is insufficient reliable information available about the safety of betaine hydrochloride when used in multiple doses.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Creatine supplementation appears to be safe when used at loading doses of up to 25 grams daily or 0.3 grams/kg daily for up to 14 days in healthy adults (1367,2100,2101,3996,4569,10064,15354,15520,46570,46587)(46673,46688,46719,46753,46801,103278,103279,108336). Creatine supplementation also appears to be safe when used at maintenance doses of 4-5 grams daily for up to 18 months (2101,4578,15353,15354,15520,46587,46673,46690,46753,46838,102164,103278,108336).
POSSIBLY SAFE ...when used orally and appropriately, long-term. Creatine supplementation has been safely used at doses of up to 10 grams daily for up to 5 years in some preliminary clinical research (1367,3996). There is insufficient reliable information available about the safety of creatine when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Creatine supplementation appears to be safe when used in appropriate doses in infants and children. Creatine 3-5 grams daily for 2-6 months has been safely used in children 5-18 years of age (6182,46596,46739,46841). Creatine 2 grams daily for 6 months has been safely used in children 2-5 years of age (46841). Additionally, weight-based dosing of creatine 0.1-0.4 grams/kg daily in infants and children or 4.69 grams/m2 in children weighing over 40 kg has been used safely for up to 6 months (46623,46629,46694,46759,104672).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. DHA has been used safely in studies lasting up to 4 years (1016,1043,6413,10321,10869,11333,90684). Fish oil supplements containing DHA have also been safely used in studies lasting up to 7 years (1016). While doses of DHA up to 4 grams orally daily have been used safely in some clinical research (6143), there is some concern that high intake of omega-3 fatty acids such as DHA might increase the risk of bleeding. For this reason, the US Food and Drug Administration (FDA) recommends that consumers limit intake of DHA plus eicosapentaenoic acid (EPA), another omega-3 fatty acid also found in fish oil, to 3 grams daily, with no more than 2 grams daily from a dietary supplement (95739).
POSSIBLY SAFE ...when used intravenously and appropriately, in combination with eicosapentaenoic acid (EPA), short-term. Daily infusions with an omega-3 fatty acid-based lipid emulsion (Omegavenous 10%, Fresenius Aktiengesellschaft) providing 4.2 grams/day of DHA and EPA has been used safely for 14 days (1004).
POSSIBLY UNSAFE ...when used orally in high doses. Doses greater than 3 grams daily might decrease platelet aggregation and increase the risk of bleeding (1313). The US Food and Drug Administration (FDA) recommends that consumers limit intake of DHA plus eicosapentaenoic acid (EPA), another omega-3 fatty acid, to 3 grams daily, with no more than 2 grams daily from a dietary supplement (95739).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
DHA is a component of some infant formula (424,1045,5708,5941,7599,14403,15003,15495,17735,48088)(48194,48266,48343,90665,90713,90716,110357). In children 7 years and older, DHA 30 mg/kg daily has been used safely for up to 4 years (90684). Also, DHA 0.4-1 grams daily has been safely used in children ages 4 years and older for up to 1 year (11333,90665,100940,104560).
CHILDREN: POSSIBLY UNSAFE
when used orally in preterm infants born less than 29 weeks gestation.
Although not all findings agree (110356,110359), supplementation with an enteral emulsion containing DHA 40 mg/kg to 60 mg/kg daily might increase the risk of developing or worsening bronchopulmonary dysplasia compared to control emulsion (96523,110359).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
An intake of DHA 650 mg daily from food and/or supplements during pregnancy seems to be required to prevent a reduction in DHA status before delivery (110329). DHA is commonly used during pregnancy and lactation and is a component of some prenatal supplements. DHA is a normal component of breast milk, with higher levels in breast milk following term vs. preterm pregnancies (14393,14394,14396,14400,14403,14397,20000,47977,47994,48095)(90672,90718,110355). When taken as a prenatal supplement, DHA increases DHA levels in breast milk (90685). Doses of DHA ranging from 300-600 mg daily beginning during the first trimester of pregnancy have been used safely in clinical research (90672,90676,90687,90694). When taken during lactation, DHA increases DHA levels in breast milk (109214,110362). When initiated within 72 hours of delivery of a very preterm infant, taking DHA 1.2 grams daily increases DHA levels in breast milk within 14 days (109214). One study found that DHA supplementation during lactation increased the risk of bronchopulmonary dysplasia in breast-feeding infants born less than 29 weeks gestational age (104559); however, it is unclear if this was due to DHA or various confounding factors. The tolerable upper intake level of DHA during pregnancy or lactation has not been established; most experts recommend DHA 200-300 mg daily. While it is typically advised that this need is met by consuming 8-12 ounces of seafood weekly during pregnancy and 4-8 ounces weekly during lactation, those with nutrient deficiency or those following a vegan diet may meet this need with supplementation (95740,95741).
LIKELY SAFE ...when used orally and appropriately. Glutamine has been safely used in clinical research in doses up to 40 grams per day or 1 gram/kg daily (2334,2337,2338,2365,5029,5462,7233,7288,7293), (52288,52307,52308,52311,52313,52337,52349,52350,96516,97366). A specific glutamine product (Endari) is approved by the US Food and Drug Administration (FDA) (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 600 mg/kg daily in clinical trials (2363,2366,5448,5452,5453,5454,5458,7293,52272,52275), (52283,52289,52304,52306,52316,52341), (52359,52360,52371,52377,52381,52284,52385,52408,96637,96507,96516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Glutamine has been shown to be safe in clinical research when used in amounts that do not exceed 0.7 grams/kg daily in children 1-18 years old (11364,46657,52321,52323,52363,86095,96517). A specific glutamine product (Endari) is approved by the US Food and Drug Administration for certain patients 5 years of age and older (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 0.4 grams/kg daily in clinical research (52338,96508). There is insufficient reliable information available about the safety of glutamine when used in larger amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of glutamine when used in larger amounts as medicine during pregnancy or lactation.
LIKELY SAFE ...when green tea is consumed as a beverage in moderate amounts (733,6031,9222,9223,9225,9226,9227,9228,14136,90156)(90159,90168,90174,90184,95696). Green tea contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 8 cups of green tea daily, or approximately 400 mg of caffeine, is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). ...when a specific green tea extract ointment is used topically and appropriately, short-term. The specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins is an FDA-approved prescription product. It has been safely used in trials lasting up to 16 weeks (15067). The safety of treatment beyond 16 weeks or multiple treatment courses is not known.
POSSIBLY SAFE ...when green tea extract is used orally. Green tea extract containing 7% to 12% caffeine has been used safely for up to 2 years (8117,37725). Also decaffeinated green tea extract up to 1.3 grams daily enriched in EGCG has been used safely for up to 12 months (90158,97131). In addition, green tea extract has been safely used as part of an herbal mixture also containing garcinia, coffee, and banaba extracts for 12 weeks (90137). ...when used topically and appropriately as a cream or mouthwash (6065,11310,90141,90150,90151).
POSSIBLY UNSAFE ...when consumed as a beverage in large quantities. Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Doses of caffeine greater than 600 mg per day, or approximately 12 cups of green tea, have been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832). These effects would not be expected to occur with the consumption of decaffeinated green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. There is also some speculation that green tea products containing higher amounts of the catechin epigallocatechin gallate (EGCG) might have increased risk of adverse events. Some research has found that taking green tea products containing EGCG levels greater than 200 mg is associated with increased risk of mild adverse effects such as constipation, increased blood pressure, and rash (90161). Other research has found that doses of EGCG equal to or above 800 mg daily may be associated with increased risk of liver injury in humans (95440,95696,97131).
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, and prior caffeine use (11832).
CHILDREN: POSSIBLY SAFE
when used orally by children and adolescents in amounts commonly found in foods and beverages (4912,11833).
Intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). ...when used for gargling three times daily for up to 90 days (90150).
There is insufficient reliable information available about the safety of green tea extract when used orally in children. However, taking green tea extract orally has been associated with potentially serious, albeit uncommon and unpredictable cases, of hepatotoxicity in adults. Therefore, some experts recommend that children under the age of 18 years of age do not use products containing green tea extract (94897).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, pregnant patients should closely monitor their intake to ensure moderate consumption. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,98806). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. Based on animal models, green tea extract catechins are also transferred to the fetus, but in amounts 50-100 times less than maternal concentrations (15010). The potential impact of these catechins on the human fetus is not known, but animal models suggest that the catechins are not teratogenic (15011).
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts providing more than 300 mg caffeine daily.
Caffeine from green tea crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. High maternal doses of caffeine throughout pregnancy have also resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
There is also concern that consuming large amounts of green tea might have antifolate activity and potentially increase the risk of folic acid deficiency-related birth defects. Catechins in green tea inhibit the enzyme dihydrofolate reductase in vitro (15012). This enzyme is responsible for converting folic acid to its active form. Preliminary evidence suggests that increasing maternal green tea consumption is associated with increased risk of spina bifida (15068). Also, evidence from epidemiological research suggests that serum folate levels in pregnant patients with high green tea intake (57.3 mL per 1000 kcal) are decreased compared to participants who consume moderate or low amounts of green tea (90171). More evidence is needed to determine the safety of using green tea during pregnancy. For now, advise pregnant patients to avoid consuming large quantities of green tea.
LACTATION: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, nursing parents should closely monitor caffeine intake. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of green tea might cause irritability and increased bowel activity in nursing infants (6026). There is insufficient reliable information available about the safety of green tea extracts when applied topically during breast-feeding.
POSSIBLY SAFE ...when used orally and appropriately. L-arginine has been used safely in clinical studies at doses of up to 24 grams daily for up to 18 months (3331,3460,3595,3596,5531,5532,5533,6028,7815,7816)(8014,8473,13709,31943,91195,91196,91963,99264,99267,110380)(110387). A tolerable upper intake level (UL) for arginine has not been established, but the observed safe level (OSL) of arginine intake established in clinical research is 20 grams (31996). ...when used intravenously and appropriately. Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically and appropriately. L-arginine appears to be safe when 5 grams is applied as a topical cream twice daily for 2 weeks or when a dentifrice is used at a dose of 1.5% w/w for up to 2 years (14913,96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks (96807).
CHILDREN: POSSIBLY SAFE
when used orally in premature infants and children (8474,32286,96803,97392,110391).
...when used intravenously and appropriately (97392). Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically, short-term. A dentifrice containing L-arginine appears to be safe when used at a dose of 1.5% w/w for up to 2 years in children at least 3.7 years of age (96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks in children at least 13 years of age (96807).
CHILDREN: POSSIBLY UNSAFE
when used intravenously in high doses.
Parenteral L-arginine is an FDA-approved prescription product (15). However, when higher than recommended doses are used, injection site reactions, hypersensitivity reactions, hematuria, and death have occurred in children (16817).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
L-arginine 12 grams daily for 2 days has been used with apparent safety in pregnancy during the third trimester (11828). L-arginine 3 grams daily has been taken safely during the second and/or third trimesters (31938,110379,110382). ...when used intravenously and appropriately, short-term. Intravenous L-arginine 20-30 grams daily has been used safely in pregnancy for up to 5 days (31847,31933,31961,31978).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. In clinical trials, L-citrulline has been used with apparent safety for up to 2 months at doses of 1.5-6 grams daily (94954,94956,94961,94962,100974). Doses of up to 15 grams have also been used as single doses or within a 24 hour period (16470,16473).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
L-citrulline has been used with apparent safety in infants at a dose of 0.17 grams/kg daily (16472). It has also been used in children 6.5-10 years of age at a dose of 7.5 grams daily for 26 weeks (100976). ...when used intravenously and appropriately. An intravenous bolus dose of L-citrulline 150 mg/kg followed by 9 mg/kg/hour for 48 hours has been used safely in children under 6 years of age (16469).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when niacin is taken in food or as a supplement in amounts below the tolerable upper intake level (UL) of 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243). ...when prescription products are used orally and appropriately in doses of up to 2 grams daily (12033). CHILDREN:
LIKELY SAFE ...when used orally in amounts that do not exceed the tolerable upper intake level (UL). The ULs of niacin for children are: 1-3 years of age, 10 mg daily; 4-8 years of age, 15 mg daily; 9-13 years of age, 20 mg daily; 14-18 years of age, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL of niacin during pregnancy and lactation is 30 mg daily for 14-18 years of age and 35 mg daily for 19 years and older (6243).
There is insufficient reliable information available about the safety of larger oral doses of niacin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Panax ginseng seems to be safe when used for up to 6 months (8813,8814,17736,89741,89743,89745,89746,89747,89748,103044)(103477,114980,114981,114984,114985). Panax ginseng sprout extract has also been used with apparent safety in doses up to 450 mg daily for up to 12 weeks (114983).
POSSIBLY UNSAFE ...when used orally, long-term. There is some concern about the long-term safety due to potential hormone-like effects, which might cause adverse effects with prolonged use (12537). Tell patients to limit continuous use to less than 6 months. There is insufficient reliable information available about the safety of Panax ginseng when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in infants.
Use of Panax ginseng in newborns is associated with intoxication that can lead to death (12). There is limited reliable information available about use in older children (24109,103049); avoid using.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Ginsenoside Rb1, an active constituent of Panax ginseng, has teratogenic effects in animal models (10447,24106,24107); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Pantethine appears to be safe when used in doses of up to 1000 mg daily for up to 48 weeks (8313,8315,10237,10238,67725,97771,97772). There is insufficient reliable information available about the safety of pantethine when used intramuscularly.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. The pantothenic acid derivative calcium pantothenate has a generally recognized as safe (GRAS) status for use in food products (111258). While a tolerable upper intake level (UL) has not been established, pantothenic has been used in doses of 10-20 grams daily with apparent safety (15,6243,111258) ...when applied topically and appropriately, short-term. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and its derivatives are safe for use in cosmetic products in concentrations up to 5.3% (111258). Gels or ointments containing a derivative of pantothenic acid, dexpanthenol, at concentrations of up to 5%, have been used safely for up to 30 days (67802,67806,67817).
POSSIBLY SAFE ...when applied intranasally and appropriately, short-term. A dexpanthenol nasal spray has been used with apparent safety up to four times daily for 4 weeks (67826). ...when applied in the eyes appropriately, short-term. Dexpanthenol 5% eyedrops have been used with apparent safety for up to 28 days (67783). ...when injected intramuscularly and appropriately, short-term. Intramuscular injections of dexpanthenol 500 mg daily for up to 5 days or 250 mg weekly for up to 6 weeks have been used with apparent safety (67822,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately (15,6243).
Calcium pantothenate is generally recognized as safe (GRAS) when used as a food additive and in infant formula (111258). However, a tolerable upper intake level (UL) has not been established (15,6243). ...when applied topically and appropriately (67795,105190,111262). Infant products containing pantothenic acid and its derivatives have been used safely in concentrations of up to 5% for infant shampoos and 2.5% for infant lotions and oils. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and derivatives are safe for use in topical infant products. (111258).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during pregnancy is 6 mg (3094).
LACTATION: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during lactation is 7 mg (3094).
LIKELY SAFE ...when used in amounts found in foods. Typical daily intakes for adults range from 40-400 mg (101471).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Taurine 2-4 grams daily in two or three divided doses has been used safely in studies lasting up to 3 months (5248,5271,8217,8221,10454,77147,95612,98337,104165,104167). Higher doses of taurine 6 grams daily have been used safely in studies lasting up to 4 weeks (98336,98337). A risk assessment of orally administered taurine has identified an Observed Safe Level (OSL) of up to 3 grams daily for healthy adults (31996).
CHILDREN: LIKELY SAFE
when used in amounts found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in medicinal amounts.
Taurine 2.4-4.8 grams daily in three divided doses has been safely used in children 6-16 years of age for up to 12 weeks (103210).
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts found in foods.
There is insufficient reliable information available about the safety of taurine when used in medicinal amounts during pregnancy and lactation; avoid using.
Below is general information about the interactions of the known ingredients contained in the product BioChem Anabolic Max. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Betaine hydrochloride increases stomach acidity and could decrease the effects of antacids.
|
Betaine hydrochloride increases stomach acidity and could decrease the effects of H2-blockers.
|
Betaine hydrochloride increases stomach acidity and could decrease the effects of PPIs.
|
Theoretically, DHA may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Although some clinical evidence suggests that DHA might reduce collagen-stimulated platelet aggregation and thromboxane release, most clinical evidence suggests that DHA alone does not affect blood clotting (11112,11113,48020). However, theoretically, when given in combination with EPA as fish oil, concomitant use with anticoagulant or antiplatelet drugs (including aspirin) might increase risk of bleeding.
|
Theoretically, taking DHA with antidiabetes drugs might reduce the effects of these medications.
In people with type 2 diabetes, including those taking oral hypoglycemic medications, DHA seems to increase fasting blood glucose levels (10321).
|
Theoretically, taking DHA with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, glutamine might antagonize the effects of anticonvulsant medications.
|
Theoretically, high doses of green tea might increase the effects and side effects of 5-fluorouracil.
Animal research shows that taking green tea in amounts equivalent to about 6 cups daily in humans for 4 weeks prior to receiving a single injection of 5-fluorouracil increases the maximum plasma levels of 5-fluorouracil by about 2.5-fold and the area under the curve by 425% (98424).
|
Theoretically, green tea might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine doesn't seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Concomitant use of alcohol and caffeine can increase caffeine serum concentrations and the risk of caffeine adverse effects. Alcohol reduces caffeine metabolism (6370).
|
Theoretically, green tea may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Conflicting reports exist regarding the effect of green tea on bleeding risk when used with anticoagulant or antiplatelet drugs; however, most evidence suggests that drinking green tea in moderate amounts is unlikely to cause a significant interaction. Green tea contains small amounts of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects. Furthermore, the catechins and caffeine in green tea are reported to have antiplatelet activity (733,8028,8029,12882,100524).
|
Theoretically, taking green tea with antidiabetes drugs might interfere with blood glucose control.
|
Green tea extract seems to reduce the levels and clinical effects of atorvastatin.
In healthy humans, taking green tea extract 300 mg or 600 mg along with atorvastatin reduces plasma levels of atorvastatin by approximately 24%. The elimination of atorvastatin is not affected (102714). Atorvastatin is a substrate of organic anion-transporting polypeptides (OATPs). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs. Some OATPs are expressed in the small intestine and are responsible for the uptake of drugs and other compounds, which may have resulted in reduced plasma levels of atorvastatin (19079). It is not clear if drinking green tea alters the absorption of atorvastatin.
|
Green tea contains caffeine. Theoretically, concomitant use of large amounts of caffeine might increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, green tea might interfere with the effects of bortezomib.
In vitro research shows that green tea polyphenols, such as epigallocatechin gallate (EGCG), interact with bortezomib and block its proteasome inhibitory action. This prevents the induction of cell death in multiple myeloma or glioblastoma cancer cell lines (17212). Advise patients taking bortezomib, not to take green tea.
|
Theoretically, green tea might reduce the effects of carbamazepine and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, green tea might reduce the levels and clinical effects of celiprolol.
In a small human study, taking green tea daily for 4 days appears to decrease blood and urine levels of celiprolol by at least 98% (104607). This interaction is possibly due to the inhibition of organic anion transporting polypeptide (OATP). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is found in the intestine (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in green tea.
Green tea contains caffeine. Cimetidine can reduce caffeine clearance by 31% to 42% (11736).
|
Theoretically, green tea might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Animal research suggests that, although green tea extract does not affect the elimination of clozapine, it delays the time to reach peak concentration and reduces the peak plasma levels (90173). Also, concomitant administration of green tea and clozapine might theoretically cause acute exacerbation of psychotic symptoms due to the caffeine in green tea. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in green tea.
Green tea contains caffeine. Oral contraceptives can decrease caffeine clearance by 40% to 65% (8644).
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Caffeine is metabolized by cytochrome P450 1A2 (CYP1A2) (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from green tea and increase caffeine levels.
|
Green tea is unlikely to produce clinically significant changes in the levels and clinical effects of CYP3A4 substrates.
|
Theoretically, green tea might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine might inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using green tea with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, green tea might reduce the effects of ethosuximide and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of felbamate and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Green tea can decrease blood levels of fexofenadine.
Clinical research shows that green tea can significantly decrease blood levels and excretion of fexofenadine. Taking green tea extract with a dose of fexofenadine decreased bioavailability of fexofenadine by about 30%. In vitro, green tea inhibits the cellular accumulation of fexofenadine by inhibiting the organic anion transporting polypeptide (OATP) drug transporter (111029). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates (19079,102714,102730).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, green tea might increase the levels and adverse effects of flutamide.
Green tea contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). Theoretically, concomitant use of caffeine and flutamide might increase serum concentrations of flutamide and increase the risk adverse effects.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
|
Theoretically, green tea might reduce the levels and clinical effects of imatinib.
In animal research, a single dose of green tea extract reduces the area under the curve (AUC) of imatinib by up to approximately 64% and its main metabolite N-desmethyl imatinib by up to approximately 81% (104600). This interaction has not been shown in humans. The mechanism of action is unclear but may involve multiple pathways.
|
Theoretically, green tea might reduce the levels and clinical effects of lisinopril.
Preliminary clinical research shows that a single dose of green tea extract reduces plasma concentrations of lisinopril. Compared to a control group, peak levels and area under the curve (AUC) of lisinopril were reduced by approximately 71% and 66%, respectively (104599). This may be due to inhibition of organic anion transporting polypeptides (OATP) by green tea catechins (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, abrupt green tea withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). Theoretically, concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Methoxsalen can reduce caffeine metabolism (23572). Concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Mexiletine can decrease caffeine elimination by 50% (1260).
|
Theoretically, green tea might increase the levels and adverse effects of midazolam.
Animal research suggests that green tea extract can increase the maximum plasma concentration, but not the half-life, of oral midazolam. This effect has been attributed to the inhibition of intestinal cytochrome P450 3A4 (CYP3A4) and induction of hepatic CYP3A4 enzymes by green tea constituents (20896). However, it is unlikely that this effect is clinically significant, as the dose used in animals was 50 times greater than what is commonly ingested by humans.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Green tea contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Green tea seems to reduce the levels and clinical effects of nadolol.
Preliminary clinical research shows that green tea consumption reduces plasma concentrations of nadolol. Compared to a control group, both peak levels and total drug exposure (AUC) of nadolol were reduced by approximately 85% in subjects who drank green tea daily for two weeks. Drinking green tea with nadolol also significantly reduced nadolol's systolic blood pressure lowering effect (19071). Other clinical research shows that a single dose of green tea can affect plasma nadolol levels for at least one hour (102721). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is involved in the uptake of nadolol in the intestine (19071,19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, green tea might increase the levels and adverse effects of nicardipine.
Green tea contains EGCG. Animal research shows that EGCG increases the area under the curve (AUC) and absolute oral bioavailability of nicardipine. The mechanism of action is thought to involve inhibition of both intestinal P-glycoprotein and hepatic cytochrome P450 3A (90136). The effect of green tea itself on nicardipine is unclear.
|
Theoretically, concomitant use might increase the risk of hypertension.
Green tea contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Green tea seems to reduce the levels of nintedanib.
Clinical research shows that green tea can significantly decrease blood levels of nintedanib. Taking green tea extract twice daily for 7 days 30 minutes prior to a meal along with nintedanib with the meal decreased the 12-hour area under the curve (AUC) values for nintedanib by 21%. There was no effect on the maximum concentration of nintedanib (111028).
|
Theoretically, green tea might reduce the absorption of organic anion-transporting polypeptide (OATP) substrates.
OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds. Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates, including lisinopril and celiprolol (19079,102714,102730).
|
Theoretically, green tea might decrease the effects of pentobarbital.
Green tea contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, green tea might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, green tea might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, green tea might increase the levels and clinical effects of pioglitazone.
Green tea contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Green tea contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2, and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, green tea extract might alter the absorption and distribution of rosuvastatin.
In animal research, giving green tea extract with rosuvastatin increased plasma levels of rosuvastatin. Rosuvastatin is a substrate of organic anion-transporting polypeptide (OATP)1B1, which is expressed in the liver. The increased plasma levels may have been related to inhibition of OATP1B1 (102717). However, in humans, taking EGCG with rosuvastatin reduced plasma levels of rosuvastatin, suggesting an inhibition of intestinal OATP (102730). It is not clear if drinking green tea alters the absorption of rosuvastatin.
|
Theoretically, concomitant use might increase stimulant adverse effects.
Green tea contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, green tea might increase the levels and adverse effects of theophylline.
Green tea contains caffeine. Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, green tea might increase the levels and adverse effects of tiagabine.
Green tea contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, concomitant use might increase the levels and adverse effects of both verapamil and caffeine.
Animal research suggests that the green tea constituent EGCG increases the area under the curve (AUC) values for verapamil by up to 111% and its metabolite norverapamil by up to 87%, likely by inhibiting P-glycoprotein (90138). Also, theoretically, concomitant use of verapamil and caffeinated beverages such as green tea might increase plasma caffeine concentrations and the risk of adverse effects, due to the caffeine contained in green tea. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, green tea may increase the risk of bleeding if used with warfarin.
Conflicting reports exist regarding the potential of green tea to antagonize the effect of warfarin; however, most evidence suggests that drinking green tea in moderation is unlikely to cause a significant interaction. Green tea contains a small amount of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects (1460,1461,1463,8028). Therefore, use of green tea in moderate amounts is unlikely to antagonize the effects of warfarin; however, very large doses should be avoided.
|
Theoretically, concomitant use of L-arginine and ACE inhibitors may increase the risk for hypotension and hyperkalemia.
Combining L-arginine with some antihypertensive drugs, especially ACE inhibitors, seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916). Furthermore, ACE inhibitors can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ACE inhibitors with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine and ARBs may increase the risk of hypotension and hyperkalemia.
L-arginine increases nitric oxide, which causes vasodilation (7822). Combining L-arginine with ARBs seems to increase L-arginine-induced vasodilation (31854). Furthermore, ARBs can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ARBs with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine with anticoagulant and antiplatelet drugs might have additive effects and increase the risk of bleeding.
|
Theoretically, concomitant use of L-arginine might have additive effects with antidiabetes drugs.
|
Theoretically, concomitant use of L-arginine and antihypertensive drugs may increase the risk of hypotension.
L-arginine increases nitric oxide, which causes vasodilation (7822). Clinical evidence shows that L-arginine can reduce blood pressure in some individuals with hypertension (7818,10636,31871,32201,32167,32225,31923,32232,110383,110384). Furthermore, combining L-arginine with some antihypertensive drugs seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916).
|
Theoretically, concurrent use of isoproterenol and L-arginine might result in additive effects and hypotension.
Preliminary clinical evidence suggests that L-arginine enhances isoproterenol-induced vasodilation in patients with essential hypertension or a family history of essential hypertension (31932).
|
Theoretically concomitant use of potassium-sparing diuretics with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concurrent use of sildenafil and L-arginine might increase the risk for hypotension.
In vivo, concurrent use of L-arginine and sildenafil has resulted in increased vasodilation (7822,8015,10636). Theoretically, concurrent use might have additive vasodilatory and hypotensive effects. However, in studies evaluating the combined use of L-arginine and sildenafil for erectile dysfunction, hypotension was not reported (105065).
|
Theoretically, concomitant use of L-arginine and testosterone might have additive effects.
|
Theoretically, concomitant use of L-citrulline with antihypertensive drugs might have additive effects and increase the chance of hypotension.
|
Theoretically, concurrent use of phosphodiesterase-5 (PDE-5) inhibitors and L-citrulline might result in additive vasodilation.
L-citrulline is converted to L-arginine, which can increase nitric oxide and cause vasodilation (7822,16460,16461). Theoretically, taking L-arginine with PDE-5 inhibitors might have additive vasodilatory and hypotensive effects. However, in studies evaluating the combined use of L-arginine and sildenafil for erectile dysfunction, hypotension was not reported (105065).
|
Concomitant use of alcohol and niacin might increase the risk of flushing and hepatotoxicity.
Alcohol can exacerbate the flushing and pruritus associated with niacin (4458,11689). Large doses of niacin might also exacerbate liver dysfunction associated with chronic alcohol use. A case report describes delirium and lactic acidosis in a patient taking niacin 3 grams daily who ingested 1 liter of wine (14510). Advise patients to avoid large amounts of alcohol while taking niacin.
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as allopurinol.
Large doses of niacin can reduce urinary excretion of uric acid, potentially resulting in hyperuricemia (4860,4863,12033). Doses of uricosurics such as allopurinol might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin may have additive effects when used with anticoagulant or antiplatelet drugs.
|
Niacin can increase blood glucose levels and may diminish the effects of antidiabetes drugs.
Niacin impairs glucose tolerance in a dose-dependent manner, probably by causing or aggravating insulin resistance and increasing hepatic production of glucose (4860,4863,11692,11693). In diabetes patients, niacin 4.5 grams daily for 5 weeks can increase plasma glucose by an average of 16% and glycated hemoglobin (HbA1c) by 21% (4860). However, lower doses of 1.5 grams daily or less appear to have minimal effects on blood glucose (12033). In some patients, glucose levels increase when niacin is started, but then return to baseline when a stable dose is reached (12033,93344). Up to 35% of patients with diabetes may need adjustments in hypoglycemic therapy when niacin is added (4458,4860,4863,11689,12033).
|
Theoretically, niacin may increase the risk of hypotension when used with antihypertensive drugs.
The vasodilating effects of niacin can cause hypotension (4863,12033,93341). Furthermore, some clinical evidence suggests that a one-hour infusion of niacin can reduce systolic, diastolic, and mean blood pressure in hypertensive patients. This effect is not observed in normotensive patients (25917).
|
Large doses of aspirin might alter the clearance of niacin.
Aspirin is often used with niacin to reduce niacin-induced flushing (4458,11689). Doses of 80-975 mg aspirin have been used, but 325 mg appears to be optimal (4458,4852,4853,11689). Aspirin also seems to reduce the clearance of niacin by competing for glycine conjugation. Taking aspirin 1 gram seems to reduce niacin clearance by 45% (14524). This is probably a dose-related effect and not clinically significant with the more common aspirin dose of 325 mg (11689,14524).
|
Bile acid sequestrants can bind niacin and decrease absorption. Separate administration by 4-6 hours to avoid an interaction.
In vitro studies show that colestipol (Colestid) binds about 98% of available niacin and cholestyramine (Questran) binds 10% to 30% (14511).
|
Theoretically, concomitant use of niacin and gemfibrozil might increase the risk of myopathy in some patients.
|
Theoretically, concomitant use of niacin and hepatotoxic drugs might increase the risk of hepatotoxicity.
Niacin has been associated with cases of liver toxicity, especially when used in pharmacologic doses (4863,11689,11691,25929,25930,25931,113553). Sustained-release niacin preparations appear to be associated with a higher risk of hepatotoxicity than immediate-release niacin (11691,25930,25931,93342,113553).
|
Theoretically, concomitant use of niacin and statins might increase the risk of myopathy and rhabdomyolysis in some patients.
Some case reports have raised concerns that niacin might increase the risk of myopathy and rhabdomyolysis when combined with statins (14508,25918). However, a significantly increased risk of myopathy has not been demonstrated in clinical trials, including those using an FDA-approved combination of lovastatin and niacin (Advicor) (7388,11689,12033,14509).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as probenecid.
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as probenecid might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as sulfinpyrazone.
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as sulfinpyrazone might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of thyroid hormones.
Clinical research and case reports suggests that taking niacin can reduce serum levels of thyroxine-binding globulin by up to 25% and moderately reduce levels of thyroxine (T4) (25916,25925,25926,25928). Patients taking thyroid hormone for hypothyroidism might need dose adjustments when using niacin.
|
Theoretically, concomitant use of niacin and transdermal nicotine might increase the risk of flushing and dizziness.
|
Although Panax ginseng has shown antiplatelet effects in the laboratory, it is unlikely to increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
In vitro evidence suggests that ginsenoside constituents in Panax ginseng might decrease platelet aggregation (1522,11891). However, research in humans suggests that ginseng does not affect platelet aggregation (11890). Animal research indicates low oral bioavailability of Rb1 and rapid elimination of Rg1, which might explain the discrepancy between in vitro and human research (11153). Until more is known, use with caution in patients concurrently taking anticoagulant or antiplatelet drugs.
|
Theoretically, taking Panax ginseng with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Monitor blood glucose levels closely.
|
Theoretically, taking Panax ginseng with caffeine might increase the risk of adverse stimulant effects.
|
Theoretically, Panax ginseng might decrease levels of drugs metabolized by CYP1A1.
In vitro research shows that Panax ginseng can induce the CYP1A1 enzyme (24104).
|
Theoretically, Panax ginseng might increase levels of drugs metabolized by CYP2D6. However, research is conflicting.
There is some evidence that Panax ginseng can inhibit the CYP2D6 enzyme by approximately 6% (1303,51331). In addition, in animal research, Panax ginseng inhibits the metabolism of dextromethorphan, a drug metabolized by CYP2D6, by a small amount (103478). However, contradictory research suggests Panax ginseng might not inhibit CYP2D6 (10847). Until more is known, use Panax ginseng cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, Panax ginseng might increase or decrease levels of drugs metabolized by CYP3A4.
Panax ginseng may affect the clearance of drugs metabolized by CYP3A4. One such drug is imatinib. Inhibition of CYP3A4 was believed to be responsible for a case of imatinib-induced hepatotoxicity (89764). In contrast, Panax ginseng has been shown to increase the clearance of midazolam, another drug metabolized by CYP3A4 (89734,103478). Clinical research shows that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478). Until more is known, use Panax ginseng cautiously in combination with CYP3A4 substrates.
|
Theoretically, concomitant use of large amounts of Panax ginseng might interfere with hormone replacement therapy.
|
Theoretically, Panax ginseng might decrease blood levels of oral or intravenous fexofenadine.
Animal research suggests that taking Panax ginseng in combination with oral or intravenous fexofenadine may reduce the bioavailability of fexofenadine. Some scientists have attributed this effect to the ability of Panax ginseng to increase the expression of P-glycoprotein (24101).
|
Theoretically, Panax ginseng might reduce the effects of furosemide.
There is some concern that Panax ginseng might contribute to furosemide resistance. There is one case of resistance to furosemide diuresis in a patient taking a germanium-containing ginseng product (770).
|
Theoretically, Panax ginseng might increase the effects and adverse effects of imatinib.
A case of imatinib-induced hepatotoxicity has been reported for a 26-year-old male with chronic myelogenous leukemia stabilized on imatinib for 7 years. The patient took imatinib 400 mg along with a Panax ginseng-containing energy drink daily for 3 months. Since imatinib-associated hepatotoxicity typically occurs within 2 years of initiating therapy, it is believed that Panax ginseng affected imatinib toxicity though inhibition of cytochrome P450 3A4. CYP3A4 is the primary enzyme involved in imatinib metabolism (89764).
|
Theoretically, Panax ginseng use might interfere with immunosuppressive therapy.
Panax ginseng might have immune system stimulating properties (3122).
|
Theoretically, taking Panax ginseng with insulin might increase the risk of hypoglycemia.
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Insulin dose adjustments might be necessary in patients taking Panax ginseng; use with caution.
|
Although Panax ginseng has demonstrated variable effects on cytochrome P450 3A4 (CYP3A4), which metabolizes lopinavir, Panax ginseng is unlikely to alter levels of lopinavir/ritonavir.
Lopinavir is metabolized by CYP3A4 and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Panax ginseng has shown variable effects on CYP3A4 activity in humans (89734,89764). However, taking Panax ginseng (Vitamer Laboratories) 500 mg twice daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in 12 healthy volunteers (93578).
|
Theoretically, Panax ginseng may increase the clearance of midazolam.
Midazolam is metabolized by cytochrome P450 3A4 (CYP3A4). Clinical research suggests that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478).
|
Theoretically, Panax ginseng can interfere with MAOI therapy.
|
Theoretically, taking Panax ginseng with nifedipine might increase serum levels of nifedipine and the risk of hypotension.
Preliminary clinical research shows that concomitant use can increase serum levels of nifedipine in healthy volunteers (22423). This might cause the blood pressure lowering effects of nifedipine to be increased when taken concomitantly with Panax ginseng.
|
Theoretically, Panax ginseng has an additive effect with drugs that prolong the QT interval and potentially increase the risk of ventricular arrhythmias. However, research is conflicting.
|
Theoretically, taking Panax ginseng with raltegravir might increase the risk of liver toxicity.
A case report suggests that concomitant use of Panax ginseng with raltegravir can increase serum levels of raltegravir, resulting in elevated liver enzymes levels (23621).
|
Theoretically, Panax ginseng might increase or decrease levels of selegiline, possibly altering the effects and side effects of selegiline.
Animal research shows that taking selegiline with a low dose of Panax ginseng extract (1 gram/kg) reduces selegiline bioavailability, while taking a high dose of Panax ginseng extract (3 grams/kg) increases selegiline bioavailability (103053). More research is needed to confirm these effects.
|
Theoretically, taking Panax ginseng with stimulant drugs might increase the risk of adverse stimulant effects.
|
Panax ginseng might affect the clearance of warfarin. However, this interaction appears to be unlikely.
There has been a single case report of decreased effectiveness of warfarin in a patient who also took Panax ginseng (619). However, it is questionable whether Panax ginseng was the cause of this decrease in warfarin effectiveness. Some research in humans and animals suggests that Panax ginseng does not affect the pharmacokinetics of warfarin (2531,11890,17204,24105). However, other research in humans suggests that Panax ginseng might modestly increase the clearance of the S-warfarin isomer (15176). More evidence is needed to determine whether Panax ginseng causes a significant interaction with warfarin.
|
Theoretically, pantethine might increase the risk of bleeding with anticoagulant or antiplatelet drugs.
|
Theoretically, taurine might increase the risk of hypotension when taken with antihypertensive drugs.
|
Theoretically, taurine might reduce excretion and increase plasma levels of lithium.
Taurine is thought to have diuretic properties (3647), which might reduce the excretion of lithium.
|
Below is general information about the adverse effects of the known ingredients contained in the product BioChem Anabolic Max. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, betaine hydrochloride is generally well tolerated when taken as a single dose.
Gastrointestinal ...Theoretically, the hydrochloric acid produced from betaine hydrochloride might irritate gastric or duodenal ulcers or impede ulcer healing. It might also cause heartburn.
General
...Orally, creatine is generally well-tolerated.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dehydration, diarrhea, gastrointestinal upset, muscle cramps, and water retention.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about interstitial nephritis, renal insufficiency, rhabdomyolysis, and venous thrombosis.
Cardiovascular
...Some research suggests that creatine supplementation can cause edema.
In a randomized controlled trial, 26% of patients with amyotrophic lateral sclerosis (ALS) receiving creatine 10 grams daily reported edema after 2 months of treatment compared to 9% with placebo. The difference between groups was statistically significant at 2 months but not at month 4 and beyond. Creatine is believed to cause slight water retention, which may have been more apparent in patients who were immobilized due to ALS (46647). While this adverse drug reaction did not lead to worsening cardiac function in these patients, theoretically, creatine-related water retention could worsen congestive heart failure or hypertension.
There is one case report of lone atrial fibrillation in a 30-year-old male vegetarian. He started powdered creatine 20 grams daily for 5 days, followed by 2.5 grams daily for a month. However, he discontinued powdered creatine due to severe cramping and diarrhea, and reinitiated creatine supplementation a month later with an encapsulated formulation. Aside from gelatin in the capsule, creatine was the only ingredient listed in both formulations. During the loading dose phase, the patient developed dyspnea and palpitations and was diagnosed with lone atrial fibrillation in the emergency department. Symptoms resolved with treatment and supplement discontinuation (13187). Theoretically, alterations in electrolyte balance due to dehydration or diarrhea could lead to conduction abnormalities and arrhythmia; however, in this case, the patient had normal electrolyte levels. Contaminants in dietary supplements might also be responsible for adverse reactions; this specific creatine product was not tested for contaminants. It remains unclear whether creatine was associated with this event.
Theoretically, taking creatine nitrate might reduce blood pressure and heart rate due to its nitrate component. However, clinical research shows that creatine nitrate 12 grams daily for 7 days followed by 3 grams daily for 21 days does not lower blood pressure or heart rate acutely or chronically when compared to creatine monohydrate or placebo (95959).
Dermatologic
...In a small clinical trial of older, healthy males, one subject out of the 10 receiving creatine 5 grams four times daily for 10 days followed by 4 grams daily for 20 days reported a skin rash during the study.
The type and severity of rash and whether it resolved after creatine was discontinued were not discussed (4572). Also, skin rash has been reported by patients taking celecoxib and creatine; however, whether this effect was due to creatine or celecoxib is unclear (46706).
Topically, burning, itching, redness, irritation, and perception of changes in skin temperature have been reported (104669).
Endocrine ...Creatine may influence insulin production (11330). In human research, insulin levels increased 120 and 240 minutes after creatine supplementation (46760); however, there was no effect in another trial (46732). In a clinical study, 0.3 grams/kg of creatine daily for one week significantly increased cortisol levels by 29%. However, the levels returned to baseline at week 2 (46615).
Gastrointestinal
...Some small clinical studies have reported diarrhea and vomiting with oral creatine supplementation (4584,11332,46562,46684,46698,46704,104673).
Also, gastrointestinal distress, transient abdominal discomfort, constipation, heartburn, and nausea have been reported by a small number of individuals in randomized, controlled clinical trials (4572,11332,46527,46528,46573,46589,46622,46668,46684,46695), (46704,46771,95964,104668,104669,104673,108316). However, most high-quality clinical research shows that creatine does not increase the incidence of gastrointestinal upset (103102,103278,103279).
Undissolved creatine powder may cause gastroenteritis (1368). Additionally, simultaneous intake of creatine and caffeine powder may increase the occurrence of gastrointestinal distress (95964).
Hematologic ...There are two case reports of creatine-related venous thrombosis in otherwise healthy adults. In the first case, an active 18-year-old male who had been taking an unspecified dose of creatine daily for 3 months was diagnosed with venous thrombosis via MRI. The patient reported increased thirst and fluid consumption when taking creatine. In the second case, an active 31-year-old male who had recently taken a 5-hour flight was diagnosed with deep vein thrombosis. He had been taking an unspecified dose of creatine. After stopping creatine and receiving anticoagulation therapy for 6 months, both patients' thromboses were resolved and did not recur. Researchers speculate that dehydration might be to blame for these adverse events, as dehydration increases the risk of thrombosis. In both cases, thrombophilic conditions were ruled out, and a temporal relationship between creatine consumption and thrombosis was established (90301). However, it remains unclear if creatine was responsible for these thrombotic events.
Hepatic
...Despite two case reports describing hepatic injury in patients taking creatine (46701,90319), meta-analyses and clinical studies specifically evaluating the safety of creatine have not identified an increased risk for hepatic injury (103278,103279).
In addition, population research suggests that there is not an association between creatine intake and liver fibrosis, cirrhosis, or hepatic steatosis. However, this study largely included subjects consuming less than 4 grams daily (112208).
One preliminary clinical trial specifically evaluated the effect of creatine loading and maintenance doses on hepatic function indices in healthy adults. No clinically significant changes in hepatic indices were reported in patients taking creatine loading doses of 20 grams daily for 5 days followed by maintenance doses of 3 grams daily for 8 weeks (46521). Another clinical study evaluated the impact of creatine monohydrate and creatine nitrate on liver function enzymes, showing no change in levels within 5 hours after the first dose of 12 grams or after continued consumption of 12 grams daily for 7 days followed by 3 grams daily for 21 days (95959). The patients that experienced hepatic injury in the available case reports were also taking other exercise supplements. Whether the reported adverse hepatic effects were due to creatine or the other supplements patients were taking is unclear. Also, neither of these case reports addressed whether the supplements were tested for contamination (46701,90319).
Musculoskeletal ...Creatine-associated increase in body mass is well documented in randomized, controlled clinical trials and is often as large as 1-2 kg during the five-day loading period of creatine (2101,4569,4589,4591,4600,4605,46504,46561,46815,46827)(46830,46843,95962,103279,112201). This may be considered an unwanted adverse reaction in some individuals and a desired effect of supplementation in others. This weight gain may interfere with mass-dependent activities such as running and swimming (46504,46823). Muscle cramping due to creatine supplementation has been reported in controlled clinical trials and may result from water retention in skeletal muscle (2104,4572,4584,30915,46562,46695,46826,46827,104673). However, most high quality clinical research shows that creatine does not increase the incidence of musculoskeletal injuries or muscle cramping (103102). In one case report, rhabdomyolysis in a weight lifter using creatine 25 grams daily over a one-year period has been reported (12820). Another case report describes an adult male who developed acute compartment syndrome of the leg after regular consumption of an unspecified amount of creatine and cocaine (112210).
Neurologic/CNS ...In clinical research, thirst, sleepiness, mild headache, and syncope have been reported for patients taking creatine, although the events were uncommon (46578,46615,46820). More serious adverse events have been reported for patients taking creatine in combination with other ingredients. A case of ischemic stroke has been reported for an athlete who consumed creatine monohydrate 6 grams, caffeine 400-600 mg, ephedra 40-60 mg, and a variety of other supplements daily for 6 weeks (1275). In another case, a 26 year old male reported with a hemorrhagic stroke linked to taking the supplement Jack3d, which contains creatine, DMAA, schizandrol A, caffeine, beta-alanine, and L-arginine alpha-ketoglutarate (90318). It is likely that these adverse events were due to other ingredients, such as caffeine, ephedra, and DMAA, which are known to have stimulant and vasoconstrictive properties.
Oncologic ...Population research shows that use of muscle building supplements such as creatine, protein, and androstenedione is associated with an increased odds of testicular germ cell cancer. This risk appears to be more apparent in early users, those using two or more muscle building supplements, and those with long-term use of the supplements. The odds of testicular germ cell cancer may be increased by up to 155% in males taking both creatine and protein supplements (90329). The risk of testicular germ cell cancer from creatine alone is unclear from this study.
Psychiatric ...Anxiety, irritability, depression, aggression, and nervousness have been reported in clinical research for patients taking creatine, although the effects are not common (46518). A case of acute organic psychosis was reported in a 32-year-old soldier in Iraq who was consuming excessive amounts of caffeine coupled with use of creatine (Creatamax, MaxiNutrition) one tablet twice daily for 3 weeks plus a specific stimulant containing bitter orange, guarana seed extract, and St. John's wort extract (Ripped Fuel Ephedra Free, Twinlabs) two tablets three times daily for 2 days prior to admission. The psychosis was considered likely due to caffeine consumption in combination with the stimulant supplement rather than creatine (37982).
Renal
...Isolated cases of renal dysfunction in patients taking creatine have been reported, including a case of interstitial nephritis in a healthy male (184) and a case of renal insufficiency in a football player (46828).
In contrast to these cases, several clinical studies and case reports have shown that creatine does not affect markers of renal function in healthy adults (2120,3996,4573,16535,46735,46749,46758,46779,46813,95959,103279). Doses studied included 5- to 7-day loading regimens of 12 to 21 grams daily (2120,46813), or maintenance doses of 3-10 grams daily for up to 2 years (16535,46712,46758,95959). In two additional studies, creatine supplementation 15.75 grams for 5 days followed by 4.25 grams daily for 20 days with carbohydrate and protein ingestion led to no change of renal stress markers (46844). Other clinical research has shown that ingestion of creatine up to 30 grams daily for 5 years is not associated with an increased incidence of renal dysfunction (103102).
Other case reports involve patients with pre-existing renal dysfunction. For example, in one case, a patient with a history of recurrent renal failure developed relapsing steroid-responsive nephritis syndrome after taking creatine (1368,2118). In another case, a patient with diabetic nephropathy who was taking creatine and metformin developed severe metabolic acidosis and acute renal failure. It is unclear if creatine contributed to this event, as metformin alone is known to cause metabolic acidosis (46738). These case reports have raised concern that individuals with pre-existing renal dysfunction may be at increased risk for renal injury with creatine supplementation. However, no prospective clinical trials have been conducted in this population to clarify this concern.
In addition, two cases of acute kidney injury and hypercalcemia have been reported in 16 year old males that took 1-4 servings of creatine for less than 4 weeks; however, the creatine product contained unlabeled, very high doses of vitamin D, which is the likely cause of these symptoms (109739).
In one survey, 13% of male collegiate athletes taking creatine reported dehydration (4584). The Association of Professional Team Physicians has warned that creatine may cause dehydration, heat-related illnesses, and electrolyte imbalances, and reduce blood volume. Mild transient dehydration resulting in an elevated serum creatinine was also reported in a single person in a clinical trial (104672). However, a study found that creatine supplementation during preseason football training had no effect on fluid or electrolyte status (46845). Additionally, most high quality clinical research shows that creatine does not increase dehydration (103102). A theoretical increase in risk of dehydration due to intracellular fluid shifts has led most creatine manufacturers to caution about adequate hydration with creatine supplementation (4576).
Other
...There have been reports of heat intolerance with oral creatine supplementation (46505).
Increases in formaldehyde production have been reported with creatine use. A-24 year-old man taking supratherapeutic doses of creatine monophosphate in combination with an energy supplement developed malignant hyperthermia after undergoing anesthesia. His symptoms included tachycardia, hypertension, hypercarbia, and hyperthermia. Environmental factors are suspected to have played a role in the development of malignant hyperthermia, so whether this adverse event was due to creatine at all is unclear (46717).
In 1997, three collegiate wrestlers died after engaging in a rapid weight-loss program in order to qualify for competition (93628). Initially creatine supplementation was considered to have contributed to or caused these deaths (12820,93629); however, investigations by the U.S. Centers for Disease Control and Prevention (CDC) and the U.S. Food and Drug Administration (FDA) did not confirm this belief (12820,93630). It appears that only one of the three wrestlers had been using creatine. Instead, the deaths were related to drastic, short-term weight loss in which the wrestlers wore rubber suits, avoided hydration, and performed workouts in rooms with temperatures up to 33 °C (1368,93631).
General
...Orally, DHA is generally well-tolerated when used in doses up to 3 grams daily.
Intravenously, DHA seems to be well tolerated.
Most Common Adverse Effects:
Orally: Belching, fishy aftertaste, loose stools, and nausea.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about increased risk of bleeding with high doses of fish oil containing DHA.
Cardiovascular ...Orally, DHA might increase low-density lipoprotein (LDL) cholesterol levels. However, this appears to be primarily due to increases in the large buoyant type of LDL particles. The small, dense type of LDL particles are reduced (6143,48013,48078,48083,48174,48338).
Dermatologic ...Orally, DHA has been associated with one report of rash and one report of warmth on hands in one clinical study (48217). In another clinical study, two patients taking DHA 400 mg daily reported acne (11333). In another clinical study, one parent of a pediatric patient treated with DHA 600 mg daily reported increased hair loss beginning 6 weeks after completion of supplementation (90699). It is unclear if this adverse effect is specifically related to DHA intake.
Gastrointestinal
...Orally, DHA may cause gastrointestinal upset, fishy aftertaste, belching, flatulence, heartburn, loose stools, anorexia, and dry mouth (10869,11333,48217,109218).
There is also some evidence that increased serum levels of DHA might be associated with an increased risk for atrophic gastritis associated with Helicobacter pylori infection, but further research is needed to clarify this finding (8709).
For fish oils containing EPA and DHA, side effects can include fishy taste, belching, nausea, and loose stools (1009,1313,8699,10007). Three people with pre-existing familial adenomatous polyposis were diagnosed with malignant lesions during the course of long-term fish oil use (999).
Genitourinary ...Orally, one patient in one clinical study who was taking DHA 1, 2, or 4 grams daily (specific dose unclear) reported decreased libido (48217).
Hematologic ...Orally, DHA might cause nose bleeds, but this is uncommon. Onset of severe nose bleeds has been reported in one clinical study in one child who took DHA 600 mg daily (98542). Although most clinical research shows that DHA does not affect blood clotting when taken alone (11112,11113,48020), there is some concern that taking high doses of oils providing DHA along with eicosapentaenoic acid (EPA) might decrease blood coagulation and increase the risk of bleeding (1313). The US Food and Drug Administration (FDA) recommends that consumers limit intake of EPA plus DHA to 3 grams daily, with no more than 2 grams daily from a dietary supplement (95739).
Neurologic/CNS ...Orally, DHA may cause dizziness, headache, insomnia, fatigue, and anxiety (10869,11333,48217). In one clinical study, one parent of a pediatric patient treated with DHA 600 mg daily reported increased disruptive behavior in the child (90699).
Ocular/Otic ...Orally, DHA may cause watery eyes but results are inconsistent. In one clinical study, five of 167 infants fed formula containing 0.32% or 0.64% DHA experienced watery eyes. However, none of the infants fed formula containing 0.96% DHA experienced watery eyes (90670). In one clinical study, one patient taking DHA 400 mg daily experienced an ear infection. It is unclear if this event was related to DHA supplementation.
Oncologic ...Orally, DHA may increase the risk of prostate cancer, but additional research is needed to clarify this finding. A meta-analysis of data from observational studies found that higher dietary intake of DHA is associated with a non-linear increased risk of prostate cancer (90677). It is unclear if supplemental DHA intake is associated with increased risk of prostate cancer.
Pulmonary/Respiratory ...Orally, worsened asthma symptoms were reported by one parent of one patient with asthma taking DHA 600 mg daily (90699).
General
...Orally and intravenously, glutamine is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, constipation, cough, diarrhea, flatulence, gastrointestinal pain, headache, musculoskeletal pain, nausea, and vomiting.
Endocrine ...One case of hot flashes has been reported in a patient taking glutamine 5-15 grams orally twice daily for up to 1 year (96520).
Gastrointestinal ...Orally, glutamine has been associated with belching, bloating, constipation, flatulence, nausea, vomiting, diarrhea, and gastrointestinal (GI) pain. Nausea, vomiting, constipation, diarrhea, and GI pain have been reported in clinical trials using high-dose glutamine 10-30 grams (0.3 grams/kg) in two divided doses daily to treat sickle cell disease (99414). One case of dyspepsia and one case of abdominal pain have been reported in patients taking glutamine 5-15 grams twice daily orally for up to 1 year (96520). In a small trial of healthy males, taking a single dose of about 60 grams (0.9 grams/kg of fat free body mass [FFM]) was associated with a 50% to 79% incidence of GI discomfort, nausea, and belching, compared with a 7% to 28% incidence with a lower dose of about 20 grams (0.3 gram/kg FFM). Flatulence, bloating, lower GI pain, and urge to regurgitate occurred at similar rates regardless of dose, and there were no cases of heartburn, vomiting, or diarrhea/constipation (105013). It is possible that certain GI side effects occur only after multiple doses of glutamine.
Musculoskeletal ...Orally, glutamine 30 grams daily has been associated with cases of musculoskeletal pain and non-cardiac chest pain in clinical trials for patients with sickle cell disease (99414).
Neurologic/CNS ...Orally, glutamine has been associated with dizziness and headache. A single case of dizziness has been reported in a patient treated with oral glutamine 0.5 grams/kg. However, the symptom resolved after reducing the dose to 0.25 grams/kg (91356). Mania and hypomania have been reported in 2 patients with bipolar disorder taking commercially purchased glutamine up to 4 grams daily (7291). Glutamine is metabolized to glutamate and ammonia, both of which might have neurological effects in people with neurological and psychiatric diseases or in people predisposed to hepatic encephalopathy (7293).
Oncologic ...There is some concern that glutamine might be used by rapidly growing tumors and possibly stimulate tumor growth. Although tumors may utilize glutamine and other amino acids, preliminary research shows that glutamine supplementation does not increase tumor growth (5469,7233,7738). In fact, there is preliminary evidence that glutamine might actually reduce tumor growth (5469).
Other ...Orally, glutamine has been associated with cough when a powdered formulation is used. It is unclear if this was due to accidental inhalation. One case of a burning sensation and one case of hypersplenism has been reported in a patient taking glutamine 5-15 grams twice daily orally for up to 1 year (96520).
General
...Orally, green tea is generally well tolerated when consumed as a beverage in moderate amounts.
Green tea extract also seems to be well tolerated when used for up to 12 months.
Most Common Adverse Effects:
Orally: Bloating, constipation, diarrhea, dyspepsia, flatulence, and nausea.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, hypokalemia, and thrombotic thrombocytopenic purpura have been reported rarely.
Cardiovascular
...Acute or short-term oral administration of green tea may cause hypertension (53719,54014,54065,54076,102716).
The risk may be greater for green tea products containing more than 200 mg epigallocatechin gallate (EGCG) (90161). However, consumption of brewed green tea does not seem to increase blood pressure or pulse, even in mildly hypertensive patients (1451,1452). In fact, some evidence suggests that habitual tea consumption is associated with a reduced risk of developing hypertension (12518). Also, epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension or with cardiovascular disease mortality in patients with hypertension (13739,111027). Rarely, green tea consumption may cause hypotension (53867).
Epidemiological research suggests that regular caffeine intake of up to 400 mg per day, or approximately 8 cups of green tea, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, and temporary loss of consciousness has been associated with the combined use of ephedra and caffeine (2729). There is also a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for 6 weeks (1275). In theory, combining caffeinated green tea with ephedra would have similar effects.
In a case report, the EGCG component of a specific weight loss supplement (Hydroxycut) was thought to be responsible for atrial fibrillation (54028). The patient was given two doses of intravenous diltiazem and was loaded with intravenous digoxin. Thirty-six hours after the last product dose, she spontaneously converted to normal sinus rhythm. The authors suggested that the block of the atrial-specific KCNA5 potassium channel likely played a role in this response.
A case of thrombotic thrombocytopenic purpura has been reported for a patient who consumed a weight loss product containing green tea (53978). She presented at the emergency department with a one-week history of malaise, fatigue, and petechiae of the skin. Twelve procedures of plasmapheresis were performed, and corticosteroid treatment was initiated. She was discharged after 20 days.
Dermatologic ...Orally, green tea may cause skin rashes or skin irritation (53731,54038,90161,90187,102716). Topically, green tea may cause local skin reactions or skin irritation, erythema, burning, itching, edema, and erosion (53731,54018,97136,104609,111031). A green tea extract ointment applied to the cervix can cause cervical and vaginal inflammation, vaginal irritation, and vulval burning (11310,36442,36438). When applied to external genital or perianal warts, a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins can cause erythema, pruritus, local pain, discomfort and burning, ulceration, induration, edema, and vesicular rash (15067,53907).
Endocrine
...There is some concern that, due to its caffeine content, green tea may be associated with an increased risk of fibrocystic breast disease, breast cancer, and endometriosis.
However, this is controversial since findings are conflicting (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as green tea, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
A case of hypoglycemia has been reported for a clinical trial participant with type 2 diabetes who used green tea in combination with prescribed antidiabetes medication (54035).
Gastrointestinal ...Orally, green tea beverage or supplements can cause nausea, vomiting, abdominal bloating and pain, constipation, dyspepsia, reflux, morning anorexia, increased thirst, flatulence, and diarrhea. These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,36398,53719,53867,53936,54038,54076,90139,90140)(90161,90175,90187,97131,97136,102716).
Hepatic
...There is concern that some green tea products, especially green tea extracts, can cause hepatotoxicity in some patients.
In 2017, the regulatory agency Health Canada re-issued a warning to consumers about this concern. The updated warning advises patients taking green tea extracts, especially those with liver disease, to watch for signs of liver toxicity. It also urges children to avoid taking products containing green tea extracts (94897). In 2020, the United States Pharmacopeia (USP) formed an expert panel to review concerns of green tea extract-related hepatotoxicity. Based on their findings, USP determined that any products claiming compliance with USP quality standards for green tea extract must include a specific warning on the label stating "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)" (102722).
Numerous case reports of hepatotoxicity, primarily linked to green tea extract products taken in pill form, have been published. A minimum of 29 cases have been deemed at least probably related to green tea and 38 have been deemed possibly related. In addition, elevated liver enzymes have been reported in clinical research (14136,15026,53740,53746,53775,53859,54027,90139,90162,90164)(93256,94898,94899,102716,102720,102722,107158,111020). Most cases of toxicity have had an acute hepatitis-like presentation with a hepatocellular-elevation of liver enzymes and some cholestasis. Onset of hepatotoxic symptoms usually occurs within 3 months after initiation of the green tea extract supplement, and symptoms can persist from 10 days to 1 year (95439,94897,94898,107158). Some reports of hepatotoxicity have been associated with consumption of green tea-containing beverages as well (15026,53742,54016,90125,90143).
In most cases, liver function returned to normal after discontinuation of the green tea product (14136,15026,53859,93256,107158). In one case, use of a specific ethanolic green tea extract (Exolise, Arkopharma) resulted in hepatotoxicity requiring a liver transplant. Due to concerns about hepatotoxicity, this specific extract was removed from the market by the manufacturer (14310). Since then, at least 5 cases of liver toxicity necessitating liver transplantation have been reported for patients who used green tea extracts (94898,107158). In another case, use of green tea (Applied Nutrition Green Tea Fat Burner) in combination with whey protein, a nutritional supplement (GNC Mega Men Sport), and prickly pear cactus resulted in acute liver failure (90162).
Despite the numerous reports of hepatotoxicity associated with the use of green tea products, the actual number of hepatotoxicity cases is low when the prevalence of green tea use is considered. From 2006 to 2016, liver injury from green tea products was estimated have occurred in only 1 out of 2.7 million patients who used green tea products (94897,95440).
In addition to the fact that green tea hepatotoxicity is uncommon, it is also not clear which patients are most likely to experience liver injury (94897,95440). The hepatotoxicity does not appear to be an allergic reaction or an autoimmune reaction (94897). It is possible that certain extraction processes, for example, ethanolic extracts, produce hepatotoxic constituents. However, in most cases, the presence of contaminants in green tea products has not been confirmed in laboratory analyses (90162).
Although results from one analysis of 4 small clinical studies disagrees (94899), most analyses of clinical data, including one conducted by the European Food Safety Association, found that hepatotoxicity from green tea products is associated with the dose of EGCG in the green tea product. Results show that daily intake of EGCG in amounts greater than or equal to 800 mg per day is associated with a higher incidence of elevated liver enzymes such as alanine transaminase (ALT) (95440,95696,97131). However, it is still unclear what maximum daily dose of EGCG will not increase liver enzyme levels or what minimum daily dose of EGCG begins to cause liver injury. In many cases of liver injury, the dose of green tea extract and/or EGCG is not known. Therefore, a minimum level of green tea extract or EGCG that would cause liver injury in humans cannot be determined (102722). Keep in mind that daily intake of green tea infusions provides only 90-300 mg of EGCG daily. So for a majority of people, green tea infusions are likely safe and unlikely to cause liver injury (95696). Also, plasma levels of EGCG are increased when green tea catechins are taken in the fasting state, suggesting that green tea extract should be taken with food (102722).
Until more is known, advise patients that green tea products, especially those containing green tea extract, might cause liver damage. However, let them know that the risk is uncommon, and it is not clear which products are most likely to cause the adverse effect or which patients are most likely to be affected. Advise patients with liver disease to consult their healthcare provider before taking products with green tea extract and to notify their healthcare provider if they experience symptoms of liver damage, including jaundice, dark urine, sweating, or abdominal pain (102722).
Immunologic ...Orally, matcha tea has resulted in at least one case of anaphylaxis related to green tea proteins. A 9-year-old male experienced systemic redness and hives, nausea, and anaphylaxis 60 minutes after consuming matcha tea-flavored ice cream (107169). The caffeine found in green tea can also cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Orally, the ingestion of the green tea constituent epigallocatechin gallate (EGCG) or a decaffeinated green tea polyphenol mixture may cause mild muscle pain (36398).
There is some concern regarding the association between caffeinated green tea products and osteoporosis. Epidemiological evidence regarding the relationship between caffeinated beverages such as green tea and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg per day, or about 8 cups of green tea, doesn't seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Neurologic/CNS
...Orally, green tea can cause central nervous system stimulation and adverse effects such as headache, anxiety, dizziness, insomnia, fatigue, agitation, tremors, restlessness, and confusion.
These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,53719,90139,102716). The green tea constituent epigallocatechin gallate (EGCG) or decaffeinated green tea may also cause mild dizziness and headache (36398).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729).
Topically, green tea extract (Polyphenon E ointment) may cause headache when applied to the genital area (36442).
Psychiatric ...Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, and psychological dependence (11832). The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Other researchers suggest symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...A case of granulomatous alveolitis with lymph follicles has been reported for a 67-year-old female who used green tea infusions to wash her nasal cavities for 15 years (54088). Her symptoms disappeared 2 months after stopping this practice and following an undetermined course of corticosteroids. In a case report, hypersensitivity pneumonitis was associated with inhalation of catechin-rich green tea extracts (54025). Occupational exposure to green tea dust can cause sensitization, which may include nasal and asthmatic symptoms (11365).
Renal ...There are two cases of hypokalemia associated with drinking approximately 8 cups daily of green tea in an elderly couple of Asian descent. The hypokalemia improved after reducing their intake by 50%. It is possible that this was related to the caffeine in the green tea (98418).
Other ...Orally, intake of a specific green tea extract product (Polyphenon E) may cause weight gain (90139).
General
...Oral, intravenous, and topical L-arginine are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, nausea, diarrhea, headache, insomnia, flushing.
Intravenously: Excessively rapid infusion can cause flushing, headache, nausea and vomiting, numbness, and venous irritation.
Cardiovascular ...L-arginine taken orally by pregnant patients in a nutrition bar containing other antioxidants was associated with a 36% greater risk of palpitations when compared with a placebo bar (91197). It is unclear if this effect was due to L-arginine, other ingredients, or other factors.
Dermatologic ...Orally, arginine can cause flushing, rash, and hives (3460,32138,102587,104223). The skin reactions were likely of allergic etiology as oral L-arginine has been associated with eosinophilia (32138). In one case report, intravenous administration caused allergic reactions including urticaria, periorbital edema, and pruritus (11830). Excessively rapid infusion of L-arginine has caused flushing, local venous irritation, numbness. Extravasation has caused necrosis and superficial phlebitis (3330,16817).
Gastrointestinal
...Orally, L-arginine has been reported to cause nausea, diarrhea, vomiting, dyspepsia, gastrointestinal discomfort, and bloating (1363,31855,31871,31972,31978,32261,90198,91197,96811,99243)(102587,102592).
Orally, L-arginine has been reported to cause esophagitis in at least six adolescents. Symptoms, which included pain and dysphagia, occurred within 1-3 months of treatment in most cases (102588). There are at least two cases of acute pancreatitis possibly associated with oral L-arginine. In one case, a 28-year-old male developed pancreatitis after consuming a shake containing 1.2 grams of L-arginine daily as arginine alpha-ketoglutarate. The shake also contained plant extracts, caffeine, vitamins, and other amino acids. Although there is a known relationship between L-arginine and pancreatitis in animal models, it is not clear if L-arginine was directly responsible for the occurrence of pancreatitis in this case (99266).
Intravenously, excessively rapid infusion of L-arginine has been reported to cause nausea and vomiting (3330,16817).
Musculoskeletal ...Intravenous L-arginine has been associated with lower back pain and leg restlessness (32273). Orally, L-arginine has been associated with asthenia (32138).
Neurologic/CNS ...Orally, L-arginine has been associated with headache (31855,31955,32261,91197,102587,102592), insomnia, fatigue (102587,102592), and vertigo (32150,102592).
Oncologic ...In breast cancer patients, L-arginine stimulated tumor protein synthesis, which suggests stimulated tumor growth (31917).
Pulmonary/Respiratory ...When inhaled, L-arginine can cause airway inflammation and exacerbation of airway inflammation in asthma (121). However, two studies assessing oral L-arginine in patients with asthma did not detect any adverse airway effects (31849,104223).
Renal ...Intravenously, L-arginine has been associated with natriuresis, kaliuresis, chloruresis, and systemic acidosis (32225). Orally, L-arginine can cause gout (3331,3595).
Other ...Orally, L-arginine has been associated with delayed menses, night sweats, and flushing (31855).
General
...Orally, L-citrulline seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal discomfort, heartburn.
Gastrointestinal ...Orally, gastrointestinal intolerance, stomach discomfort, and heartburn have been reported with L-citrulline use (94955,94963,94966).
Genitourinary ...Orally, 2 of 25 patients with pulmonary hypertension reported increased urinary frequency and edema while taking 1 gram of powdered L-citrulline in water daily (94963).
Pulmonary/Respiratory ...Orally, 2 of 25 patients with pulmonary hypertension reported cough while taking 1 gram of powdered L-citrulline in water daily (94963).
General
...Orally, niacin is well tolerated in the amounts found in foods.
It is also generally well tolerated in prescription doses when monitored by a healthcare provider.
Most Common Adverse Effects:
Orally: Flushing, gastrointestinal complaints (abdominal pain, constipation, diarrhea, heartburn, nausea, vomiting), and elevated liver enzymes.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, myopathy, thrombocytopenia, and vision changes.
Cardiovascular
...Orally, flushing is a common dose-related adverse reaction to niacin.
A large meta-analysis of clinical studies shows that up to 70% of patients may experience flushing (96211). Although flushing can occur with doses of niacin as low as 30 mg daily, it is more common with the larger doses used for treatment of dyslipidemia. The flushing reaction is due to prostaglandin-induced blood vessel dilation and can also include symptoms of burning, tingling, urticaria, erythema, pain, and itching of the face, arms, and chest. There may also be increased intracranial blood flow and headache (4889,26089,93341,104933). Onset is highly variable and ranges from within 30 minutes to as long as 6 weeks after the initial dose (6243). Flushing can be minimized via various strategies, including taking doses with meals, slow dose titration, using extended release formulations, pretreating with non-steroidal anti-inflammatory drugs, taking regular-release niacin with meals, or taking the sustained-release product at bedtime (4852,4853,4854,4857,4858,25922,26073,26084). Flushing often diminishes with continued use but can recur when niacin is restarted after missed doses (4863,6243,26081). The vasodilating effects of niacin can also cause hypotension, dizziness, tachycardia, arrhythmias, syncope, and vasovagal attacks, especially in patients who are already taking antihypertensive drugs (4863,12033,93341,110494).
High doses of niacin can raise homocysteine levels. A 17% increase has been reported with 1 gram daily and a 55% increased has been reported with 3 grams daily. Elevated homocysteine levels are an independent risk factor for cardiovascular disease (490); however, the clinical significance of this effect is unknown. A large-scale study (AIM-HIGH) found that patients receiving extended-release niacin (Niaspan) 1500-2000 mg daily with a statin had an over two-fold increased risk of ischemic stroke (1.6%) when compared with those receiving only simvastatin (0.7%). However, when the risk was adjusted for confounding factors, niacin was not found to be associated with increased stroke risk (17627,93354). A meta-analysis of three clinical trials conducted in approximately 29,000 patients showed a higher risk of mortality in patients taking niacin in addition to a statin when compared with a statin alone. However, with a p-value of 0.05 and confidence interval including 1, the validity of this finding remains unclear (97308).
Endocrine
...Orally, niacin can impair glucose tolerance in a dose-dependent manner.
Dosages of 3-4 grams daily appear to increase blood glucose in patients with or without diabetes, while dosages of 1.5 grams daily or less have minimal effects (12033). Niacin is thought to impair glucose tolerance by increasing insulin resistance or increasing hepatic output of glucose (4863,11692,11693). In patients with diabetes, niacin 4.5 grams daily for 5 weeks has been associated with an average 16% increase in plasma glucose and 21% increase in glycated hemoglobin (HbA1C) (4860). Up to 35% of patients with diabetes may need to increase the dose or number of hypoglycemic agents when niacin is started (4458,4860,4863,11689,12033). Occasionally, severe hyperglycemia requiring hospitalization can occur (11693). In patients with impaired fasting glucose levels, niacin may also increase fasting blood glucose, and adding colesevelam might attenuate this effect (93343).
Although patients without diabetes seem to only experience small and clinically insignificant increases in glucose (4458), niacin might increase their risk of developing diabetes. A meta-analysis of clinical research involving over 26,000 patients shows that using niacin over 5 years is associated with increased prevalence of new onset type 2 diabetes at a rate of 1 additional case of diabetes for every 43 patients treated with niacin (96207). This finding is limited because the individual trials were not designed to assess diabetes risk and the analysis could not be adjusted for confounding factors like obesity. One small clinical study shows that taking extended-release niacin with ezetimibe/simvastatin does not increase the risk of a new diagnosis of diabetes or need for antidiabetic medication when compared with ezetimibe/simvastatin alone after 16 months (93344). This may indicate that the increased risk of developing diabetes is associated with niacin use for more than 16 months.
Niacin therapy has also been linked with hypothyroidism and its associated alterations in thyroid hormone and binding globulin tests (such as decreased total serum thyroxine, increased triiodothyronine, decreased thyroxine-binding globulin levels, and increased triiodothyronine uptake) (25916,25925,25926,25928).
Gastrointestinal ...Orally, large doses of niacin can cause gastrointestinal disturbances including nausea, vomiting, bloating, heartburn, abdominal pain, anorexia, diarrhea, constipation, and activation of peptic ulcers (4458,4863,12033,26083,93341,96211). These effects may be reduced by taking the drug with meals or antacid, and usually disappear within two weeks of continued therapy (4851,26094). Gastrointestinal effects may be more common with time-release preparations of niacin (11691).
Hematologic ...Orally, sustained-release niacin has been associated with cases of reversible coagulopathy, mild eosinophilia, and decreased platelet counts (4818,25915,26097,93340). Also, there have been reports of patients who developed leukopenia while taking niacin for the treatment of hypercholesterolemia (25916).
Hepatic ...Orally, niacin is associated with elevated liver function tests and jaundice, especially with doses of 3 grams/day or more, and when doses are rapidly increased (4458,4863,6243). The risk of hepatotoxicity appears to be higher with slow-release and extended-release products (4855,4856,4863,6243,11691,12026,12033,93342). Niacin should be discontinued if liver function tests rise to three times the upper limit of normal (4863). There are rare cases of severe hepatotoxicity with fulminant hepatitis and encephalopathy due to niacin (4863,6243,11691). In one case, a patient taking extended-release niacin 2500 mg daily for 15 years developed decompensating cirrhosis and was diagnosed with chronic, toxic, metabolic liver injury. Despite medical intervention, the patient died (113553). Also, there is at least one case of niacin-induced coagulopathy resulting from liver injury without liver enzyme changes (93340).
Musculoskeletal ...Orally, niacin has been associated with elevated creatine kinase levels (4818,4888). Also, several cases of niacin-induced myopathy have been reported (26100,26111). Concomitant administration of niacin and HMG-CoA reductase inhibitors may increase the risk of myopathy and rhabdomyolysis (14508,25918,26111); patients should be monitored closely.
Neurologic/CNS ...Orally, high-dose niacin has been associated with cases of neuropsychiatric adverse events such as extreme pain and psychosis. Two 65-year-old males taking niacin orally for 5 months for the treatment of dyslipidemias developed severe dental and gingival pain. The pain was relieved by the discontinuation of niacin. The pain was thought to be due to inflammation and pain referral to the teeth (4862). In one case report, a 52-year-old male with no history of psychiatric illness who initially complained of hot flushes when taking niacin 500 mg daily, presented with an acute psychotic episode involving mania after niacin was increased to 1000 mg daily (93350).
Ocular/Otic ...Orally, chronic use of large amounts of niacin has been associated with dry eyes, toxic amblyopia, blurred vision, eyelid swelling, eyelid discoloration, loss of eyebrows and eyelashes, proptosis, keratitis, macular edema, and cystic maculopathy, which appear to be dose-dependent and reversible (4863,6243,26112).
General
...Orally, Panax ginseng is generally well tolerated when used for up to 6 months.
There is some concern about the long-term safety due to potential hormone-like effects.
Topically, no adverse effects have been reported when ginseng is used as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Insomnia.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, arrhythmia, ischemia, Stevens-Johnson syndrome.
Cardiovascular ...Panax ginseng may cause hypertension, hypotension, and edema when used orally in high doses, long-term (3353). However, single doses of Panax ginseng up to 800 mg are not associated with changes in electrocardiogram (ECG) parameters or increases in heart rate or blood pressure (96218). There is a case report of menometrorrhagia and tachyarrhythmia in a 39-year-old female who took Panax ginseng 1000-1500 mg/day orally and also applied a facial cream topically that contained Panax ginseng. Upon evaluation for menometrorrhagia, the patient also reported a history of palpitations. It was discovered that she had sinus tachycardia on ECG. However, the patient was a habitual consumer of coffee 4-6 cups/day and at the time of evaluation was also mildly anemic. The patient was advised to discontinue taking Panax ginseng. During the 6 month period following discontinuation the patient did not have any more episodes of menometrorrhagia or tachyarrhythmia (13030). Also, a case of transient ischemic attack secondary to a hypertensive crisis has been reportedly related to oral use of Panax ginseng (89402).
Dermatologic
...Orally, Panax ginseng may cause itching or an allergic response consisting of systemic rash and pruritus (89743,89760,104953,114984,114985).
Skin eruptions have also been reported with use of Panax ginseng at high dosage, long-term (3353). Uncommon side effects with oral Panax ginseng include Stevens-Johnson syndrome (596).
In one case report, a 6-year-old male with a previous diagnosis of generalized pustular psoriasis, which had been in remission for 18 months, presented with recurrent pustular lesions after consuming an unspecified dose of Panax ginseng. The patient was diagnosed with pityriasis amiantacea caused by subcorneal pustular dermatosis. Treatment with oral dapsone 25 mg daily was initiated, and symptoms resolved after 4 weeks (107748). In another case report, a 26-year-old female presented with itchy exanthem and oval erythematous lesions on the face, neck, and abdomen after consuming a decoction containing Panax ginseng, aconite, ginger, licorice, Cassia cinnamon, goldthread, and peony 400 mL twice daily for 1 week. Pityriasis rosea-like eruption was suspected, but the patient refused topical or oral antihistamines or corticosteroids. The patient continued taking the decoction but with Panax ginseng and aconite removed. After 6 days, symptoms began to resolve, and by 17 days symptom improvement was significant (114986). It is unclear if this reaction was due to Panax ginseng, aconite, the combination, or some other factor. Pityriasis rosea typically resolves spontaneously.
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, mild pain, local irritation, and burning have occurred (2537).
Endocrine
...The estrogenic effects of ginseng are controversial.
Some clinical evidence suggests it doesn't have estrogen-mediated effects (10981). However, case reports of ginseng side effects such as postmenopausal vaginal bleeding suggest estrogenic activity (590,591,592,10982,10983).
In a 12-year-old Korean-Japanese male, enlargement of both breasts with tenderness in the right breast (gynecomastia) occurred after taking red ginseng extract 500 mg daily orally for one month. Following cessation of the product, there was no further growth or pain (89733). Swollen and tender breasts also occurred in a 70-year-old female using Panax ginseng orally (590).
Gastrointestinal ...Orally, Panax ginseng can cause decreased appetite (3353), constipation, diarrhea, dyspepsia (3353,89734,103477,112841,114980,114985), abdominal pain (89734,87984,112841,114985), and nausea (589,87984). However, these effects are typically associated with long-term, high-dose usage (3353). Some evidence suggests that fermented Panax ginseng is more likely to cause abdominal pain and diarrhea when compared with unfermented Panax ginseng (112841).
Genitourinary
...Amenorrhea has been reported with oral use of Panax ginseng (3353).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, sporadic erectile dysfunction and excessively delayed ejaculation have occurred (2537). Less commonly, patients can experience vaginal bleeding (591,592,3354,23630).
Hepatic ...It is unclear if Panax ginseng is associated with adverse hepatic effects. Cholestatic hepatitis has been reported in a 65-year old male following oral use of a combination product containing Panax ginseng and other ingredients (Prostata). However, it is unclear if this adverse effect was due to Panax ginseng, other ingredients, or the combination (598). An elevation in liver enzymes has been rarely reported in clinical research (114985).
Immunologic ...A case of anaphylaxis, with symptoms of hypotension and rash, has been reported following ingestion of a small amount of Panax ginseng syrup (11971).
Neurologic/CNS ...Orally, one of the most common side effects to Panax ginseng is insomnia (589,89734,111336,114985). Headache (594,23638,112840,114985), vertigo, euphoria, and mania (594) have also been reported. Migraine and somnolence occurred in single subjects in a clinical trial (87984). In a case report of a 46-year-old female, orobuccolingual dyskinesia occurred following oral use of a preparation containing black cohosh 20 mg and Panax ginseng 50 mg twice daily for menopausal symptoms. The patient's condition improved once the product was stopped and treatment with baclofen 40 mg and clonazepam 20 mg daily was started (89735).
General
...Orally, pantethine seems to be well tolerated.
Most Common Adverse Effects:
Orally: Bloating, diarrhea, epigastric discomfort, flatulence, nausea, and vomiting.
Dermatologic ...Orally, mild pruritus has been reported but is uncommon (8862,67748).
Gastrointestinal ...The most common adverse effects to pantethine are mild gastrointestinal complaints such as nausea, vomiting, diarrhea, epigastric discomfort, bloating, and flatulence (8315,8316,8862,67725,67748,67754,97771).
General
...Orally, pantothenic acid is generally well tolerated.
Topically and intramuscularly, dexpanthenol, a synthetic form of pantothenic acid, seems to be well tolerated.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, eczema, irritation, and itching related to dexpanthenol.
Cardiovascular ...There is one case of eosinophilic pleuropericardial effusion in a patient taking pantothenic acid 300 mg per day in combination with biotin 10 mg per day for 2 months (3914).
Dermatologic ...Topically, dexpanthenol has been associated with itching, burning, skin irritation, contact dermatitis, and eczema (67779,67781,67788,111258,111262). Three cases of allergic contact dermatitis have been reported (111260,111261).
Gastrointestinal ...Orally, pantothenic acid has been associated with diarrhea (67822,111258).
General
...Orally, taurine is generally well-tolerated when used in typical doses for up to one year.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, and dyspepsia.
Serious Adverse Effects (Rare):
Orally: Hypersensitivity reactions in sensitive individuals. Case reports raise concerns for serious cardiovascular adverse effects, but these reports have involved energy drinks containing taurine and other ingredients. It is unclear if these adverse effects are due to taurine, other ingredients, or the combination.
Cardiovascular ...Changes in heart rate and increased blood pressure have been reported following the co-administration of taurine and caffeine, although the effects of taurine alone are unclear (77088). In healthy individuals, consumption of energy drinks containing taurine increased platelet aggregation and decreased endothelial function (77151,112268,112741). A case of cardiac arrest following strenuous exercise and an excessive intake of energy drinks containing caffeine and taurine has been reported (77136). In another case report, a 28-year-old male without cardiovascular risk factors presented to the hospital with radiating chest pain, shortness of breath, and diaphoresis after excessive intake of an energy drink containing taurine, caffeine, sugar, and glucuronolactone. Electrocardiogram findings confirmed myocardial infarction, and subsequent catheterization confirmed thrombotic occlusion (112741).
Endocrine ...Orally, taurine has been reported to cause hypoglycemia (77153).
Gastrointestinal ...Orally, constipation has been reported following the administration of taurine (77231). Dyspepsia has also been reported after oral taurine use (104165).
Hematologic ...In clinical research, taurine reduced platelet aggregation (77245). A case of massive intravascular hemolysis, presenting with confusion, dark urine, dyspnea, emesis, and fever, has been reported following the administration of a naturopathic vitamin infusion containing taurine, free amino acids, magnesium, and a vitamin B and D complex (77177). However, the effects of taurine alone are unclear.
Immunologic ...A case report describes a hypersensitivity reaction in a female patient with a history of allergies to sulfonamides, sulfites, and various foods, after ingestion of taurine and other sulfur-containing supplements. The amount of taurine in the products ranged from 50-500 mg per dose. The allergic reaction recurred upon rechallenge with taurine 250-300 mg (91514).
Neurologic/CNS
...In a case study, encephalopathy occurred in a body-builder who took approximately 14 grams of taurine in combination with insulin and anabolic steroids.
It is not known if this was due to the taurine or the other drugs taken (15536).
Cases of seizures following the consumption of energy drinks containing taurine have been reported (77105,77196). In clinical research, taurine has been reported to cause drowsiness and ataxia in epileptic children (77241).
Psychiatric ...In a case report, a 36-year-old male with adequately controlled bipolar disorder was hospitalized with symptoms of mania after consuming several cans of an energy drink containing taurine, caffeine, glucuronolactone, B vitamins, and other ingredients (Red Bull Energy Drink) over a period of four days (14302). It is unknown if this effect was related to taurine.
Pulmonary/Respiratory ...In human research, an exacerbation of pulmonary symptoms of cystic fibrosis has been associated with taurine supplementation, although this could also be caused by progression of the disease (77231).
Renal ...A case of acute kidney failure has been reported following the concomitant intake of 1 liter of vodka and 3 liters of an energy drink providing taurine 4. 6 grams, caffeine 780 mg, and alcohol 380 grams (77185).