Each capsule contains: Proprietary Blend 565 mg: Sida cordifolia leaves 25 mg, Ephedrine Group Alkaloids Ephedrine Citrus aurantium fruit 10 mg, Synephrine Synephrine Group Alkaloids Group Alkaloids USP Caffeine 80 mg, USP Caffeine COLEUS FORSKOLI Coleus Forskohlii root, Coleus Forskoli Cassia Cassia nomame Nomame Green Tea extract, 5-HTP , 5-Methoxtrytamine . 5-METHOXYTRYTAMINE
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
This product has been discontinued by the manufacturer.
This product has been discontinued by the manufacturer.
Below is general information about the effectiveness of the known ingredients contained in the product Thermo-Rx. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of Cassia nomame.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of Sida cordifolia.
Below is general information about the safety of the known ingredients contained in the product Thermo-Rx. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. 5-HTP has been used safely in doses up to 400 mg daily for up to one year (913,30007,30130). Doses up to 1.2 grams daily have been used with apparent safety for up to 10 months (914,30018,30125,30164,30165). Doses of 3 grams daily have been used safely for 3 weeks (30138). There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
POSSIBLY UNSAFE ...when used orally in large doses. Doses of 6-10 grams daily have been associated with severe gastrointestinal effects and hyperkinesis (30139,30183). The risk may be reduced if the dose is increased gradually.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Doses of 5-HTP up to 5 mg/kg daily have been used safely for up to 3 years in infants and children up to 12 years old (30128,30153,88173).
There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912,35751).
POSSIBLY SAFE ...when bitter orange essential oil is used topically or by inhalation as aromatherapy (6972,7107,98331,104186,104187,108642).
POSSIBLY UNSAFE ...when used orally for medicinal purposes. Although single doses of synephrine, or low daily doses used short-term, may be safe in healthy adults (2040,11269,15381,35757,35759,91681,97256,98332), laboratory analyses raise concerns that many marketed bitter orange products contain higher amounts of synephrine and other natural and synthetic amines than on the label, increasing the risk for serious stimulant-related adverse effects (104185). Additionally, there is a lack of agreement regarding a safe daily dose of synephrine. Health Canada has approved 50 mg of p-synephrine daily when used alone, or 40 mg of p-synephrine in combination with up to 320 mg of caffeine daily in healthy adults (91684). The Federal Institute for Risk Assessment in Germany recommends that supplements should provide no more than 6.7 mg of synephrine daily. This recommendation is meant to ensure that patients who frequently consume synephrine in conventional foods will receive no more than 25.7 mg daily (91290). These limits are intended to reduce the risk for serious adverse effects. There have been several case reports of ischemic stroke and cardiotoxicity including tachyarrhythmia, cardiac arrest, syncope, angina, myocardial infarction, ventricular arrhythmia, and death in otherwise healthy patients who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts found in foods.
Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally for medicinal purposes.
There are case reports of cardiotoxicity including tachyarrhythmia, syncope, and myocardial infarction in otherwise healthy adults who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680). The effects of bitter orange during lactation are unknown; avoid use.
LIKELY SAFE ...when used orally, parenterally, or rectally and appropriately. Caffeine has Generally Recognized As Safe (GRAS) status in the US (4912,98806). Caffeine is also an FDA-approved product and a component of several over-the-counter and prescription products (4912,11832). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of caffeine up to 400 mg daily are not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). This amount of caffeine is similar to the amount of caffeine found in approximately 4 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
POSSIBLY UNSAFE ...when used orally, long-term or in high doses (91063). Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other adverse effects (3719). Acute use of high doses, typically above 400 mg daily, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg/kg). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, or prior caffeine use (11832,95700,97454,104573). Caffeine products sold to consumers in highly concentrated or pure formulations are considered to a serious health concern because these products have a risk of being used in very high doses. Concentrated liquid caffeine can contain about 2 grams of caffeine in a half cup. Powdered pure caffeine can contain about 3.2 grams of caffeine in one teaspoon. Powdered pure caffeine can be fatal in adults when used in doses of 2 tablespoons or less. As of 2018, these products are considered by the FDA to be unlawful when sold to consumers in bulk quantities (95700).
CHILDREN: POSSIBLY SAFE
when used orally or intravenously and appropriately in neonates under the guidance of a healthcare professional (6371,38340,38344,91084,91087,97452).
...when used orally in amounts commonly found in foods and beverages in children and adolescents (4912,11833,36555). Daily intake of caffeine in doses of less than 2.5 mg/kg daily are not associated with significant adverse effects in children and adolescents (11733,98806). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Intakes of caffeine should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen (38048,38252,91032). Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,16014,16015,98806,108814). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014,37960). This increased risk seems to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, up to 300 mg daily can be consumed during pregnancy without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). However, observational research in a Norwegian cohort found that caffeine consumption is associated with a 16% increased odds of the baby being born small for gestational age when compared with no consumption (100369,103707). The same Norwegian cohort found that low to moderate caffeine consumption during pregnancy is not associated with changes in neurodevelopment in children up to 8 years of age (103699). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea.
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts over 300 mg daily.
Caffeine crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260,98806). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea. Additionally, high doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,91033,91048,95949). In a cohort of mother/infant pairs with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg respectively. In another cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
LACTATION: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Caffeine intake should be closely monitored while breast-feeding. During lactation, breast milk concentrations of caffeine are thought to be approximately 50% of serum concentrations and caffeine peaks in breastmilk approximately 1-2 hours after consumption (23590).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine is excreted slowly in infants and may accumulate. Caffeine can cause sleep disturbances, irritability, and increased bowel activity in breast-fed infants exposed to caffeine (2708,6026).
LIKELY SAFE ...when consumed in amounts commonly found in foods. Cassia cinnamon has Generally Recognized As Safe (GRAS) status in the US for use as a spice or flavoring agent (4912) ...when used orally and appropriately, short-term. Cassia cinnamon up to 2 grams daily has been used safely for up to 3 months (17011,21914). Cassia cinnamon 3-6 grams daily has been used safely for up to 6 weeks (11347,14344). Cassia cinnamon extract corresponding to 3 grams daily of cassia cinnamon powder has also been used safely for up to 4 months (21916).
POSSIBLY SAFE ...when used topically, short-term. Cassia cinnamon oil 5% cream applied topically to the legs has been used safely in one clinical trial (59580).
POSSIBLY UNSAFE ...when used orally in high doses, long-term. Some cassia cinnamon products contain high levels of coumarin. Coumarin can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg daily can result in hepatotoxicity that resolves when coumarin use is discontinued (15302). In most cases, ingestion of cassia cinnamon will not provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Cassia cinnamon 1 gram daily has been used safely in adolescents 13-18 years of age for up to 3 months (89648).
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of cassia cinnamon when used in medicinal amounts during pregnancy and breast-feeding. Stay on the safe side and stick to food amounts.
There is insufficient reliable information available about the safety of Cassia nomame.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Coleus extract 500 mg daily has been used for up to 3 months without significant adverse effects (91885,100851). ...when used intravenously and appropriately, short-term. Intravenous forskolin, a constituent of coleus, seems to be safe when given at an appropriate rate of 0.5 mcg/kg/minute and increased at 15 minute intervals to 1.0, 2.0, and 3.0 mcg/kg/minute up to 1 hour (7278,7279). ...when used by inhalation and appropriately. Single-dose inhalation of forskolin powder 10 mg from a Spinhaler inhalator seems to be safe and well-tolerated (7281). ...when used ophthalmologically and appropriately. Coleus suspension eye drops (1%) have been safely used in clinical studies (7282,7283,7284,7402,7403,7405).
POSSIBLY UNSAFE ...when used orally in higher doses. Although coleus extracts have been used with apparent safety in doses up to 1.4 grams daily for 2 months (91884), taking coleus extract in doses exceeding 500 mg daily has been associated with an increased incidence of adverse effects, which are primarily gastrointestinal (100851).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Evidence from animal research suggests that high doses of coleus can inhibit embryo implantation and/or delay fetal development (25174); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY UNSAFE ...when used orally. Ephedra can cause severe life-threatening or disabling adverse effects in some people. Ephedra is banned in the US. Several case reports have linked ephedra to serious side effects including hypertension, myocardial infarction (MI), seizure, stroke, psychosis, and others (1276,2729,6486,6998,9167,10689). Prolonged use or use of high doses might increase the risk of serious adverse effects (2729). Some suggest that ephedra is only harmful when used inappropriately in excessive doses or for prolonged periods. However, there are several cases of significant adverse events in patients who used ephedra short-term in relatively low doses ranging from 20-60 mg of ephedra alkaloids (2729,6486). There is some evidence that people who take doses greater than 32 mg per day might have more than triple the risk of hemorrhagic stroke, including subarachnoid hemorrhage and intracerebral hemorrhage (9167). It is not possible to determine who is at the greatest risk. However, people with pre-existing conditions such as cardiovascular disease or those using ephedra products in combination with other stimulants such as caffeine, might be at increased risk.
CHILDREN: LIKELY UNSAFE
when used orally.
Ephedra has been linked to several cases of severe side effects (6486).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally.
Ephedra has been linked to several cases of severe side effects (1276,2729,6486,6998,9167,10689).
LIKELY SAFE ...when green tea is consumed as a beverage in moderate amounts (733,6031,9222,9223,9225,9226,9227,9228,14136,90156)(90159,90168,90174,90184,95696). Green tea contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 8 cups of green tea daily, or approximately 400 mg of caffeine, is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). ...when green tea extract cream or ointment is used topically and appropriately, short-term. A green tea extract 3% cream, applied twice daily, has been used with apparent safety for up to 8 weeks, and a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins has been safely used for up to 16 weeks (15067). The safety of treatment for longer durations or multiple treatment courses is not known.
POSSIBLY SAFE ...when green tea extract is used orally. Green tea extract containing 7% to 12% caffeine has been used safely for up to 2 years (8117,37725). Also decaffeinated green tea extract up to 1.3 grams daily enriched in EGCG has been used safely for up to 12 months (90158,97131). In addition, green tea extract has been safely used as part of an herbal mixture also containing garcinia, coffee, and banaba extracts for 12 weeks (90137). ...when used topically and appropriately as a cream or mouthwash (6065,11310,90141,90150,90151).
POSSIBLY UNSAFE ...when consumed as a beverage in large quantities. Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Doses of caffeine greater than 600 mg per day, or approximately 12 cups of green tea, have been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832). These effects would not be expected to occur with the consumption of decaffeinated green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. There is also some speculation that green tea products containing higher amounts of the catechin epigallocatechin gallate (EGCG) might have increased risk of adverse events. Some research has found that taking green tea products containing EGCG levels greater than 200 mg is associated with increased risk of mild adverse effects such as constipation, increased blood pressure, and rash (90161). Other research has found that doses of EGCG equal to or above 800 mg daily may be associated with increased risk of liver injury in humans (95440,95696,97131).
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, and prior caffeine use (11832).
CHILDREN: POSSIBLY SAFE
when used orally by children and adolescents in amounts commonly found in foods and beverages (4912,11833).
Intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). ...when used for gargling three times daily for up to 90 days (90150).
There is insufficient reliable information available about the safety of green tea extract when used orally in children. However, taking green tea extract orally has been associated with potentially serious, albeit uncommon and unpredictable cases, of hepatotoxicity in adults. Therefore, some experts recommend that children under the age of 18 years of age do not use products containing green tea extract (94897).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, pregnant patients should closely monitor their intake to ensure moderate consumption. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,98806). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. Based on animal models, green tea extract catechins are also transferred to the fetus, but in amounts 50-100 times less than maternal concentrations (15010). The potential impact of these catechins on the human fetus is not known, but animal models suggest that the catechins are not teratogenic (15011).
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts providing more than 300 mg caffeine daily.
Caffeine from green tea crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. High maternal doses of caffeine throughout pregnancy have also resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
There is also concern that consuming large amounts of green tea might have antifolate activity and potentially increase the risk of folic acid deficiency-related birth defects. Catechins in green tea inhibit the enzyme dihydrofolate reductase in vitro (15012). This enzyme is responsible for converting folic acid to its active form. Preliminary evidence suggests that increasing maternal green tea consumption is associated with increased risk of spina bifida (15068). Also, evidence from epidemiological research suggests that serum folate levels in pregnant patients with high green tea intake (57.3 mL per 1000 kcal) are decreased compared to participants who consume moderate or low amounts of green tea (90171). More evidence is needed to determine the safety of using green tea during pregnancy. For now, advise pregnant patients to avoid consuming large quantities of green tea.
LACTATION: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, nursing parents should closely monitor caffeine intake. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of green tea might cause irritability and increased bowel activity in nursing infants (6026). There is insufficient reliable information available about the safety of green tea extracts when applied topically during breast-feeding.
LIKELY UNSAFE ...when used orally. Sida cordifolia contains the constituent ephedrine, similar to the herb ephedra. Ephedra, Sida cordifolia, and other ephedrine-containing herbs are banned in the United States due to several case reports that have linked ephedrine to serious side effects, including hypertension, myocardial infarction (MI), seizure, stroke, psychosis, and others (1276,2729,6486,6998,9167,10689).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally.
The ephedrine constituent of Sida cordifolia has been linked to several cases of severe side effects (1276,2729,6486,6998,9167,10689).
Below is general information about the interactions of the known ingredients contained in the product Thermo-Rx. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Combining 5-HTP and carbidopa can increase the risk of serotonergic side effects.
Carbidopa is sometimes used with 5-HTP to minimize peripheral 5-HTP metabolism and boost the amount that reaches the brain. However, this combination might also increase the risk of some side effects including hypomania, restlessness, rapid speech, anxiety, insomnia, and aggressiveness (30076,30132,30158). Combining carbidopa and 5-HTP might also increase the risk of scleroderma-like skin changes due to elevated serotonin levels (1403).
|
Theoretically, concomitant use of 5-HTP with medications that cause sedation might have additive effects.
|
Combining serotonergic drugs with 5-HTP might cause additive serotonergic effects.
5-HTP can increase serotonin levels and cause serotonergic effects (901). Theoretically, combining serotonergic drugs with 5-HTP might increase the risk of serotonergic side effects, including serotonin syndrome and cerebral vasoconstrictive disorders (8056). However, serotonin syndrome with 5-HTP has not yet been reported in humans (104941). Monitor patients for signs of serotonin syndrome and other serotonergic side effects if using 5-HTP with serotonergic drugs.
|
Theoretically, bitter orange might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Some clinical research shows that drinking a tea containing bitter orange and Indian snakeroot reduces fasting and postprandial glucose levels in patients with type 2 diabetes who are using antidiabetes drugs (35751). However, it is unclear if these effects are due to bitter orange, Indian snakeroot, or the combination. An animal study also shows that p-synephrine in combination with gliclazide , a sulfonylurea, causes an additional 20% to 44% decrease in glucose levels when compared with gliclazide alone (95658).
|
Bitter orange might increase blood pressure and heart rate when taken with caffeine.
|
Bitter orange might affect colchicine levels.
Colchicine is a substrate of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Bitter orange has been reported to inhibit CYP3A4 and increase levels of CYP3A4 substrates (7029,11362,93470). However, one small clinical study in healthy adults shows that drinking bitter orange juice 240 mL twice daily for 4 days and taking a single dose of colchicine 0.6 mg on the 4th day decreases colchicine peak serum levels by 24%, time to peak serum level by 1 hour, and overall exposure to colchicine by 20% (35762). The clinical significance of this finding is unclear.
|
Theoretically, bitter orange might increase levels of drug metabolized by CYP2D6.
In vitro research shows that octopamine, a constituent of bitter orange, weakly inhibits CYP2D6 enzymes (91878). This effect has not been reported in humans.
|
Bitter orange might increase levels of drugs metabolized by CYP3A4.
Small clinical studies suggest that single or multiple doses of freshly squeezed bitter orange juice 200-240 mL can inhibit CYP3A4 metabolism of drugs (7029,11362,93470), causing increased drug levels and potentially increasing the risk of adverse effects. However, the extent of the effect of bitter orange on CYP3A4-mediated drug interactions is unknown. Some evidence suggests that bitter orange selectively inhibits intestinal CYP3A4, but not hepatic CYP3A4. Its effect on P-glycoprotein, which strongly overlaps with CYP3A4 interactions, is unclear (7029,11269,11270,11362). One small clinical study shows that drinking 8 ounces of freshly squeezed bitter orange juice has no effect on cyclosporine, which seems to be more dependent on hepatic CYP3A4 and P-glycoprotein than intestinal CYP3A4 (11270).
|
Bitter orange might increase blood levels of dextromethorphan.
One small clinical study shows that bitter orange juice increases dextromethorphan levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (11362). Theoretically, bitter orange might increase the risk for dextromethorphan-related adverse effects.
|
Bitter orange might increase blood levels of felodipine.
One small clinical study shows that bitter orange juice increases felodipine levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (7029). Theoretically, bitter orange might increase the risk for felodipine-related adverse effects.
|
Bitter orange might increase blood levels of indinavir.
One small clinical study shows that bitter orange juice slightly increases indinavir levels, but this effect is likely to be clinically insignificant. Bitter orange selectively inhibits intestinal cytochrome P450 3A4 (CYP3A4); however, the metabolism of indinavir seems to be more dependent on hepatic CYP3A4 (11269). The effect of bitter orange on other protease inhibitors has not been studied.
|
Bitter orange might increase blood levels of midazolam.
One small clinical study shows that bitter orange juice can increase midazolam levels, likely through inhibition of cytochrome P450 3A4 (CYP3A4) (7029). Theoretically, bitter orange might increase the risk of midazolam-related adverse effects.
|
Theoretically, taking MAOIs with synephrine-containing bitter orange preparations might increase the hypertensive effects of synephrine, potentially leading to hypertensive crisis.
|
Theoretically, bitter orange might have an additive effect when combined with drugs that prolong the QT interval, potentially increasing the risk of ventricular arrhythmias.
One case report suggests that taking bitter orange in combination with other stimulants such as caffeine might prolong the QT interval in some patients (13039).
|
Bitter orange juice might increase blood levels of sildenafil.
A small clinical study in healthy adult males shows that drinking freshly squeezed bitter orange juice 250 mL daily for 3 days and taking a single dose of sildenafil 50 mg on the 3rd day increases the peak plasma concentration of sildenafil by 18% and the overall exposure to sildenafil by 44%. Theoretically, this may be due to inhibition of cytochrome P450 3A4 by bitter orange (93470).
|
Theoretically, bitter orange might increase the risk of hypertension and adverse cardiovascular effects when taken with stimulant drugs.
|
Theoretically, caffeine might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Some evidence shows that caffeine is a competitive inhibitor of adenosine and can reduce the vasodilatory effects of adenosine in humans (38172). However, other research shows that caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use might increase levels and adverse effects of caffeine.
Alcohol reduces caffeine metabolism. Concomitant use of alcohol can increase caffeine serum concentrations and the risk of caffeine adverse effects (6370).
|
Theoretically, caffeine may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking caffeine with antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, large amounts of caffeine might increase the cardiac inotropic effects of beta-agonists (15).
|
Theoretically, caffeine might reduce the effects of carbamazepine and increase the risk for convulsions.
Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the levels and adverse effects of caffeine.
Cimetidine decreases the rate of caffeine clearance by 31% to 42% (11736).
|
Caffeine might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Caffeine might increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Although researchers speculate that caffeine might inhibit CYP1A2, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741). In one case report, severe, life-threatening clozapine toxicity and multiorgan system failure occurred in a patient with schizophrenia stabilized on clozapine who consumed caffeine 600 mg daily (108817).
|
Theoretically, contraceptive drugs might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
|
Theoretically, caffeine might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Caffeine inhibits dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram use might increase the levels and adverse effects of caffeine.
Disulfiram decreases the rate of caffeine clearance (11840).
|
Theoretically, using caffeine with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
|
Theoretically, caffeine might reduce the effects of ethosuximide and increase the risk for convulsions.
Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of felbamate and increase the risk for convulsions.
Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, caffeine might increase the levels and adverse effects of flutamide.
In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Fluvoxamine reduces caffeine metabolism (6370).
|
Abrupt caffeine withdrawal might increase the levels and adverse effects of lithium.
Caffeine has diuretic activity. When abruptly discontinued, caffeine may alter the clearance of lithium (609). There are two case reports of lithium tremor that worsened upon abrupt coffee withdrawal (610) and 6 case reports of elevated serum lithium levels after reducing or eliminating caffeine intake (114665). In one case, a male with schizoaffective disorder stabilized on lithium had an elevated lithium level after reducing his caffeine intake by 87%. At a later date, he increased his caffeine intake by 6-fold, resulting in a subtherapeutic lithium level and a recurrence of psychiatric symptoms (114665).
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Animal research suggests that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Methoxsalen reduces caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, caffeine might decrease the effects of pentobarbital.
Caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, caffeine might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, caffeine might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, caffeine might increase the levels and clinical effects of pioglitazone.
Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, caffeine might increase the levels and adverse effects of theophylline.
Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, caffeine might increase the levels and adverse effects of tiagabine.
Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, verapamil might increase the levels and adverse effects of caffeine.
Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, cassia cinnamon may have additive effects with antidiabetes drugs.
|
Theoretically, large doses of cassia cinnamon might cause additive effects when used with hepatotoxic drugs.
There is some concern that ingesting large amounts of cassia cinnamon for an extended duration might cause hepatotoxicity in some people. Cassia cinnamon contains coumarin, which can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin use is discontinued (15302,97249). Lower amounts might also cause liver problems in sensitive people, such as those with liver disease or those taking potentially hepatotoxic agents.
|
Theoretically, concomitant use of coleus and anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
|
Theoretically, combining coleus with antihypertensive drugs might cause additive blood pressure lowering effects and increase the risk of hypotension.
|
Theoretically, combining coleus with calcium channel blockers might increase the coronary vasodilatory effects.
|
Theoretically, taking coleus may affect drugs metabolized by CYP2C9 and increase the risk of adverse effects or reduce the effectiveness.
Research on the effect of coleus on CYP2C9 is conflicting. Some animal research shows that coleus extract can induce CYP2C9, while in vitro research shows that coleus can inhibit CYP2C9 (91891). Until more is known, advise patients that taking coleus might increase or decrease levels of drugs metabolized by CYP2C9.
|
Theoretically, taking coleus might decrease serum levels of drugs metabolized by CYP3A4.
In vitro research shows that coleus can activate the nuclear receptor, pregnane X receptor (PXR), which results in increased expression of CYP3A4 (44399,44412). Although the clinical significance of this is not known, use caution when considering concomitant use of coleus and other drugs affected by these enzymes.
|
Theoretically, combining coleus with nitrates might increase the coronary vasodilatory effects.
|
Theoretically, taking coleus may affect the metabolism of warfarin and increase the risk of adverse effects or reduce the effectiveness.
Some animal research shows that coleus extract can induce cytochrome P450 2C9 (CYP2C9), an enzyme that metabolizes warfarin. However, other in vitro research shows that coleus can inhibit CYP2C9 (91891). Theoretically, taking coleus with drugs metabolized by CYP2C9 might affect drug levels and the risk of adverse effects. Until more is known, advise patients that taking coleus might increase or decrease levels of warfarin.
|
Theoretically, ephedra may reduce the effects of anticonvulsants.
Ephedra has been associated with reports of seizure (13304).
|
Theoretically, taking ephedra with antidiabetes drugs might interfere with blood glucose control.
One study in animals shows that some components of ephedra may lower blood glucose levels (48835). However, most human research suggests that ephedra and ephedrine, a component of ephedra, can raise blood glucose levels and might decrease the effectiveness of drug therapy (3719,12857,48810). Monitor blood glucose concentrations closely.
|
Theoretically, large amounts of ephedra might increase the cardiac inotropic effects of beta-agonists.
|
Theoretically, ephedra might decrease levels of drugs metabolized by CYP1A2.
Some animal research suggests that ephedra induces CYP1A2 and increases the clearance of CYP1A2 substrates such as caffeine (91808).
|
Theoretically, concomitant use might reduce the levels and clinical effects of dexamethasone.
|
Theoretically, concomitant use might increase the risk of hypertension.
The ephedrine contained in ephedra might cause excessive vasoconstriction and hypertension when used in combination with ergot derivatives (6009).
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
|
Concomitant use might increase the risk of serious adverse effects.
Use of ephedra with caffeine or other methylxanthines such as theophylline might increase the risk of stimulatory adverse effects (8641,24180). There is also some evidence that using ephedra with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction (MI), stroke, seizures, and death (1275,6486,10307,48751,54423,54429).
|
Theoretically, concomitant use might increase the risk of serious adverse effects.
|
Theoretically, ephedra might have an additive effect with drugs that prolong the QT interval.
Even in healthy volunteers, EKG changes including prolonged QT interval and premature atrial contractions have been reported with ingestion of recommended doses of ephedra (11135,11708). Ephedra may have an additive effect with drugs that prolong the QT interval. This may increase the risk of ventricular arrhythmias (11355,48765).
|
Theoretically, concomitant use might increase the risk for serious adverse effects.
|
Theoretically, high doses of green tea might increase the effects and side effects of 5-fluorouracil.
Animal research shows that taking green tea in amounts equivalent to about 6 cups daily in humans for 4 weeks prior to receiving a single injection of 5-fluorouracil increases the maximum plasma levels of 5-fluorouracil by about 2.5-fold and the area under the curve by 425% (98424).
|
Theoretically, green tea might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine doesn't seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Concomitant use of alcohol and caffeine can increase caffeine serum concentrations and the risk of caffeine adverse effects. Alcohol reduces caffeine metabolism (6370).
|
Theoretically, green tea may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Conflicting reports exist regarding the effect of green tea on bleeding risk when used with anticoagulant or antiplatelet drugs; however, most evidence suggests that drinking green tea in moderate amounts is unlikely to cause a significant interaction. Green tea contains small amounts of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects. Furthermore, the catechins and caffeine in green tea are reported to have antiplatelet activity (733,8028,8029,12882,100524).
|
Theoretically, taking green tea with antidiabetes drugs might interfere with blood glucose control.
|
Green tea extract seems to reduce the levels and clinical effects of atorvastatin.
In healthy humans, taking green tea extract 300 mg or 600 mg along with atorvastatin reduces plasma levels of atorvastatin by approximately 24%. The elimination of atorvastatin is not affected (102714). Atorvastatin is a substrate of organic anion-transporting polypeptides (OATPs). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs. Some OATPs are expressed in the small intestine and are responsible for the uptake of drugs and other compounds, which may have resulted in reduced plasma levels of atorvastatin (19079). It is not clear if drinking green tea alters the absorption of atorvastatin.
|
Green tea contains caffeine. Theoretically, concomitant use of large amounts of caffeine might increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, green tea might interfere with the effects of bortezomib.
In vitro research shows that green tea polyphenols, such as epigallocatechin gallate (EGCG), interact with bortezomib and block its proteasome inhibitory action. This prevents the induction of cell death in multiple myeloma or glioblastoma cancer cell lines (17212). Advise patients taking bortezomib, not to take green tea.
|
Theoretically, green tea might reduce the effects of carbamazepine and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, green tea might reduce the levels and clinical effects of celiprolol.
In a small human study, taking green tea daily for 4 days appears to decrease blood and urine levels of celiprolol by at least 98% (104607). This interaction is possibly due to the inhibition of organic anion transporting polypeptide (OATP). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is found in the intestine (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in green tea.
Green tea contains caffeine. Cimetidine can reduce caffeine clearance by 31% to 42% (11736).
|
Theoretically, green tea might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Animal research suggests that, although green tea extract does not affect the elimination of clozapine, it delays the time to reach peak concentration and reduces the peak plasma levels (90173). Also, concomitant administration of green tea and clozapine might theoretically cause acute exacerbation of psychotic symptoms due to the caffeine in green tea. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in green tea.
Green tea contains caffeine. Oral contraceptives can decrease caffeine clearance by 40% to 65% (8644).
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Caffeine is metabolized by cytochrome P450 1A2 (CYP1A2) (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from green tea and increase caffeine levels.
|
Green tea is unlikely to produce clinically significant changes in the levels and clinical effects of CYP3A4 substrates.
|
Theoretically, green tea might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine might inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using green tea with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, green tea might reduce the effects of ethosuximide and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of felbamate and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Green tea can decrease blood levels of fexofenadine.
Clinical research shows that green tea can significantly decrease blood levels and excretion of fexofenadine. Taking green tea extract with a dose of fexofenadine decreased bioavailability of fexofenadine by about 30%. In vitro, green tea inhibits the cellular accumulation of fexofenadine by inhibiting the organic anion transporting polypeptide (OATP) drug transporter (111029). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates (19079,102714,102730).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, green tea might increase the levels and adverse effects of flutamide.
Green tea contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). Theoretically, concomitant use of caffeine and flutamide might increase serum concentrations of flutamide and increase the risk adverse effects.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
|
Theoretically, green tea might reduce the levels and clinical effects of imatinib.
In animal research, a single dose of green tea extract reduces the area under the curve (AUC) of imatinib by up to approximately 64% and its main metabolite N-desmethyl imatinib by up to approximately 81% (104600). This interaction has not been shown in humans. The mechanism of action is unclear but may involve multiple pathways.
|
Theoretically, green tea might reduce the levels and clinical effects of lisinopril.
Preliminary clinical research shows that a single dose of green tea extract reduces plasma concentrations of lisinopril. Compared to a control group, peak levels and area under the curve (AUC) of lisinopril were reduced by approximately 71% and 66%, respectively (104599). This may be due to inhibition of organic anion transporting polypeptides (OATP) by green tea catechins (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, abrupt green tea withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). Theoretically, concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Methoxsalen can reduce caffeine metabolism (23572). Concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Mexiletine can decrease caffeine elimination by 50% (1260).
|
Theoretically, green tea might increase the levels and adverse effects of midazolam.
Animal research suggests that green tea extract can increase the maximum plasma concentration, but not the half-life, of oral midazolam. This effect has been attributed to the inhibition of intestinal cytochrome P450 3A4 (CYP3A4) and induction of hepatic CYP3A4 enzymes by green tea constituents (20896). However, it is unlikely that this effect is clinically significant, as the dose used in animals was 50 times greater than what is commonly ingested by humans.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Green tea contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Green tea seems to reduce the levels and clinical effects of nadolol.
Preliminary clinical research shows that green tea consumption reduces plasma concentrations of nadolol. Compared to a control group, both peak levels and total drug exposure (AUC) of nadolol were reduced by approximately 85% in subjects who drank green tea daily for two weeks. Drinking green tea with nadolol also significantly reduced nadolol's systolic blood pressure lowering effect (19071). Other clinical research shows that a single dose of green tea can affect plasma nadolol levels for at least one hour (102721). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is involved in the uptake of nadolol in the intestine (19071,19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, green tea might increase the levels and adverse effects of nicardipine.
Green tea contains EGCG. Animal research shows that EGCG increases the area under the curve (AUC) and absolute oral bioavailability of nicardipine. The mechanism of action is thought to involve inhibition of both intestinal P-glycoprotein and hepatic cytochrome P450 3A (90136). The effect of green tea itself on nicardipine is unclear.
|
Theoretically, concomitant use might increase the risk of hypertension.
Green tea contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Green tea seems to reduce the levels of nintedanib.
Clinical research shows that green tea can significantly decrease blood levels of nintedanib. Taking green tea extract twice daily for 7 days 30 minutes prior to a meal along with nintedanib with the meal decreased the 12-hour area under the curve (AUC) values for nintedanib by 21%. There was no effect on the maximum concentration of nintedanib (111028).
|
Theoretically, green tea might reduce the absorption of organic anion-transporting polypeptide (OATP) substrates.
OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds. Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates, including lisinopril, and celiprolol (19079,102714,102730).
|
Green tea might increase the levels and adverse effects of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that green tea inhibits drug efflux by P-gp, potentially increasing serum levels of P-gp substrates. Case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking green tea and certain P-gp substrates (111644).
|
Theoretically, green tea might decrease the effects of pentobarbital.
Green tea contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, green tea might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, green tea might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, green tea might increase the levels and clinical effects of pioglitazone.
Green tea contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Green tea contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2, and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, green tea extract might alter the absorption and distribution of rosuvastatin.
In animal research, giving green tea extract with rosuvastatin increased plasma levels of rosuvastatin. Rosuvastatin is a substrate of organic anion-transporting polypeptide (OATP)1B1, which is expressed in the liver. The increased plasma levels may have been related to inhibition of OATP1B1 (102717). However, in humans, taking EGCG with rosuvastatin reduced plasma levels of rosuvastatin, suggesting an inhibition of intestinal OATP (102730). It is not clear if drinking green tea alters the absorption of rosuvastatin.
|
Theoretically, concomitant use might increase stimulant adverse effects.
Green tea contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, green tea might increase the levels and adverse effects of theophylline.
Green tea contains caffeine. Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, green tea might increase the levels and adverse effects of tiagabine.
Green tea contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, concomitant use might increase the levels and adverse effects of both verapamil and caffeine.
Animal research suggests that the green tea constituent EGCG increases the area under the curve (AUC) values for verapamil by up to 111% and its metabolite norverapamil by up to 87%, likely by inhibiting P-glycoprotein (90138). Also, theoretically, concomitant use of verapamil and caffeinated beverages such as green tea might increase plasma caffeine concentrations and the risk of adverse effects, due to the caffeine contained in green tea. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, green tea may increase the risk of bleeding if used with warfarin.
Conflicting reports exist regarding the potential of green tea to antagonize the effect of warfarin; however, most evidence suggests that drinking green tea in moderation is unlikely to cause a significant interaction. Green tea contains a small amount of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects (1460,1461,1463,8028). Therefore, use of green tea in moderate amounts is unlikely to antagonize the effects of warfarin; however, very large doses should be avoided.
|
Theoretically, Sida cordifolia might reduce the effectiveness of antidiabetes drugs.
Sida cordifolia contains ephedrine. Clinical research shows that ephedrine can increase blood glucose levels (12857).
|
Theoretically, Sida cordifolia might reduce the effectiveness of dexamethasone.
Sida cordifolia contains ephedrine. Clinical research shows that ephedrine can increase the clearance rate of dexamethasone (11462).
|
Theoretically, Sida cordifolia might increase the risk of additive hypertension when taken with ergot derivatives.
Sida cordifolia contains ephedrine, which can cause vasoconstriction. This can lead to significant elevations in blood pressure when taken with ergot derivatives (6009).
|
Theoretically, Sida cordifolia might increase the risk of serious adverse effects when taken with methylxanthines.
Sida cordifolia contains ephedrine. Use of ephedrine-containing herbs with caffeine or other methylxanthines such as theophylline might increase the risk of stimulatory adverse effects. Some clinical research and case reports suggest that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction (MI), stroke, seizures, and death (1275,1380,6486,8641,10307).
|
Theoretically, Sida cordifolia might increase the risk of hypertension when taken with MAOIs.
Sida cordifolia contains ephedrine. Clinical research shows that ephedrine can increase blood pressure (6009).
|
Theoretically, Sida cordifolia might increase the risk of additive QT interval prolongation when taken with QT interval-prolonging drugs.
Sida cordifolia contains ephedrine. Clinical research shows that ephedrine from another herb, ephedra, can prolong the QT interval (11355).
|
Theoretically, Sida cordifolia might increase the risk of adverse cardiovascular effects when taken with stimulant drugs.
Sida cordifolia contains ephedrine. Drugs with CNS stimulant properties, such as phenylpropanolamine, pseudoephedrine, and diethylpropion, and many others can increase the risk of hypertension and adverse cardiovascular effects when taken with ephedrine (4304).
|
Below is general information about the adverse effects of the known ingredients contained in the product Thermo-Rx. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, 5-HTP is generally well tolerated, short-term.
Most Common Adverse Effects:
Orally: Abdominal pain, anorexia, dizziness, diarrhea, drowsiness, fatigue, headache, insomnia, nausea, and vomiting. Severity appears to be dose-dependent.
Serious Adverse Effects (Rare):
Orally: Aggression, hallucinations, mania, severe gastrointestinal complaints.
Cardiovascular ...Orally, palpitations have been reported with 5-HTP (30076,30130,30167). Conversely, bradycardia has been reported in patients taking 5-HTP 0.4-2 grams daily in combination with carbidopa 100-300 mg daily (30132). In patients with schizophrenia, a combination of 5-HTP in doses up to 6 grams daily and carbidopa 150 mg daily was associated with diaphoresis and mild diastolic hypotension, especially when doses were increased at a rate faster than 200 mg per day (30183).
Dermatologic ...Orally, 5-HTP has been reported to cause urticaria, other allergic-type skin reactions, and flushing (2204,30000,30140). A scleroderma-like illness was reported in a 70-year-old man who had been taking 5-HTP 1400 mg daily and carbidopa 150 mg daily for 20 months. Elevated serotonin levels may be linked to this condition (1403).
Gastrointestinal ...Orally, 5-HTP has been reported to cause gastrointestinal side effects such as nausea, vomiting, abdominal or epigastric pain, heartburn, constipation, diarrhea, flatulence, anorexia, and taste alteration at any dose (2203,2204,30000,30112,30114,30125,30132,30139,30140)(30165,30183,104250). Severity may be dose-dependent and also related to how quickly doses are increased (30183). Some data suggests that these effects may diminish or disappear with continued use of 5-HTP (30132).
Hematologic ...Symptoms suggestive of eosinophilia myalgia syndrome (EMS) have been reported in some patients using 5-HTP (902,10084,30178,88174,90927). In one case, a woman was exposed to 5-HTP, tetrahydrobiopterin, carbidopa, and levodopa while administering them to her children for 2 years (90927). Her diagnosis was not confirmed, and the validity of the tests performed on the 5-HTP product has been questioned (88174). Other cases of eosinophilia or EMS in patients taking 5-HTP have been attributed to impurities that resemble previously identified contaminants found in L-tryptophan products (902,919,7067,10084). The L-tryptophan contaminants associated with EMS were linked to a specific manufacturer's production method that is not used in the preparation of 5-HTP (88174). Although 5-HTP supplements have been associated with EMS, it seems that this adverse effect is likely due to the presence of contaminants in the 5-HTP products, not 5-HTP itself.
Musculoskeletal ...Orally, rhabdomyolysis was noted in one patient with progressive myoclonus epilepsy who was treated with 5-HTP 300 mg daily for 21 days (30162).
Neurologic/CNS ...Orally, 5-HTP has been reported to cause drowsiness, dizziness, insomnia, fatigue, and headache (30076,30112,30132).
Psychiatric ...Orally, 5-HTP has been associated with euphoria, hypomania and mania, anxiety, insomnia, and aggressiveness (30076,30132,30158,88179). In patients with schizophrenia, a combination of high-dose 5-HTP, up to 6 grams daily, and carbidopa 150 mg daily was associated with transient increases in hallucinations, delusions, marked confusion, looseness of associations, flight of ideas, and a hyperkinetic syndrome consisting of restlessness, hand wringing, pacing, and an inability to sit quietly in a chair (30183).
General
...Orally, bitter orange might be unsafe when used in medicinal amounts.
Topically and when inhaled as aromatherapy, bitter orange seems to be well tolerated.
Most Common Adverse Effects:
Orally: Hypertension and tachycardia, particularly when used in combination with caffeine and/or other stimulant ingredients.
Topically: Skin irritation.
Serious Adverse Effects (Rare):
Orally: Myocardial infarction, QT prolongation, seizures, stroke, syncope, tachyarrhythmia, and ventricular fibrillation have been reported in patients taking bitter orange in combination with other ingredients. It is unclear if these effects are due to bitter orange, other ingredients, or the combination.
Cardiovascular
...Bitter orange, which contains adrenergic agonists synephrine and octopamine, may cause hypertension and cardiovascular toxicity when taken orally (2040,6969,6979).
Studies evaluating the effect of bitter orange on cardiovascular parameters have been mixed. Several studies show that taking bitter orange alone or in combination with caffeine increases blood pressure and heart rate. In one clinical study, bitter orange in combination with caffeine increased systolic and diastolic blood pressure and heart rate in otherwise healthy normotensive adults (13657). In another study, a single dose of bitter orange 900 mg, standardized to 6% synephrine (54 mg), also increased systolic and diastolic blood pressure and heart rate for up to 5 hours in young, healthy adults (13774). Using half that dose of bitter orange and providing half as much synephrine, did not seem to significantly increase blood pressure or QT interval in healthy adults (14311). Increased diastolic, but not systolic, blood pressure or heart rate also occurred in a clinical trial involving a specific supplement containing synephrine 21 mg and caffeine 304 mg (Ripped Fuel Extreme Cut, Twinlab) (35743). Synephrine given intravenously to males increased systolic blood pressure, but lacked an effect on diastolic blood pressure or heart rate (12193).
In clinical research and case reports, tachycardia, tachyarrhythmia, QT prolongation, ischemic stroke, variant angina, and myocardial infarction have occurred with use of bitter orange or synephrine-containing multi-ingredient products (12030,13039,13067,13091,13657,14326,35749,91680). In one case report, a combination product containing bitter orange may have masked bradycardia and hypotension while exacerbating weight loss in a 16 year-old female with an eating disorder taking the product for weight loss (35740). From 1998 to 2004, Health Canada received 16 reports of serious adverse cardiovascular reactions such as tachycardia, cardiac arrest, ventricular fibrillation, blackout, and collapse. In two of these cases, the patient died. In almost all of these cases, bitter orange was combined with another stimulant such as caffeine, ephedrine, or both (14342).
Other research has found no significant effect of bitter orange on blood pressure or heart rate. Several clinical studies have reported that, when taken as a single dose or in divided doses ranging from 20-100 mg for one day, p-synephrine had no significant effect on blood pressure, heart rate, electrocardiogram results or adverse cardiovascular events in healthy adults (35772,91681,91681,95659,101708) Similarly, no difference in blood pressure, heart rate or electrocardiogram results were reported when p-synephrine from bitter orange (Advantra Z/Kinetic; Nutratech/Novel Ingredients Inc.) was taken for 6 weeks in healthy patients (11268). Another clinical study showed no significant effect of bitter orange (Nutratech Inc.), standardized to synephrine 20 mg, on blood pressure or heart rate when taken daily for 8 weeks in healthy males (95656). In other research, changes in blood pressure, heart rate, or QTc interval were lacking when bitter orange was given alone or in combination with caffeine and green tea (14311,35753,35755,35764,35769,35770). In one study of healthy adults, taking a single dose of p-synephrine 103 mg actually reduced mean diastolic blood pressure by 0.4-4 mmHg at 1 and 2 hours after administration when compared with placebo (95659).
A meta-analysis of clinical trials in adults with or without obesity suggests that taking p-synephrine 6-214 mg orally daily does not affect blood pressure or heart rate when used short-term, but modestly increases blood pressure and heart rate when taken for 56-60 days (109950).
The effect of bitter orange on blood pressure, heart rate, and electrocardiogram results in patients with underlying conditions, particularly cardiovascular disease, is unknown and requires further study.
Dermatologic ...Photosensitivity may occur, particularly in fair-skinned people (11909). In a clinical trial, topical application with bitter orange essential oil resulted in irritation (6972).
Endocrine ...Some clinical research shows that taking a specific supplement containing 21 mg of synephrine and 304 mg of caffeine (Ripped Fuel Extreme Cut, Twinlab) increases levels of postprandial glucose (35743). Other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.) 30 minutes once before exercise causes a significant 12% increase in glucose (95657); however, there is no difference in blood glucose when compared with placebo when this combination is taken daily for 8 weeks (95656). The effect of bitter orange itself is unclear.
Gastrointestinal ...Bitter orange has been linked to a report of ischemic colitis. In one case, a 52-year-old female developed ischemic colitis after taking a bitter orange-containing supplement (NaturalMax Skinny Fast, Nutraceutical Corporation) for a week. Symptoms resolved within 48 hours after discontinuing the supplement (15186). As this product contains various ingredients, the effect of bitter orange itself is unclear.
Musculoskeletal ...Unsteady gait has been noted in one case report of a patient taking bitter orange (13091). In another case, an otherwise healthy, Black male with sickle cell trait, developed severe rhabdomyolysis following ingestion of a specific weight loss product (Lipo 6, Nutrex Research Inc.), which contained synephrine and caffeine (16054). However, other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.), taken 30 minutes once before exercise (95657) or daily for 8 weeks, does not affect creatine kinase or serum creatinine levels when compared with placebo (95656). As these products contain various ingredients, the effect of bitter orange itself is unclear.
Neurologic/CNS ...Dizziness, difficulty in concentrating, memory loss, syncope, seizure, and stroke have been noted in case reports following bitter orange administration (13091,13039). Theoretically, bitter orange may trigger a migraine or cluster headache due to its synephrine and octopamine content (35768). When used as aromatherapy, bitter orange essential oil has also been reported to cause headache in some patients (104187). Sprint athletes taking the bitter orange constituent p-synephrine 3 mg/kg (Synephrine HCL 99%, Nutrition Power) 60 minutes before exercises and sprinting reported more nervousness (mean difference 0.9) when compared with placebo on a Likert scale. Although statistically significant, this difference is not considered clinically significant (95655).
General
...Caffeine in moderate doses is typically well tolerated.
Most Common Adverse Effects:
Orally: Anxiety, dependence with chronic use, diarrhea, diuresis, gastric irritation, headache, insomnia, muscular tremors, nausea, and restlessness.
Serious Adverse Effects (Rare):
Orally: Stroke has been reported rarely.
Cardiovascular
...Caffeine can temporarily increase blood pressure.
Usually, blood pressure increases 30 minutes after ingestion, peaks in 1-2 hours, and remains elevated for over 4 hours (36539,37732,37989,38000,38300).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722,38335). However, the form of caffeine may play a role in blood pressure increase after a more sustained caffeine use. In a pooled analysis of clinical trials, coffee intake was not associated with an increase in blood pressure, while ingesting caffeine 410 mg daily for at least 7 days modestly increased blood pressure by an average of 4.16/2.41 mmHg (37657). Another meta-analysis of clinical research shows that taking caffeine increases systolic and diastolic blood pressure by approximately 2 mmHg when compared with control. Preliminary subgroup analyses suggest that caffeine may increase blood pressure more in males or at doses over 400 mg (112738).
When used prior to intensive exercise, caffeine can increase systolic blood pressure by 7-8 mmHg (38308). The blood pressure-raising effects of caffeine are greater during stress (36479,38334) and after caffeine-abstinence of at least 24 hours (38241).
Epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension (38190). Habitual coffee consumption also doesn't seem to be related to hypertension, but habitual consumption of sugared or diet cola is associated with development of hypertension (13739).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily is not associated with increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,103708), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806). One clinical trial shows that in adults with diagnosed heart failure, consumption of 500 mg of coffee does not result in an increased risk for arrhythmia during exercise (95950). However, caffeine intake may pose a greater cardiovascular risk to subjects that are not regular users of caffeine. For example, in one population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects that don't regularly drink coffee (38102). In a population study in Japanese subjects, caffeine-containing medication use was modestly associated with hemorrhagic stroke in adults that do not consume caffeine regularly (91059).
The most common side effect of caffeine in neonates receiving caffeine for apnea is tachycardia (98807,114658).
Dermatologic ...There are several case reports of urticaria after caffeine ingestion (36546,36448,36475).
Endocrine
...Some evidence shows caffeine is associated with fibrocystic breast disease or breast cancer in females; however, this is controversial since findings are conflicting (8043,108806).
Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Clinical research in healthy adults shows that an increase consumption of caffeine results in increased insulin resistance (91023).
Gastrointestinal ...Gastrointestinal upset, nausea, diarrhea, abdominal pain, and fecal incontinence may occur with caffeine intake (36466,37755,37806,37789,37830,38138,38136,38223,95956,95963). Also, caffeine may cause feeding intolerance and gastrointestinal irritation in infants (6023). Perioperative caffeine during cardiopulmonary bypass surgery seems to increase the rate of postoperative nausea and vomiting (97451). Caffeine and coffee consumption have been associated with an increase in the incidence of heartburn (37545,37575,38251,38259,38267) and gastrointestinal esophageal reflux disease (GERD) (38329,37633,37631,37603).
Genitourinary ...Caffeine, a known diuretic, may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In men with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily was associated with increased severity of premenstrual syndrome (38177). Finally, population research shows that exposure to caffeine was not associated with an increased risk of endometriosis (91035).
Immunologic ...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Caffeine can induce or exacerbate muscular tremors (38136,37673,38161).
There has also been a report of severe rhabdomyolysis in a healthy 40-year-old patient who consumed an energy drink containing 400 mg of caffeine (4 mg/kg) and then participated in strenuous weightlifting exercise (108818).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can release calcium from storage sites and increase its urinary excretion (2669,10202,11317,111489). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg daily, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317). Premature infants treated with intravenous caffeine for apnea of prematurity, have a lower bone mineral content compared with infants who are not treated with caffeine, especially when treatment extends beyond 14 days (111489).
Neurologic/CNS ...Caffeine can cause headaches, anxiety, jitteriness, restlessness, and nervousness (36466,37694,37755,37806,37865,37830,37889,38223,95952). In adolescents, there is an inverse correlation between the consumption of caffeine and various measurements of cognitive function (104579). Insomnia is a frequent adverse effect in children (10755). Caffeine may result in insomnia and sleep disturbances in adults as well (36445,36483,36512,36531,37598,37795,37819,37862,37864,37890)(37968,37971,38091,38242,91022,92952). Additionally, caffeine may exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204). Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729). Finally, epidemiological research suggests that consuming more than 190 mg of caffeine daily is associated with an earlier onset of Huntington disease by 3.6 years (91078).
Ocular/Otic
...In individuals with glaucoma, coffee consumption and caffeine intake has been found to increase intraocular pressure (8540,36464,36465,37670).
The magnitude of this effect seems to depend on individual tolerance to caffeine. Some research in healthy young adults shows that caffeine increases intraocular pressure to a greater degree in low-consumers of caffeine (i.e., 1 cup of coffee or less daily) when compared to high-consumers (i.e., those consuming 2 cups of coffee or more daily) (100371). The peak increase of intraocular pressure seems to occur at about 1.5 hours after caffeine ingestion, and there is no notable effect 4 hours after ingestion (36462,100371).
Oncologic ...Most human studies which have examined caffeine or methylxanthine intake have found that they do not play a role in the development of various cancers, including breast, ovarian, brain, colon, rectal, or bladder cancer (37641,37737,37775,37900,38050,38169,38220,91054,91076,108806).
Psychiatric
...Caffeine may lead to habituation and physical dependence (36355,36453,36512,36599), with amounts as low as 100 mg daily (36355,36453).
An estimated 9% to 30% of caffeine consumers could be considered addicted to caffeine (36355). Higher doses of caffeine have caused nervousness, agitation, anxiety, irritability, delirium, depression, sleep disturbances, impaired attention, manic behavior, psychosis and panic attacks (36505,37717,37818,37839,37857,37982,38004,38017,38028,38072)(38079,38138,38306,38325,38331,38332,97464). Similar symptoms have been reported in a caffeine-naïve individual experiencing fatigue and dehydration after a dose of only 200 mg, with resolution of symptoms occurring within 2 hours (95952).
Withdrawal: The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Headache is the most common symptom, due to cerebral vasodilation and increased blood flow (37769,37991,37998). Other researchers suggest symptoms such as tiredness and fatigue, decreased energy, alertness and attentiveness, drowsiness, decreased contentedness, depressed mood, difficulty concentration, irritability, and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms typically occur 12-24 hours after the last dose of caffeine and peak around 48 hours (37769,36600). Symptoms may persist for 2-9 days. Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839). In a case report, caffeine consumption of 560 mg daily was associated with increased suicidality (91082).
Renal ...Data on the relationship between caffeine intake and kidney stones are conflicting. Some clinical research shows that caffeine consumption may increase the risk of stone formation (37634,111498), while other research shows a reduced risk with increasing caffeine intakes (111498). A meta-analysis of 7 studies found that overall, there is an inverse relationship, with a 32% decrease in the risk of kidney stones between the lowest and highest daily intakes of caffeine (111498).
Other ...People with voice disorders, singers, and other voice professionals are often advised against the use of caffeine; however, this recommendation has been based on anecdotal evidence. One small exploratory study suggests that caffeine ingestion may adversely affect subjective voice quality, although there appears to be significant intra-individual variability. Further study is necessary to confirm these preliminary findings (2724).
General
...Orally, cassia cinnamon appears to be well-tolerated.
Significant side effects have not been reported in most patients.
Most Common Adverse Effects:
Topically: Burning mouth, stomatitis.
Dermatologic
...In one clinical trial, a rash was reported in one patient taking cassia cinnamon 1 gram daily for 90 days (17011).
In one case, a 58-year-old female with a documented allergy to topically applied cinnamic alcohol presented with eyelid dermatitis, which was found to be a manifestation of systemic contact dermatitis to cinnamon in the diet. Symptoms improved in two days and completely cleared five days after discontinuing the addition of cinnamon to food products (95599). In other case reports, two adults presented with allergic contact cheilitis following the ingestion of chai tea with cinnamon and yogurt with cinnamon. Cinnamon components were confirmed as the causative allergic agents with patch tests, and both cases of allergic contact cheilitis completely resolved upon cessation of the cinnamon-containing products (113516,113515).
Topically, allergic skin reactions and stomatitis from toothpaste flavored with cassia cinnamon have been reported (11915,11920). Intraoral allergic reactions with symptoms of tenderness and burning sensations of the oral mucosa have also been reported in patients using breath fresheners, toothpaste, mouthwash, candy, or chewing gum containing cinnamon, cinnamic aldehyde or cinnamic alcohol as flavoring agents. Glossodynia, or burning mouth syndrome, has also been reported in a 62-year-old female who ate apples dipped in cinnamon nightly (95598), and allergic contact dermatitis has been reported in a teenage female using a homemade cinnamon sugar face scrub (95596).
Endocrine ...In one clinical trial, a hypoglycemic seizure was reported in one patient taking cassia cinnamon 1 gram daily for 3 months. The event occurred one day after enrolling in the study (89648). It is unclear if cassia cinnamon caused this event.
Hepatic ...There is some concern about the safety of ingesting large amounts of cassia cinnamon for extended durations due to its coumarin content. Coumarin can cause hepatotoxicity in animal models (15299). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin is discontinued (15302). In clinical trials, taking cassia cinnamon 360 mg to 12 grams daily for 3 months did not significantly increase levels of aspartate transaminase (AST) or alanine transaminase (ALT) (21918,96280,108259). However, in one case report, acute hepatitis with elevated AST and ALT occurred in a 73-year-old female who started taking a cinnamon supplement (dose unknown) one week prior to admission. The cinnamon supplement was added on to high-dose rosuvastatin, which may have led to additive adverse hepatic effects. After discontinuing both products, liver function returned to normal, and the patient was able to restart rosuvastati without further complications (97249). In most cases, ingestion of cassia cinnamon won't provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease or taking potentially hepatotoxic agents, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
Immunologic ...An unspecified allergic reaction was reported in one patient taking cassia cinnamon 1 gram daily for 3 months (89648).
General ...No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, intravenously, ophthalmologically, and by inhalation, coleus seems to be well tolerated.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, nausea, vomiting.
Intravenously: Flushing, hypotension, tachycardia.
Ophthalmologically: Conjunctival hyperemia, stinging eyes.
Inhalation: Irritation of the respiratory tract, restlessness, tremor.
Cardiovascular ...Intravenously, the coleus constituent, forskolin, can cause tachycardia, flushing and hypotension (7279,44424,44431).
Dermatologic ...Two cases of contact dermatitis have been reported following airborne exposure to coleus (44426,44418).
Gastrointestinal ...Orally, coleus can cause dose-related diarrhea and other gastrointestinal symptoms. Increased bowel movements and loose stools have been reported in 1 of 15 patients taking coleus extract in a clinical trial (91885). Some retrospective evidence reports about a 10% rate of gastrointestinal adverse effects from oral coleus use; 81% of these adverse effects were related to diarrhea. Other reported adverse effects which occurred at a much lower rate, include nausea, vomiting, and/or constipation. Gastrointestinal effects appear to be dose-related; those taking less than 250 mg of coleus extract did not report any diarrhea, while all patients taking 1000 mg of coleus extract reported diarrhea (100851).
Neurologic/CNS ...Inhalation of forskolin, a constituent of coleus, can cause tremor and restlessness (7281).
Ocular/Otic ...Ophthalmologically, forskolin, a constituent of coleus, can cause stinging of the eyes and conjunctival hyperemia (7283).
Pulmonary/Respiratory ...Inhalation of forskolin, a constituent of coleus, can cause throat and upper respiratory tract irritation, and mild to moderate cough (7281).
General
...Orally, ephedra is frequently associated with adverse reactions and is banned in the US.
In some cases, adverse effects can be severe or life-threatening. Large studies looking at the safety of ephedra have not been performed. Since most of the adverse effect data are from case reports, it is impossible to determine the overall incidence of these adverse effects. It is also difficult to determine which patient groups might be most likely to experience an adverse event.
Most Common Adverse Effects:
Orally: Anorexia, anxiety, difficulty concentrating, difficulty urinating, dizziness, dry mouth, flushing, headache, heartburn, hyperthermia, hypertension, insomnia, irritability, nausea, personality changes, polydipsia, restlessness, tachycardia, tingling, and vomiting.
Serious Adverse Effects (Rare):
Orally: Cardiac arrest, cardiac arrhythmia, cardiomyopathy, heart failure, hepatotoxicity, myocardial infarction, myopathies, psychosis, seizure, stroke, and sudden death.
Cardiovascular
...The use of ephedra causes a 2.
2- to 3.6-fold increase in the risk of developing psychiatric, autonomic, or gastrointestinal (GI) symptoms and cardiac palpitations (9740,48878). Orally, ephedra use has been associated with cardiomyopathy (1270,48801), hypersensitivity myocarditis (1271,6487,48738,48739), chest tightness, myocardial infarction (6486), cardiac arrest and sudden death (1274,6486), hypertension, tachycardia, and cardiac arrhythmias (6009,8643,35749,35750,37689,48736,48737,48805,48847,48870,48872). Ephedrine abuse has led to heart failure (48813). Even in healthy volunteers, EKG changes including prolonged QT interval and premature atrial contractions can occur with ingestion of recommended doses of ephedra containing products (11135,11708). In a review of 926 cases reported to the FDA of possible adverse effects of ephedra, 37 patients had serious or fatal adverse reactions. Ephedra use was temporally related to 16 strokes, 10 myocardial infarctions, and 11 sudden deaths. These effects occurred in people aged 30-56 years. There is some evidence that people who take doses greater than 32 mg daily might have more than triple the risk of hemorrhagic stroke, including subarachnoid hemorrhage and intracerebral hemorrhage, when compared with those taking doses of less than 32 mg daily (9167,48771).
Ephedrine, the primary active ingredient in ephedra, has been associated with coronary artery spasm, myocardial injury with pulmonary edema, and cardiovascular collapse (48867,48872,48783). However, several clinical trials evaluating ephedrine-caffeine combinations for weight loss reported no differences in mean heart rate or blood pressure when compared to placebo (37617,48792,48865,48882). Other preliminary clinical research showed that ephedrine and caffeine use by prescription did not result in increased risk of adverse cardiovascular outcomes (48806).
Endocrine ...One study in animals shows that some components of ephedra may lower blood glucose levels (48835). However, most human research suggests that ephedra and ephedrine, a component of ephedra, can raise blood glucose and insulin levels (3719,12857,48810).
Gastrointestinal ...The use of ephedra causes a 2. 2- to 3.6-fold increase in the risk of developing psychiatric, autonomic, or gastrointestinal (GI) symptoms and cardiac palpitations (9740,48878). Orally and intravenously, ephedra and ephedrine most commonly cause dry mouth, anorexia, nausea, vomiting, heartburn, abdominal discomfort, and changes in stool consistency (1276,3719,6008,6486,8647,10004,10382,37831,48817,48837). One case of ischemic colitis and symptoms of abdominal pain and bloody diarrhea associated with the use of a weight loss supplement containing ephedra has been reported (48803).
Hepatic ...Cases of hepatotoxicity such as acute hepatitis and liver failure from ephedra-containing supplements have been reported. Some cases of hepatotoxicity resolved after discontinuation of ephedra, while others required liver transplantation. In obese patients using ephedra for weight loss, it is possible that ephedra exacerbated pre-existing liver disease. Onset of liver injury seems to occur an average of 3 months after ephedra ingestion, suggesting an idiosyncratic mechanism of liver injury (1273,48747,48800,94875,94876,94877,81600,98441). Previously, it was thought that the cause of ephedra hepatotoxicity was an immune reaction or a contamination. However, since the majority of evidence suggests that hepatotoxicity is idiosyncratic, these prior postulations have since been dismissed (1273,48747,81600,98441).
Musculoskeletal ...Orally, ephedra has been reported to cause myopathies, including myalgia, rhabdomyolysis, and eosinophilia-myalgia syndrome (1270,16054,48791).
Neurologic/CNS
...The use of ephedra causes a 2.
2- to 3.6-fold increase in the risk of developing psychiatric, autonomic, or gastrointestinal (GI) symptoms and cardiac palpitations (9740,48878). Ephedra most commonly causes dizziness, restlessness, anxiety, irritability, personality changes, difficulty concentrating, insomnia, and headache (1276,3719,6008,6486,8647,10004,10382).
Ephedra can cause seizures in otherwise healthy people, as well as in people with underlying seizure disorders (10307,48870). Of 33 seizures linked to dietary supplement use that were reported to the FDA over 7 years, 27 involved ephedra (13304). Other adverse events reported with ephedra use include sudden hearing loss, stroke, transient ischemic attack, cerebral hemorrhage, and loss of consciousness (1275,1381,2729,6486,8643,9167,10005,48746,48862). In one case-control study, doses of ephedra above 32 mg daily have been associated with an increased risk for hemorrhagic stroke (9167). A case of encephalopathy syndrome with multi-organ failure and transient cortical blindness after ingestion of a performance-enhancing ephedra supplement has been reported. Symptoms were resolved after blood pressure was corrected (48788).
Ocular/Otic ...A case of encephalopathy syndrome with transient cortical blindness after ingestion of an ephedra supplement has been reported. Symptoms were resolved after blood pressure was corrected (48788). A case of sudden hearing loss following the use of ephedra has also been reported (48761).
Psychiatric
...The use of ephedra causes a 2.
2- to 3.6-fold increase in the risk of developing psychiatric, autonomic, or gastrointestinal (GI) symptoms and cardiac palpitations (9740,48878). Ephedra most commonly causes anxiety, irritability, personality changes, difficulty concentrating, and insomnia (1276,3719,6008,6486,8647,10004,10382).
Cases of ephedrine-induced psychiatric complications (6998) include mania (48855), psychosis (1276,6998,10689,48751,48841,48843), and hallucinations (48857). In some cases psychosis can be prolonged for several months after discontinuation (1276,6998,10689). A case of a suicide attempt and mood disorder associated with the use of a diet pill containing ephedra has also been reported (48752).
Long-term use of ephedra or use in high doses has been associated with dependence and tolerance (1381).
Renal ...Orally, ephedra has been reported to cause nephrolithiasis (1272,48877), diuresis, urinary retention, and dysuria (16054,48791).
General
...Orally, green tea is generally well tolerated when consumed as a beverage in moderate amounts.
Green tea extract also seems to be well tolerated when used for up to 12 months.
Most Common Adverse Effects:
Orally: Bloating, constipation, diarrhea, dyspepsia, flatulence, and nausea.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, hypokalemia, and thrombotic thrombocytopenic purpura have been reported rarely.
Cardiovascular
...Acute or short-term oral administration of green tea may cause hypertension (53719,54014,54065,54076,102716).
The risk may be greater for green tea products containing more than 200 mg epigallocatechin gallate (EGCG) (90161). However, consumption of brewed green tea does not seem to increase blood pressure or pulse, even in mildly hypertensive patients (1451,1452). In fact, some evidence suggests that habitual tea consumption is associated with a reduced risk of developing hypertension (12518). Also, epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension or with cardiovascular disease mortality in patients with hypertension (13739,111027). Rarely, green tea consumption may cause hypotension (53867).
Epidemiological research suggests that regular caffeine intake of up to 400 mg per day, or approximately 8 cups of green tea, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, and temporary loss of consciousness has been associated with the combined use of ephedra and caffeine (2729). There is also a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for 6 weeks (1275). In theory, combining caffeinated green tea with ephedra would have similar effects.
In a case report, the EGCG component of a specific weight loss supplement (Hydroxycut) was thought to be responsible for atrial fibrillation (54028). The patient was given two doses of intravenous diltiazem and was loaded with intravenous digoxin. Thirty-six hours after the last product dose, she spontaneously converted to normal sinus rhythm. The authors suggested that the block of the atrial-specific KCNA5 potassium channel likely played a role in this response.
A case of thrombotic thrombocytopenic purpura has been reported for a patient who consumed a weight loss product containing green tea (53978). She presented at the emergency department with a one-week history of malaise, fatigue, and petechiae of the skin. Twelve procedures of plasmapheresis were performed, and corticosteroid treatment was initiated. She was discharged after 20 days.
Dermatologic ...Orally, green tea may cause skin rashes or skin irritation (53731,54038,90161,90187,102716). Topically, green tea may cause local skin reactions or skin irritation, erythema, burning, itching, edema, and erosion (53731,54018,97136,104609,111031). A green tea extract ointment applied to the cervix can cause cervical and vaginal inflammation, vaginal irritation, and vulval burning (11310,36442,36438). When applied to external genital or perianal warts, a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins can cause erythema, pruritus, local pain, discomfort and burning, ulceration, induration, edema, and vesicular rash (15067,53907).
Endocrine
...There is some concern that, due to its caffeine content, green tea may be associated with an increased risk of fibrocystic breast disease, breast cancer, and endometriosis.
However, this is controversial since findings are conflicting (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as green tea, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
A case of hypoglycemia has been reported for a clinical trial participant with type 2 diabetes who used green tea in combination with prescribed antidiabetes medication (54035).
Gastrointestinal ...Orally, green tea beverage or supplements can cause nausea, vomiting, abdominal bloating and pain, constipation, dyspepsia, reflux, morning anorexia, increased thirst, flatulence, and diarrhea. These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,36398,53719,53867,53936,54038,54076,90139,90140)(90161,90175,90187,97131,97136,102716).
Hepatic
...There is concern that some green tea products, especially green tea extracts, can cause hepatotoxicity in some patients.
In 2017, the regulatory agency Health Canada re-issued a warning to consumers about this concern. The updated warning advises patients taking green tea extracts, especially those with liver disease, to watch for signs of liver toxicity. It also urges children to avoid taking products containing green tea extracts (94897). In 2020, the United States Pharmacopeia (USP) formed an expert panel to review concerns of green tea extract-related hepatotoxicity. Based on their findings, USP determined that any products claiming compliance with USP quality standards for green tea extract must include a specific warning on the label stating "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)" (102722).
Numerous case reports of hepatotoxicity, primarily linked to green tea extract products taken in pill form, have been published. A minimum of 29 cases have been deemed at least probably related to green tea and 38 have been deemed possibly related. In addition, elevated liver enzymes have been reported in clinical research (14136,15026,53740,53746,53775,53859,54027,90139,90162,90164)(93256,94898,94899,102716,102720,102722,107158,111020,111644). Most cases of toxicity have had an acute hepatitis-like presentation with a hepatocellular-elevation of liver enzymes and some cholestasis. Onset of hepatotoxic symptoms usually occurs within 3 months after initiation of the green tea extract supplement, and symptoms can persist from 10 days to 1 year (95439,94897,94898,107158). Some reports of hepatotoxicity have been associated with consumption of green tea-containing beverages as well (15026,53742,54016,90125,90143).
In most cases, liver function returned to normal after discontinuation of the green tea product (14136,15026,53859,93256,107158). In one case, use of a specific ethanolic green tea extract (Exolise, Arkopharma) resulted in hepatotoxicity requiring a liver transplant. Due to concerns about hepatotoxicity, this specific extract was removed from the market by the manufacturer (14310). Since then, at least 5 cases of liver toxicity necessitating liver transplantation have been reported for patients who used green tea extracts (94898,107158). In another case, use of green tea (Applied Nutrition Green Tea Fat Burner) in combination with whey protein, a nutritional supplement (GNC Mega Men Sport), and prickly pear cactus resulted in acute liver failure (90162).
Despite the numerous reports of hepatotoxicity associated with the use of green tea products, the actual number of hepatotoxicity cases is low when the prevalence of green tea use is considered. From 2006 to 2016, liver injury from green tea products was estimated have occurred in only 1 out of 2.7 million patients who used green tea products (94897,95440).
In addition to the fact that green tea hepatotoxicity is uncommon, it is also not clear which patients are most likely to experience liver injury (94897,95440). The hepatotoxicity does not appear to be an allergic reaction or an autoimmune reaction (94897). It is possible that certain extraction processes, for example, ethanolic extracts, produce hepatotoxic constituents. However, in most cases, the presence of contaminants in green tea products has not been confirmed in laboratory analyses (90162).
Although results from one analysis of 4 small clinical studies disagrees (94899), most analyses of clinical data, including one conducted by the European Food Safety Association, found that hepatotoxicity from green tea products is associated with the dose of EGCG in the green tea product. Results show that daily intake of EGCG in amounts greater than or equal to 800 mg per day is associated with a higher incidence of elevated liver enzymes such as alanine transaminase (ALT) (95440,95696,97131). However, it is still unclear what maximum daily dose of EGCG will not increase liver enzyme levels or what minimum daily dose of EGCG begins to cause liver injury. In many cases of liver injury, the dose of green tea extract and/or EGCG is not known. Therefore, a minimum level of green tea extract or EGCG that would cause liver injury in humans cannot be determined (102722). Keep in mind that daily intake of green tea infusions provides only 90-300 mg of EGCG daily. So for a majority of people, green tea infusions are likely safe and unlikely to cause liver injury (95696). Also, plasma levels of EGCG are increased when green tea catechins are taken in the fasting state, suggesting that green tea extract should be taken with food (102722).
Until more is known, advise patients that green tea products, especially those containing green tea extract, might cause liver damage. However, let them know that the risk is uncommon, and it is not clear which products are most likely to cause the adverse effect or which patients are most likely to be affected. Advise patients with liver disease to consult their healthcare provider before taking products with green tea extract and to notify their healthcare provider if they experience symptoms of liver damage, including jaundice, dark urine, sweating, or abdominal pain (102722).
Immunologic ...Orally, matcha tea has resulted in at least one case of anaphylaxis related to green tea proteins. A 9-year-old male experienced systemic redness and hives, nausea, and anaphylaxis 60 minutes after consuming matcha tea-flavored ice cream (107169). The caffeine found in green tea can also cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Orally, the ingestion of the green tea constituent epigallocatechin gallate (EGCG) or a decaffeinated green tea polyphenol mixture may cause mild muscle pain (36398).
There is some concern regarding the association between caffeinated green tea products and osteoporosis. Epidemiological evidence regarding the relationship between caffeinated beverages such as green tea and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg per day, or about 8 cups of green tea, doesn't seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Neurologic/CNS
...Orally, green tea can cause central nervous system stimulation and adverse effects such as headache, anxiety, dizziness, insomnia, fatigue, agitation, tremors, restlessness, and confusion.
These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,53719,90139,102716). The green tea constituent epigallocatechin gallate (EGCG) or decaffeinated green tea may also cause mild dizziness and headache (36398).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729).
Topically, green tea extract (Polyphenon E ointment) may cause headache when applied to the genital area (36442).
Psychiatric ...Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, and psychological dependence (11832). The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Other researchers suggest symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...A case of granulomatous alveolitis with lymph follicles has been reported for a 67-year-old female who used green tea infusions to wash her nasal cavities for 15 years (54088). Her symptoms disappeared 2 months after stopping this practice and following an undetermined course of corticosteroids. In a case report, hypersensitivity pneumonitis was associated with inhalation of catechin-rich green tea extracts (54025). Occupational exposure to green tea dust can cause sensitization, which may include nasal and asthmatic symptoms (11365).
Renal ...There are two cases of hypokalemia associated with drinking approximately 8 cups daily of green tea in an elderly couple of Asian descent. The hypokalemia improved after reducing their intake by 50%. It is possible that this was related to the caffeine in the green tea (98418).
Other ...Orally, intake of a specific green tea extract product (Polyphenon E) may cause weight gain (90139).
General ...A thorough evaluation of safety outcomes with Sida cordifolia has not been conducted; however, since Sida cordifolia contains ephedrine, there is concern that it is unsafe.
Cardiovascular ...Sida cordifolia contains ephedrine. Ephedrine-containing products have been associated with cardiovascular side effects such as arrythmias, heart palpitations, tachycardia, prolonged QT interval, increased blood pressure, cardiomyopathy, hypersensitivity myocarditis, myocardial infarction, cardiac arrest, stroke, transient ischemic attack, cerebral hemorrhage, and sudden cardiac death (1270,1271,1274,1275,1276,1380,1381,2729,3719,6008)(6486,6487,8643,8647,10004,10382,11135,11708). These side effects might also occur in patients taking Sida cordifolia-containing supplements.
Musculoskeletal ...Sida cordifolia contains ephedrine. Ephedrine-containing products have been reported to cause myopathies, including myalgia, rhabdomyolysis, and eosinophilia-myalgia syndrome (1270). These side effects might also occur in patients taking Sida cordifolia-containing supplements.
Neurologic/CNS ...Sida cordifolia contains ephedrine. Ephedrine-containing products have been associated with dizziness, restlessness, irritability, difficulty concentrating, insomnia, headache, and anorexia (1276,3719,6008,6486,8647,10004,10382). These side effects might also occur in patients taking Sida cordifolia-containing supplements.
Psychiatric ...Sida cordifolia contains ephedrine. Ephedrine-containing products have been associated with anxiety, psychosis, and personality changes (1276,3719,6008,6486,6998,8647,10004,10382,10689). Long-term use and high doses of ephedrine have been associated with the development of dependence and tolerance (1381). These side effects might also occur in patients taking Sida cordifolia-containing supplements.
Renal ...Sida cordifolia contains ephedrine. Ephedrine-containing products have been reported to cause rhabdomyolysis and nephrolithiasis (1270,1272). These side effects might also occur in patients taking Sida cordifolia-containing supplements.