Each capsule contains (extracts equivalent to dry): Scutellaria baicalensis root 450 mg • Ginkgo biloba leaf 450 mg • Epimedium sagittatum leaf 450 mg • Schisandra chinensis fruit 358 mg • Prunus Mume fruit without seed 174 mg • Ledebouriella Divaricate root 450 mg • Astragalus membranaceus root 542 mg.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Biminne. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Biminne. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Doses of astragalus up to 60 grams daily for up to 4 months have been used without reported adverse effects (32920,33038,95909,114804). ...when used intravenously. Infusion of doses up to 80 grams daily for up to 4 months under the supervision of a medical professional have been used with apparent safety (32811,32812,32828,95909,114688,114804). There is insufficient reliable information available about the safety of astragalus when used topically.
PREGNANCY AND LACTATION:
There is insufficient reliable information in humans.
However, astragaloside, a constituent of astragalus, has maternal and fetal toxic effects in animals (32881). Avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Oral Baikal skullcap 0.5-3.52 grams daily has been used with apparent safety for up to 8 weeks (92776,101738,101739,110023). However, a high quality assessment of safety has not been conducted. A specific product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been associated with an increased risk for liver and lung injury. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination. There is insufficient reliable information available about the safety of Baikal skullcap when used intravenously or topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Standardized ginkgo leaf extracts have been used safely in trials lasting for several weeks up to 6 years (1514,1515,3461,5717,5718,6211,6212,6213,6214,6215)(6216,6222,6223,6224,6225,6490,14383,14499,16634,16635)(16636,16637,17402,17716,17718,87794,87819,87826,87848,87864)(87888,87897,87901,87904,89701,89707,107359,107360). There have been some reports of arrhythmias associated with ginkgo leaf extract. However, it is not yet clear if ginkgo might cause arrhythmia (105253,105254). There is some concern about toxic and carcinogenic effects seen in animals exposed to a ginkgo leaf extract containing 31.2% flavonoids, 15.4% terpenoids, and 10.45 ppm ginkgolic acid, in doses of 100 to 2000 mg/kg five times per week for 2 years (18272). However, the clinical relevance of this data for humans, using typical doses, is unclear. The content of the extract used is not identical to that commonly used in supplement products, and the doses studied are much higher than those typically used by humans. A single dose of 50 mg/kg in rats is estimated to be equivalent to a single dose of about 240 mg in humans (18272).
POSSIBLY SAFE ...when used intravenously, short-term. A standardized ginkgo leaf extract called EGb 761 ONC has been safely administered intravenously for up to 14 days (9871,9872,107360,107452). A Chinese preparation containing ginkgo leaf extract and dipyridamole has been safely administered intravenously for up to 30 days (102881,102882). ...when applied topically, short-term. There was no dermal irritation during a 24-hour patch test using the leaf extract, and no sensitization with repeat applications (112946). When used topically in cosmetics, extracts of ginkgo leaves are reported to be safe, but there is insufficient data to determine the safety of nut and root extracts, and isolated biflavones and terpenoids (112946).
POSSIBLY UNSAFE ...when the roasted seed or crude ginkgo plant is used orally. Consuming more than 10 roasted seeds per day can cause difficulty breathing, weak pulse, seizures, loss of consciousness, and shock (8231,8232). Crude ginkgo plant parts can exceed concentrations of 5 ppm of the toxic ginkgolic acid constituents and can cause severe allergic reactions (5714).
LIKELY UNSAFE ...when the fresh ginkgo seed is used orally. Fresh seeds are toxic and potentially deadly (11296).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is concern that ginkgo might have labor-inducing and hormonal effects. There is also concern that the antiplatelet effects of ginkgo could prolong bleeding time if taken around the time of labor and delivery (15052). Theoretically, ginkgo might adversely affect pregnancy outcome; avoid using during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (87790,89708).
A specific ginkgo dried extract (Ginko T.D., Tolidaru Pharmaceuticals), has been safely used in doses of 80-120 mg daily for 6 weeks in children aged 6-14 years (17112,95669). Another specific combination product containing ginkgo leaf extract and American ginseng extract (AD-FX, CV Technologies, Canada) has also been safely used in children aged 3-17 years for up to 4 weeks (8235).
CHILDREN: LIKELY UNSAFE
when ginkgo seed is used orally.
The fresh seeds have caused seizures and death in children (8231,11296).
POSSIBLY SAFE ...when horny goat weed extract is used orally and appropriately, short-term. A specific extract of horny goat weed containing 60 mg icariin, 15 mg daidzein, and 3 mg genistein (Xianling Gubao; Tong Ji Tang Pharmacal Company) has been used daily with apparent safety for up to 24 months (14900,97268). Another aqueous extract of horny goat weed containing up to 25.36% icariin has been used in a dose of 300 mL daily with apparent safety for up to 6 months (55452). Another horny goat weed extract has been used with apparent safety at doses up to 1000 mg daily (providing 200 mg icariin) for up to 30 days (108311).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. Long-term use, or taking high doses of some species of horny goat weed, has been linked to serious adverse effects including respiratory arrest (10346).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Horny goat weed might have androgenic activity (10346). Theoretically, it might harm a developing fetus; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the processed fruit is used orally in food amounts. Advise patients to only consume Japanese apricot fruit products that have been processed through pickling or other means to eliminate toxic constituents. The raw fruit is considered toxic because it contains the cyanogenic glycosides prunasin and amygdalin (13198).
POSSIBLY SAFE ...when Japanese apricot dried fruit extract is used orally and appropriately, short-term. A specific Japanese apricot dried fruit extract has been used safely in doses of up to 300 mg daily for up to 12 weeks (100027).
POSSIBLY UNSAFE ...when the raw fruit is used orally in food amounts. The raw fruit is considered toxic because it contains the cyanogenic glycosides prunasin and amygdalin (13198). Advise patients to only consume Japanese apricot fruit products that have been processed through pickling or other means to eliminate these toxic constituents. There is insufficient reliable information available about the safety of other forms of Japanese apricot.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Schisandra extract up to 1 gram daily has been used for up to 12 weeks with apparent safety (12,96632,105562,105563,112887).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Some evidence suggests schisandra fruit is a uterine stimulant (11).
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Biminne. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking astragalus with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, astragalus might interfere with cyclophosphamide therapy.
|
Theoretically, astragalus might interfere with immunosuppressive therapy.
|
Theoretically, astragalus might increase levels and adverse effects of lithium.
Animal research suggests that astragalus has diuretic properties (15103). Theoretically, due to this diuretic effect, astragalus might reduce excretion and increase levels of lithium.
|
Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol.
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap might increase the risk of bleeding when used concomitantly with anticoagulant and antiplatelet drugs.
Preliminary clinical research suggests that taking capsules containing a combination of astragalus, goldthread, and Baikal skullcap daily for 4 weeks inhibits platelet aggregation; the effect seems to be similar to that of aspirin 50 mg daily (33075). It is unclear if this effect is due to Baikal skullcap, other ingredients, or the combination.
|
Theoretically, concomitant use of Baikal skullcap with antidiabetes drugs might enhance blood glucose lowering effects.
Baicalein, a constituent of Baikal skullcap, has alpha-glucosidase inhibitory activity in vitro (6292). Animal research also suggests that Baikal skullcap enhances the antidiabetic effects of metformin (33408). However, in a small human study, taking Baikal skullcap extract did not enhance the antidiabetic effects of metformin, although it did modestly lower glucose levels during an oral glucose tolerance test (OGTT) (101738). Until more is known, use cautiously.
|
Theoretically, concomitant use of Baikal skullcap with antihypertensive drugs might have additive effects and increase the risk of hypotension.
Animal research suggests that baicalein, a constituent of Baikal skullcap, might lower blood pressure (33374).
|
Theoretically, concomitant use of Baikal skullcap and antithyroid drugs may result in additive activity and increase the risk of hypothyroidism.
In an animal hyperthyroid model, Baikal skullcap improved levels of triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) (101736). The clinical significance of this effect is unclear.
|
Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties.
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap may increase levels of drugs metabolized by CYP1A2 enzymes.
|
Theoretically, Baikal skullcap might increase levels of drugs metabolized by CYP2C19 enzymes.
In vitro evidence suggest that wogonin, a constituent of Baikal skullcap, modestly inhibits the activity of CYP2C19 enzymes (33484). This effect has not been reported in humans.
|
Theoretically, concomitant use of large amounts of Baikal skullcap might interfere with hormone replacement therapy, due to competition for estrogen receptors.
In vitro evidence suggests that Baikal skullcap has estrogenic activity (16061).
|
Theoretically, Baikal skullcap might reduce lithium excretion and increase serum levels of lithium.
Baikal skullcap is thought to have diuretic properties, which may reduce lithium excretion (5541). The dose of lithium might need to be decreased.
|
Theoretically, Baikal skullcap might alter the levels and clinical effects of OATP substrates.
Some pharmacokinetic research shows that baicalin, a constituent of Baikal skullcap, can decrease plasma levels of rosuvastatin. The mechanism is thought to involve stimulation of the activity of the organic anion-transporting polypeptide 1B1 (OATP1B1), which transports rosuvastatin into the liver. This decreases plasma levels of the drug, but increases levels at the site of action in the liver. The degree to which rosuvastatin levels are affected depends on the OATP1B1 haplotype of the individual (16395). Baikal skullcap might also affect other OATP1B1 substrates (16396,16397,16398).
|
Theoretically, Baikal skullcap might increase levels of drugs transported by P-glycoprotein.
|
Theoretically, ginkgo might decrease the levels and clinical effects of alprazolam.
In clinical research, ginkgo extract (Ginkgold) 120 mg twice daily seems to decrease alprazolam levels by about 17%. However, ginkgo does not appear to decrease the elimination half-life of alprazolam. This suggests that ginkgo is more likely to decrease absorption of alprazolam rather than induce hepatic metabolism of alprazolam (11029).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin. Theoretically, ginkgo might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs.
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,578,579,8581,13002,13135,13179,13194,14456,87868). However, population and clinical studies have produced mixed results. Some evidence shows that short-term use of ginkgo leaf does not significantly reduce platelet aggregation and blood clotting (87732). A study in healthy males who took a specific ginkgo leaf extract (EGb 761) 160 mg twice daily for 7 days found no change in prothrombin time (12114). An analysis of a large medical record database suggests that ginkgo increases the risk of a bleeding adverse event by 38% when taken concurrently with warfarin (91326). It has been suggested that ginkgo has to be taken for at least 2-3 weeks to have a significant effect on platelet aggregation (14811). However, a meta-analysis of 18 studies using standardized ginkgo extracts, 80-480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). In addition, a single dose of ginkgo plus clopidogrel (14811) or ticlopidine does not seem to significantly increase bleeding time or platelet aggregation (17111,87846). Also, taking ginkgo leaf extract daily for 8 days in conjunction with rivaroxaban does not affect anti-factor Xa activity; however, this study did not evaluate bleeding time (109526).
|
Theoretically, ginkgo might reduce the effectiveness of anticonvulsants.
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090).
|
Theoretically, taking ginkgo with antidiabetes drugs might alter the response to antidiabetes drugs.
Ginkgo leaf extract seems to alter insulin secretion and metabolism, and might affect blood glucose levels in people with type 2 diabetes (5719,14448,103574). The effect of ginkgo seems to differ depending on the insulin and treatment status of the patient. In diet-controlled diabetes patients with hyperinsulinemia, taking ginkgo does not seem to significantly affect insulin or blood glucose levels. In patients with hyperinsulinemia who are treated with oral hypoglycemic agents, taking ginkgo seems to decrease insulin levels and increase blood glucose following an oral glucose tolerance test. Researchers speculate that this could be due to ginkgo-enhanced hepatic metabolism of insulin. In patients with pancreatic exhaustion, taking ginkgo seems to stimulate pancreatic beta-cells, resulting in increased insulin and C-peptide levels, but with no significant change in blood glucose levels in response to an oral glucose tolerance test (14448).
|
Theoretically, ginkgo might decrease the levels and clinical effects of atorvastatin.
In humans, intake of ginkgo extract appears to increase atorvastatin clearance, reducing the area under the curve of atorvastatin by 10% to 14% and the maximum concentration by 29%. However, this interaction does not appear to affect cholesterol synthesis and absorption (89706). Further, a model in rats with hyperlipidemia suggests that administering ginkgo extract does not impact blood levels of atorvastatin and leads to lower total cholesterol, low-density lipoprotein cholesterol, and triglycerides when compared with rats given atorvastatin alone (111331).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP1A2.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP2C19.
Some clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce CYP2C19 enzymes and potentially decrease levels of drugs metabolized by these enzymes (13108). However, other clinical research shows that taking ginkgo 120 mg twice daily for 12 days has no effect on levels of drugs metabolized by CYP2C19 (87824).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP2C9.
In vitro, a specific standardized extract of ginkgo leaf (EGb 761) inhibits CYP2C9 activity (11026,12061,14337). The terpenoid (ginkgolides) and flavonoid (quercetin, kaempferol, etc.) constituents seem to be responsible for this effect. Most ginkgo extracts contain some amount of these constituents. Therefore, other ginkgo leaf extracts might also inhibit the CYP2C9 enzyme. However, clinical research suggests that ginkgo might not have a significant effect on CYP2C9 in humans. Ginkgo does not seem to significantly affect the pharmacokinetics of CYP2C9 substrates diclofenac or tolbutamide.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP3A4.
There is conflicting evidence about whether ginkgo induces or inhibits CYP3A4 (1303,6423,6450,11026,87800,87805,111330). Ginkgo does not appear to affect hepatic CYP3A4 (11029). However, it is not known if ginkgo affects intestinal CYP3A4. Preliminary clinical research suggests that taking ginkgo does not significantly affect levels of donepezil, lopinavir, or ritonavir, which are all CYP3A4 substrates (11027,87800,93578). Other clinical research also suggests ginkgo does not significantly affect CYP3A4 activity (10847). However, there are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821,25464).
|
Theoretically, ginkgo might decrease the levels and clinical effects of efavirenz.
There are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. In one case, an HIV-positive male experienced over a 50% decrease in efavirenz levels over the course of 14 months while taking ginkgo extract. HIV-1 RNA copies also increased substantially, from less than 50 to more than 1500. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821). In another case report, a patient stable on antiviral therapy including efavirenz for 10 years, had an increase in viral load from <50 copies/mL to 1350 copies/mL after 2 months of taking a combination of supplements including ginkgo. After stopping ginkgo, the viral load was again controlled with the same antiviral therapy regimen (25464).
|
Theoretically, ginkgo might increase the risk of bleeding when used with ibuprofen.
Ginkgo might have antiplatelet effects and has been associated with several case reports of spontaneous bleeding. In one case, a 71-year-old male had taken a specific ginkgo extract (Gingium, Biocur) 40 mg twice daily for 2.5 years. About 4 weeks after starting ibuprofen 600 mg daily he experienced a fatal intracerebral hemorrhage (13179). However, the antiplatelet effects of ginkgo have been questioned. A meta-analysis and other studies have not found a significant antiplatelet effect with standardized ginkgo extracts, 80 mg to 480 mg taken daily for up to 32 weeks (17179).
|
Theoretically, taking ginkgo with oral, but not intravenous, nifedipine might increase levels and adverse effects of nifedipine.
Animal research and some clinical evidence suggests that taking ginkgo leaf extract orally in combination with oral nifedipine might increase nifedipine levels and cause increased side effects, such as headaches, dizziness, and hot flushes (87764,87765). However, taking ginkgo orally does not seem to affect the pharmacokinetics of intravenous nifedipine (87765).
|
Theoretically, taking ginkgo with omeprazole might decrease the levels and clinical effects of omeprazole.
Clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce cytochrome P450 (CYP) 2C19 enzymes and decrease levels of omeprazole by about 27% to 42% (13108).
|
Theoretically, taking ginkgo with P-glycoprotein substrates might increase the levels and adverse effects of these substrates.
A small clinical study in healthy volunteers shows that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of the P-glycoprotein substrate, talinolol, by 36% in healthy male individuals. However, single doses of ginkgo do not have the same effect (87830).
|
Theoretically, taking ginkgo with risperidone might increase the levels and adverse effects of risperidone.
A single case of priapism has been reported for a 26-year-old male with schizophrenia who used risperidone 3 mg daily along with ginkgo extract 160 mg daily (87796). Risperidone is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4. CYP3A4 activity might be affected by ginkgo. Theoretically, ginkgo may inhibit the metabolism of risperidone and increase the risk of adverse effects.
|
Theoretically, ginkgo might decrease the levels and clinical effects of rosiglitazone.
Animal research shows that ginkgo leaf extract orally 100 or 200 mg/kg daily for 10 days alters the pharmacodynamics of rosiglitazone in a dose-dependent manner. The 100 mg/kg and 200 mg/kg doses reduce the area under the concentration time curve (AUC) of rosiglitazone by 39% and 52%, respectively, and the half-life by 28% and 39%, respectively. It is hypothesized that these changes may be due to induction of cytochrome P450 2C8 by ginkgo (109525).
|
Theoretically, taking ginkgo with drugs that lower the seizure threshold might increase the risk for convulsions.
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,14281).
|
Theoretically, ginkgo might decrease the levels and clinical effects of simvastatin.
Clinical research shows that taking ginkgo extract can reduce the area under the curve and maximum concentration of simvastatin by 32% to 39%. However, ginkgo extract does not seem to affect the cholesterol-lowering ability of simvastatin (89704).
|
Theoretically, ginkgo might increase the levels and clinical effects of sofosbuvir.
Animal research in rats shows that giving a ginkgo extract 25 mg/kg orally daily for 14 days increases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 11%, increases the half-life by 60%, and increases the plasma concentration at 4 hours by 38%. This interaction appears to be related to the inhibition of intestinal P-glycoprotein by ginkgo (109524).
|
Theoretically, ginkgo might increase the blood levels of tacrolimus.
In vitro evidence suggests that certain biflavonoids in ginkgo leaves (i.e. amentoflavone, ginkgetin, bilobetin) may inhibit the metabolism of tacrolimus by up to 50%. This interaction appears to be time-dependent and due to inhibition of cytochrome P450 (CYP) 3A4 by these bioflavonoids. In rats given tacrolimus 1 mg/kg orally, amentoflavone was shown to increase the area under the concentration time curve (AUC) of tacrolimus by 3.8-fold (111330).
|
Taking ginkgo with talinolol seems to increase blood levels of talinolol.
There is some evidence that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of talinolol by 36% in healthy male individuals. However, single doses of ginkgo do not seem to affect talinolol pharmacokinetics (87830).
|
Theoretically, ginkgo might increase the levels and clinical effects of trazodone.
In a case report, an Alzheimer patient taking trazodone 20 mg twice daily and ginkgo leaf extract 80 mg twice daily for four doses became comatose. The coma was reversed by administration of flumazenil (Romazicon). Coma might have been induced by excessive GABA-ergic activity. Ginkgo flavonoids are thought to have GABA-ergic activity and act directly on benzodiazepine receptors. Ginkgo might also increase metabolism of trazodone to active GABA-ergic metabolites, possibly by inducing cytochrome P450 3A4 (CYP3A4) metabolism (6423).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin.
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,576,578,579,8581,13002,13135,13179,13194,14456,87868). Information from a medical database suggests that when taken concurrently with warfarin, ginkgo increases the risk of a bleeding adverse event by 38% (91326). There is also some evidence that ginkgo leaf extract can inhibit cytochrome P450 2C9, an enzyme that metabolizes warfarin. This could result in increased warfarin levels (12061). However, population and clinical research has produced mixed results. Clinical research in healthy people suggests that ginkgo has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176,87727,87889). A meta-analysis of 18 studies using standardized ginkgo extracts, 80 mg to 480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). There is also some preliminary clinical research that suggests ginkgo might not significantly increase the effects of warfarin in patients that have a stable INR (11905).
|
Theoretically, horny goat weed might increase the risk of bleeding.
In vitro research and animal research shows that horny goat weed can inhibit platelet aggregation and thrombus formation (105832). This effect has not been reported in humans.
|
Theoretically, horny goat weed might increase the risk of hypotension.
Laboratory research suggests that horny goat weed might have hypotensive effects (10346). This effect has not been reported in humans.
|
Theoretically, horny goat weed might increase the effects and side effects of CYP1A2 substrates.
In vitro, horny goat weed leaf extract inhibits CYP1A2 (97267). This effect has not been reported in humans.
|
Theoretically, horny goat weed might increase the effects and side effects of CYP2B6 substrates.
In vitro, horny goat weed leaf extract inhibits CYP2B6 (97267). This effect has not been reported in humans.
|
Theoretically, horny goat weed might increase the effects and side effects of CYP3A4 substrates.
In vitro, horny goat weed extract inhibits CYP3A4 and suppresses CYP3A4 mRNA expression (112708). This effect has not been reported in humans.
|
Theoretically, concomitant use of horny goat weed with estrogens might increase their therapeutic and adverse effects.
|
Some constituents of Japanese apricot flower extract might have antiplatelet properties (13199). Theoretically, combining Japanese flower extract with drugs that have antiplatelet or anticoagulant effects might increase the risk of bruising or bleeding. Some of these drugs include aspirin, clopidogrel (Plavix), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, indomethacin (Indocin), ticlopidine (Ticlid), warfarin (Coumadin), and others.
|
Theoretically, taking Japanese apricot in combination with antidiabetes drugs might lower blood glucose and increase the risk of hypoglycemia. Japanese apricot fruit extract has been shown to reduce levels of fasting glucose in a diabetic animal model (100022). However, this has not been shown in humans. Until more is known, use caution.
Some antidiabetes medications include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), chlorpropamide (Diabinese), glipizide (Glucotrol), tolbutamide (Orinase), and others.
|
Theoretically, schisandra might increase the levels and clinical effects of cyclophosphamide.
In vitro research shows that schisandra increases the concentration of cyclophosphamide, likely through inhibition of cytochrome P450 3A4. After multiple doses of the schisandra constituents schisandrin A and schisantherin A, the maximum concentration of cyclophosphamide was increased by 7% and 75%, respectively, while the overall exposure to cyclophosphamide was increased by 29% and 301%, respectively (109636).
|
Schisandra can increase the levels and clinical effects of cyclosporine.
A small observational study in children with aplastic anemia found that taking schisandra with cyclosporine increased cyclosporine trough levels by 93% without increasing the risk of adverse events. However, the dose of cyclosporine was reduced in 9% of children to maintain appropriate cyclosporine blood concentrations (109637).
|
Theoretically, schisandra might increase the levels and clinical effects of CYP2C19 substrates.
In vitro research shows that schisandra inhibits CYP2C19, and animal research shows that schisandra increases the concentration of voriconazole, a CYP2C19 substrate (105566). Theoretically, schisandra may also inhibit the metabolism of other CYP2C19 substrates. This effect has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of CYP2C9 substrates.
In vitro and animal research suggests that schisandra induces CYP2C9 enzymes (14441). This effect has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of drugs metabolized by CYP3A4.
Most clinical and laboratory research shows that schisandra, administered either as a single dose or up to twice daily for 14 days, inhibits CYP3A4 and increases the concentration of CYP3A4 substrates such as cyclophosphamide, midazolam, tacrolimus, and talinolol (13220,17414,23717,91386,91388,91387,96631,105564,109636,109638,109639,109640,109641). Although one in vitro and animal study shows that schisandra may induce CYP3A4 metabolism (14441), this effect appears to be overpowered by schisandra's CYP3A4 inhibitory activity and has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of midazolam.
A small pharmacokinetic study in healthy adults shows that taking schisandra extract (Hezheng Pharmaceutical Co.) containing deoxyschizandrin 33.75 mg twice daily for 8 days and a single dose of midazolam 15 mg on day 8 increases the overall exposure to midazolam by about 119%, increases the peak plasma level of midazolam by 86%, and decreases midazolam clearance by about 52%. This effect has been attributed to inhibition of CYP3A4 by schisandra (91388).
|
Schisandra might increase the levels and clinical effects of P-glycoprotein substrates.
In vitro research shows that schisandra extracts and constituents such as schisandrin B inhibit P-glycoprotein mediated efflux in intestinal cells and in P-glycoprotein over-expressing cell lines (17414,105643,105644). Additionally, a small clinical study shows that schisandra increases the peak concentration and overall exposure to talinolol, a P-glycoprotein probe substrate (91386). Theoretically, schisandra might inhibit the efflux of other P-glycoprotein substrates.
|
Schisandra can increase the levels and clinical effects of sirolimus.
A small pharmacokinetic study in healthy volunteers shows that taking 3 capsules of schisandra (Hezheng Pharmaceutical Company) containing a total of 33.75 mg deoxyschizandrin twice daily for 13 days and then taking a single dose of sirolimus 2 mg increases the overall exposure and peak level of sirolimus by two-fold. This effect is thought to be due to inhibition of cytochrome P450 3A4 by schisandra, as well as possible inhibition of the P-glycoprotein drug transporter (105643).
|
Schisandra can increase the levels and clinical effects of tacrolimus.
Clinical research in healthy children and adults, transplant patients, and patients with nephrotic syndrome and various rheumatic immunologic disorders shows that taking schisandra with tacrolimus increases tacrolimus peak levels by 183% to 268%, prolongs or delays time to peak tacrolimus concentrations, increases overall exposure to tacrolimus by 126% to 343%, and decreases tacrolimus clearance by 19% to 73% (17414,91387,15570,96631,105623,109638,109639,109640,109641,112889)(112890,112972,112973,112974). This effect is thought to be due to inhibition of P-glycoprotein drug transporter and CYP3A4 and CYP3A5 by schisandra (17414,96631,105623,105643,105644,112974). Some clinical and observational studies suggest that schisandra increases tacrolimus levels similarly in both expressors and non-expressors of CYP3A5, while other studies suggest it does so to a greater degree in CYP3A5 expressors than non-expressors (105623,109638,109639,109640,112889,112890,112973,112974). Animal research suggests that the greatest increase in tacrolimus levels occurs when schisandra is taken either concomitantly or up to 2 hours before tacrolimus (105564), and clinical and observational research in humans suggests that schisandra may increase whole blood levels of tacrolimus and decrease clearance of tacrolimus in a dose-dependent manner (109639,109640,112972).
|
Schisandra can increase the levels and clinical effects of talinolol.
A small pharmacokinetic study in healthy volunteers shows that taking schisandra extract 300 mg twice daily for 14 days with a single dose of talinolol 100 mg on day 14 increases the peak talinolol level by 51% and the overall exposure to talinolol by 47%. This effect is thought to be due to the possible inhibition of cytochrome P450 3A4 and P-glycoprotein by schisandra (91386).
tly.
|
Theoretically, schisandra might increase the levels and clinical effects of voriconazole.
Animal research shows that oral schisandra given daily for 1 or 14 days increases levels of intravenously administered voriconazole, a cytochrome P450 (CYP) 2C19 substrate. This effect is thought to be due to inhibition of CYP2C19 by schisandra (105566). However, this interaction has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of warfarin.
Animal research suggests that oral schisandra extract, given daily for 6 days, reduces levels of intravenously administered warfarin. This effect might be due to the induction of cytochrome P450 (CYP) 2C9 metabolism by schisandra (14441). However, this interaction has not been reported in humans.
|
Below is general information about the adverse effects of the known ingredients contained in the product Biminne. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and intravenously, astragalus root seems to be well tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: A case report raises concerns about liver and kidney cysts with astragalus use.
Cardiovascular ...Orally, astragalus has reportedly been associated with lacunar angina in one clinical trial. However, this may not have been caused by astragalus (17355). In addition, rapid intravenous administration of astragalus has resulted in temporary palpitations (32812).
Dermatologic ...Intravenously, astragalus may cause rash, eczema, and pruritus (33034).
Gastrointestinal ...Orally, astragalus has reportedly been associated with enterocolitis and nausea in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Genitourinary ...Orally, astragalus has reportedly been associated with vulvitis in one clinical trial. However, this effect may not have been caused by astragalus (17355).
Hepatic ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
Musculoskeletal ...Orally, astragalus has been associated with reports of musculoskeletal pain in one clinical trial. However, these effects may not have been caused by astragalus (114803).
Neurologic/CNS ...Intravenously, administration of astragalus has been associated with temporary dizziness in patients with heart failure in clinical research (32812,114804). Orally, astragalus has also been associated with dizziness in one clinical study. However, these effects may not have been caused by astragalus (114803).
Pulmonary/Respiratory ...Orally, astragalus has reportedly been associated with rhinosinusitis and pharyngitis in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Renal ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
General
...Orally, Baikal skullcap seems to be well-tolerated.
There is currently a limited amount of information on the adverse effects of intravenous and topical Baikal skullcap.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, erythema, nausea, pruritus, and vomiting.
Intravenously: Skin reactions.
Topically: Dermatitis.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity and hypersensitivity pneumonitis have been reported with a specific combination product (Limbrel, Primus Pharmaceuticals) containing extracts of Baikal skullcap and catechu.
Cardiovascular ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, elevated triglyceride levels occurred in 1 of 10 patients who received 400 mg every 8 hours and 2 of 10 patients treated with 600 mg every 8 hours, compared with 0 of 10 patients who received 200 mg every 8 hours and 0 of 6 patients who received placebo. Triglyceride elevations were considered mild and resolved after discontinuation (110023).
Dermatologic
...Orally, taking Baikal skullcap may cause erythema and pruritus (105867).
Intravenously, Baikal skullcap as part of a Tanreqing injection has been associated with reports of skin reactions in some pediatric patients (96281).
Topically, several cases of allergic contact dermatitis have been reported after applying sunscreen containing Baikal skullcap extract (105869,105870). Allergic contact dermatitis has also been reported after applying a facial cream (Resveratrol BE, Skinceuticals) containing Baikal skullcap root extract 0.5% and resveratrol 1%. Patch testing identified a positive reaction to both ingredients (110024). Baikal skullcap-induced dermatitis appears to respond to treatment with a topical corticosteroid and calcineurin inhibitor (105870).
Gastrointestinal ...Orally, use of Baikal skullcap has been associated with epigastric pain, abdominal pain, constipation, diarrhea, nausea, and vomiting (101738,105867).
Hepatic
...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of acute liver damage.
There have been at least five published reports of liver damage associated with this product. In all cases, the patients were females aged 54-68 years taking doses of 250-500 mg twice daily for 1-3 months. Signs and symptoms included jaundice, pruritus, abdominal pain, fever, rash, and elevated serum bilirubin and liver transaminase levels. All patients fully recovered and levels normalized within 3 months after discontinuation (18009,96282). In addition to these published case reports, approximately 30 liver-related adverse events have been reported to the manufacturer of this product (18009). The mechanism of hepatotoxicity is unclear (18009,18010); it is estimated that the incidence of hepatotoxicity with this product is around 1 in 10,000, although the actual incidence is unknown (18010). In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Hepatotoxicity has also been reported in two patients taking a specific dietary supplement (Move Free Advanced, Reckitt Benckiser) containing Baikal skullcap, black catechu, glucosamine, chondroitin, and hyaluronic acid (33460) and in a patient taking Baikal skullcap, elderflower, horseradish, and white willow (101737). The investigators determined that the hepatotoxicity was likely caused by Baikal skullcap in these cases (33460,101737). Additionally, cases of liver injury are reported in 4 of 37 patients taking various Kampo formulations containing Baikal skullcap and other herbs daily. Patients presented with elevated liver function tests 7 to 38 days after consumption (112179). It is unclear if this adverse effect is from Baikal skullcap, other ingredients, or the combination.
In a small study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, liver transaminase elevations occurred in 2 of 10 patients who received 400 mg every 8 hours for 6 days, compared with 0 of 6 patients who received placebo. No patients receiving either 200 mg or 600 mg every 8 hours experienced liver transaminase elevations. The elevations were considered mild and resolved after discontinuation (110023).
Pulmonary/Respiratory ...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of hypersensitivity pneumonitis. Symptoms include fever, chills, headache, cough, chronic bronchitis, shortness of breath, weight loss, and fatigue. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Renal ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, proteinuria of undefined severity occurred in 1 of 10 patients who received 200 mg every 8 hours for 6 days, 3 of 10 patients who received 400 mg every 8 hours for 6 days, and 5 of 10 patients who received 600 mg every 8 hours for 6 days, compared with 1 of 6 patients who received placebo. The proteinuria was considered mild and resolved after discontinuation (110023).
General
...Orally, ginkgo leaf extract is generally well tolerated when used for up to 6 years.
However, the seed and crude plant contain toxic constituents and should be avoided.
Intravenously, ginkgo leaf extract seems to be well tolerated when used for up to 30 days.
Topically, no adverse effects have been reported with ginkgo as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dizziness, gastrointestinal symptoms, headache.
Serious Adverse Effects (Rare):
Orally: Arrhythmia, bleeding, Stevens-Johnson syndrome.
Cardiovascular
...Cardiac arrhythmias suspected to be related to ginkgo have been reported.
Internationally, there are at least 162 reports from 18 countries, with 34% of cases considered serious, involving five deaths and four life-threatening events. Additionally, a report from Canada found that 10 out of 15 cases of arrhythmia were considered serious. Ginkgo was the only suspect ingredient in 57% of all international reports, with symptoms generally presenting within days of initiation. The most common symptoms included palpitations, tachycardia, bradycardia, syncope, and loss of consciousness. Most cases were reported to be related to oral use of ginkgo leaf products; however, some cases were associated with oral use of the seed, and others with intravenous or intramuscular use of the leaf. Documented discontinuation of ginkgo led to recovery in approximately 84% of cases where ginkgo was the sole suspect. Despite these findings, ginkgo cannot be confirmed as the causal agent. It is possible that these reports are confounded by underlying co-morbidities. Of the reported cases, the main reason for ginkgo use was tinnitus, a symptom commonly associated with pre-existing arrhythmias (105253,105254). Despite this large number of reports, only three cases of cardiac arrhythmia have been published in the literature (105253,105254). In one case, frequent nocturnal episodes of paroxysmal atrial fibrillation were reported for a 35-year-old female taking ginkgo extract 240 mg daily orally for 2 months. Arrythmias ceased following discontinuation of ginkgo (87884).
Increases in blood pressure were commonly reported with ginkgo in a safety database analysis; however, information on the magnitude of the increase was limited, and reports included both oral and intravenous administration (115628).
In one clinical trial, the rate of ischemic stroke and transient ischemic attacks was significantly higher in patients taking ginkgo extract orally when compared with placebo (16635). It is unclear if these events were due to ginkgo, other factors, or a combination.
Dermatologic ...Topically, ginkgo fruit pulp can cause contact dermatitis, with intense itching, edema, papules, and pustules which take 7-10 days to resolve after stopping contact (112946).
Gastrointestinal
...Orally, ginkgo extract may cause mild gastrointestinal discomfort or pain (3965,8543,17112,87818,87858), nausea and vomiting (8543,17112,87728,87844,87858), diarrhea (87844), dry mouth (17112), and constipation (5719,87787).
However, post-market surveillance suggests that the incidence of these events is relatively low, occurring in less than 2% of patients (88007).
Fresh ginkgo seeds can cause stomach ache, nausea, vomiting, or diarrhea. Ingesting roasted seeds in amounts larger than the normal food amounts of 8-10 seeds per day, or long-term, can also cause these same adverse reactions (8231,8232).
Genitourinary ...Orally, ginkgo extract has been reported to cause blood in the urine (87858,115628).
Hematologic
...Spontaneous bleeding is one of the most concerning potential side effects associated with ginkgo.
There are several published case reports linking ginkgo to episodes of minor to severe bleeding; however, not all case reports clearly establish ginkgo as the cause of bleeding. In most cases, other bleeding risk factors were also present including taking other medications or natural medicines, old age, liver cirrhosis, recent surgery, and other conditions. In most cases, bleeding occurred after several weeks or months of taking ginkgo (13135). Large-scale clinical trials and a meta-analysis evaluating standardized ginkgo leaf extracts show that the incidence of bleeding in patients taking ginkgo is not significantly higher than in those taking placebo (16634,16635,17179,17402).
There are several case reports of intracerebral bleeding. Some of these cases resulted in permanent neurological damage and one case resulted in death (244,578,8581,13135,13179,14456,87868,87977).
There are at least 4 cases of ocular bleeding including spontaneous hyphema (bleeding from the iris into the anterior part of the eye) and retrobulbar hemorrhage associated with ginkgo use (579,10450,13135).
There are also cases of surgical and post-surgical complications in patients using ginkgo. Retrobulbar hemorrhage (bleeding behind the eye) during cataract surgery has been associated with ginkgo use (10450). Excessive postoperative bleeding requiring transfusion has also occurred following laparoscopic surgery in a patient who had been taking ginkgo leaf extract (887). There have also been two cases of excessive bleeding during surgery and post-surgical hematoma in patients undergoing rhytidoplasty and blepharoplasty (13002). In another case, an elderly patient taking ginkgo experienced excessive postoperative bleeding following total hip arthroplasty (13194). In another case, use of ginkgo following liver transplantation surgery was associated with subphrenic hematoma requiring evacuation by laparotomy. The patient also subsequently experienced vitreous hemorrhage (14315). In another case, an elderly patient who had taken ginkgo chronically experienced excessive post-operative bleeding following an ambulatory surgical procedure (14453).
In another case, an elderly man experienced nose bleeds and ecchymosis following use of ginkgo. One case of diffuse alveolar hemorrhage in a female taking ginkgo and ginseng for over one year has been reported (95670). These instances of bleeding stopped when ginkgo was discontinued, and recurred when the patient started taking ginkgo again (13135).
Persistent bleeding has also occurred following dental surgery (87862) and laparoscopic cholecystectomy (88000). Nosebleed has also been reported as an adverse effect in a clinical trial (87813).
Immunologic ...Orally, ginkgo leaf extract can cause allergic skin reactions in some patients (14449,15578,112946). In one case, a patient developed acute generalized exanthematous pustulosis 48 hours after taking a single-ingredient ginkgo product. The rash resolved within 10 days after discontinuing ginkgo (14449). In another case, progressive erythema of the face, neck, trunk, and extremities occurred after two 60 mg oral doses of ginkgo extract (112946). There is also a case of Stevens-Johnson syndrome following a second administration of a preparation containing ginkgo leaf extract, choline, vitamin B6, and vitamin B12 (208). In another case, systemic edema and severe arthralgia was reported after contact with a ginkgo tree nut and manifested as multifocal lymphadenopathy associated with an allergic reaction on PET/CT scan imaging (95672).
Musculoskeletal ...Edema has been reported for three patients treated with ginkgo extract 40 mg orally three times daily (87818).
Neurologic/CNS ...Orally, ginkgo extract may cause headache (6220,8543,87818), dizziness (5719,87818), increased desire to sleep (87839,115628), and sedation (10893) in some patients. In addition, although ginkgo leaf and ginkgo leaf extract contain only small amounts of ginkgotoxin, there are anecdotal reports of seizure occurring after use of ginkgo leaf preparations both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,11296,14281).
Ocular/Otic
...Orally, ginkgo may cause tinnitus is some patients (8543,115628).
Topically, eye drops containing ginkgo extract and hyaluronic acid may cause stinging sensations in some people (87829).
Psychiatric ...Orally, ginkgo has been associated with a single case of mood dysregulation. A 50-year-old female with schizophrenia developed irritability, difficulty controlling anger, and agitation after one week of taking ginkgo 80 mg twice daily. The mood changes resolved within 2-3 days of discontinuation. When ginkgo was re-trialed at a later date, the same symptoms reappeared, and again dissipated after discontinuation of the ginkgo product. The relationship between ginkgo and mood dysregulation was considered to be "probable" based on the Naranjo adverse drug reaction probability scale (96763); however, the exact mechanism by which ginkgo may have affected mood regulation is unknown.
General
...Orally, horny goat weed seems to be well tolerated when used short-term.
Most Common Adverse Effects:
Orally: Dizziness, dry mouth, nosebleed, thirst, and vomiting.
Serious Adverse Effects (Rare):
Orally: Respiratory arrest.
Cardiovascular ...A 66-year-old male with a history of cardiovascular disease developed tachyarrhythmia after taking horny goat weed for 2 weeks (13006). It is not clear if this product contained only horny goat weed or a combination of ingredients; therefore, assigning causality is not possible.
Gastrointestinal ...Orally, long-term use of horny goat weed has been associated with reports of vomiting, dry mouth, thirst, and nosebleed (10346).
Hepatic ...A case of hepatotoxicity characterized by abdominal pain, nausea, vomiting, and fever has been reported in a 40-year-old male patient with hepatitis C, after a month of taking one tablet daily of a combination product containing horny goat weed and multiple other ingredients (Enzyte, Vianda). Symptoms improved following cessation of the product, but it is not clear if they were due to horny goat weed, another ingredients, or hepatitis C (91590). An observational study over 24 years found 26 cases of drug-induced hepatoxicity associated with horny goat weed (112707).
Musculoskeletal ...Orally, large doses of horny goat weed may cause exaggeration of tendon reflexes to the point of spasm (10346).
Neurologic/CNS ...Orally, long-term use of horny goat weed has been associated with reports of dizziness (10346).
Psychiatric ...There is a case report of hypomania in a 66-year-old male who took horny goat weed for 2 weeks (13006). It is not clear if this product contained only horny goat weed or a combination of ingredients; therefore, assigning causality is not possible.
Pulmonary/Respiratory ...Orally, large doses of horny goat weed may cause respiratory arrest (10346).
General ...Orally, Japanese apricot dried fruit extract seems to be well tolerated. Side effects reported in clinical research include gastric intolerance (100027). Diluted Japanese apricot juice concentrate may cause constipation (100029). Allergies to Japanese apricot are rare (100028). The raw fruit of Japanese apricot is thought to be toxic due to the cyanogenic glycosides prunasin and amygdalin (13198).
Gastrointestinal ...Orally, Japanese apricot dried fruit extract 300 mg daily has been reported to cause gastric intolerance in one patient in one clinical study (100027). In other clinical research, dilute Japanese apricot juice concentrate has been reported to cause constipation in one patient (100029).
Immunologic ...Orally, food-dependent, exercise-induced anaphylaxis related to Japanese apricot has been reported, but this is rare. In one case, symptoms including loss of consciousness occurred in a 12-year-old girl who had eaten Japanese apricot at breakfast and went jogging 90 minutes later (100028).
General
...Orally, schisandra seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Decreased appetite, heartburn, stomach upset, and urticaria.
Dermatologic ...Orally, schisandra can cause urticaria in some patients (11).
Gastrointestinal ...Orally, schisandra can cause heartburn, decreased appetite, and stomach upset (11).