Each capsule contains: Milk Thistle seed extract (silybum marianum, 80% silymarin [60 mg]) 200 mg • Goldenseal root extract (hydrastis canadensis, 5% hydrastine [5 mg]) 100 mg • Red Clover flowering tops extract (trifolium pratense, 2.5% flavonoids [2.5 mg]) 100 mg • Artichoke leaf extract (cynara scolymus, 9% caffeoylquinic acid derivatives ad chlorogenic acid [9 mg]) 100 mg • Dandelion root (taraxacum officinale) 100 mg. Other Ingredients: Cellulose, Vegetable Cellulose Capsule.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Standardized Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Standardized Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Artichoke has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Artichoke extract has been used with apparent safety at doses up to 3200 mg daily for up to 12 weeks (6282,15204,52235,91475,91478,100934). Artichoke leaf powder has been used with apparent safety at a dose of 1000 mg daily for up to 8 weeks (104133). Cynarin, a constituent in artichoke extract, has been used with apparent safety at daily doses of 750 mg daily for up to 3 months or 60 mg daily for up to 7 months (1423,1424,52222,52223,52236).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of artichoke when used in medicinal amounts during pregnancy or lactation; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dandelion has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dandelion when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those in foods.
POSSIBLY SAFE ...when used orally and appropriately as a single dose (260,261). There is insufficient reliable information available about the safety of goldenseal when used as more than a single dose.
CHILDREN: LIKELY UNSAFE
when used orally in newborns.
The berberine constituent of goldenseal can cause kernicterus in newborns, particularly preterm neonates with hyperbilirubinemia (2589).
PREGNANCY: LIKELY UNSAFE
when used orally.
Berberine is thought to cross the placenta and may cause harm to the fetus. Kernicterus has developed in newborn infants exposed to goldenseal (2589).
LACTATION:
LIKELY UNSAFE when used orally.
Berberine and other harmful constituents can be transferred to the infant through breast milk (2589). Use during lactation can cause kernicterus in the newborn and several resulting fatalities have been reported (2589).
LIKELY SAFE ...when used orally and appropriately. A specific milk thistle extract standardized to contain 70% to 80% silymarin (Legalon, Madaus GmbH) has been safely used in doses up to 420 mg daily for up to 4 years (2613,2614,2616,7355,63210,63212,63278,63280,63299,63340)(88154,97626,105792). Higher doses of up to 2100 mg daily have been safely used for up to 48 weeks (63251,96107,101150). Another specific milk thistle extract of silymarin (Livergol, Goldaru Pharmaceutical Company) has been safely used at doses up to 420 mg daily for up to 6 months (95021,95029,102851,102852,105793,105794,105795,113979,114909,114913)(114914). Some isolated milk thistle constituents also appear to be safe. Silibinin (Siliphos, Thorne Research) has been used safely in doses up to 320 mg daily for 28 days (63218). Some combination products containing milk thistle and other ingredients also appear to be safe. A silybin-phosphatidylcholine complex (Silipide, Inverni della Beffa Research and Development Laboratories) has been safely used in doses of 480 mg daily for 7 days (7356) and 240 mg daily for 3 months (63320). Tree turmeric and milk thistle capsules (Berberol, PharmExtracta) standardized to contain 60% to 80% silybin have been safely used twice daily for up to 12 months (95019,96140,96141,96142,97624,101158).
POSSIBLY SAFE ...when used topically and appropriately, short-term. A milk thistle extract cream standardized to silymarin 0.25% (Leviaderm, Madaus GmbH) has been used safely throughout a course of radiotherapy (63239). Another milk thistle extract cream containing silymarin 1.4% has been used with apparent safety twice daily for 3 months (105791,110489). A cream containing milk thistle fruit extract 25% has been used with apparent safety twice daily for up to 12 weeks (111175). A milk thistle extract gel containing silymarin 1% has been used with apparent safety twice daily for 9 weeks (95022). There is insufficient reliable information available about the safety of intravenous formulations of milk thistle or its constituents.
PREGNANCY AND LACTATION:
While research in an animal model shows that taking milk thistle during pregnancy and lactation does not adversely impact infant development (102850), there is insufficient reliable information available about its safety during pregnancy or lactation in humans; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A milk thistle extract 140 mg three times daily has been used with apparent safety for up to 9 months (88154,98452). A specific product containing the milk thistle constituent silybin (Siliphos, Thorne Research Inc.) has been used with apparent safety in doses up to 320 mg daily for up to 4 weeks in children one year of age and older (63218).
LIKELY SAFE ...when used orally in amounts commonly used in foods. Red clover has Generally Recognized As Safe (GRAS) status for use in foods in the US (4912,10372).
POSSIBLY SAFE ...when used orally and appropriately in supplemental amounts. Red clover extracts containing up to 80 mg isoflavones have been used with apparent safety in clinical studies lasting up to 2 years (3375,6127,8925,11089,11091,17091,19540,19556,91524,102901,102840). ...when used topically and appropriately. Red clover extracts have been used topically with apparent safety for up to 4 weeks (102839).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Red clover has estrogenic activity (19555); avoid using. There is insufficient reliable information available about the safety of the topical use of red clover during pregnancy and lactation.
Below is general information about the interactions of the known ingredients contained in the product Standardized Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, artichoke leaf extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
A meta-analysis of small clinical studies shows that taking artichoke leaf extract for 8-12 weeks can modestly reduce fasting plasma glucose when compared with placebo (105768).
|
Theoretically, artichoke leaf extract may increase the risk of hypotension when taken with antihypertensive drugs.
A meta-analysis of small clinical studies in patients with hypertension shows that taking artichoke can reduce systolic blood pressure by around 3 mmHg and diastolic blood pressure by around 2 mmHg when compared with placebo (105767).
|
Theoretically, artichoke might increase serum levels of drugs metabolized by CYP2B6.
In vitro research shows that artichoke leaf extract inhibits CYP2B6 activity (97717). However, this interaction has not been reported in humans.
|
Theoretically, artichoke might increase serum levels of drugs metabolized by CYP2C19.
In vitro research shows that artichoke leaf extract inhibits CYP2C19 activity (97717). However, this interaction has not been reported in humans.
|
Theoretically, taking dandelion root along with anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
In vitro research suggests that dandelion root inhibits platelet aggregation (18291).
|
Theoretically, dandelion might increase the risk for hypoglycemia when used with antidiabetes drugs.
Laboratory research suggests that dandelion extract may have moderate alpha-glucosidase inhibitor activity and might also increase insulin secretion (13474,90926). Also, in a case report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemia 2 weeks after beginning to eat salads containing dandelion (46960).
|
Theoretically, dandelion might increase levels of drugs metabolized by CYP1A2.
Laboratory research suggests that dandelion might inhibit CYP1A2 (12734). So far, this interaction has not been reported in humans. However, until more is known, watch for an increase in the levels of drugs metabolized by CYP1A2 in patients taking dandelion.
|
Theoretically, dandelion might increase the clearance of drugs that are UDP-glucuronosyltransferase substrates.
There is some preliminary evidence that dandelion might induce UDP-glucuronosyltransferase, a phase II enzyme (12734).
|
Theoretically, through diuretic effects, dandelion might reduce excretion and increase levels of lithium.
Animal research suggests that dandelion has diuretic properties (13475). As diuretics can increase serum lithium levels, the dose of lithium might need to be decreased when taken with dandelion.
|
Theoretically, dandelion might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Dandelion contains significant amounts of potassium (13465).
|
Theoretically, dandelion might lower fluoroquinolone levels.
Animal research shows that dandelion reduces absorption of ciprofloxacin and can lower levels by 73% (13477). However, this effect has not been reported in humans.
|
Theoretically, goldenseal might increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
|
Theoretically, goldenseal might increase the risk of hypoglycemia when used with antidiabetes drugs.
|
Theoretically, goldenseal might increase the risk of hypotension when taken with antihypertensive drugs.
Goldenseal contains berberine. Animal research shows that berberine can have hypotensive effects (33692,34308). Also, an analysis of clinical research shows that taking berberine in combination with amlodipine can lower systolic and diastolic blood pressure when compared with amlodipine alone (91956). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might increase the sedative effects of CNS depressants.
|
Theoretically, goldenseal might increase serum levels of drugs metabolized by CYP2C9.
In vitro research shows that goldenseal root extract can modestly inhibit CYP2C9. This effect may be due to its alkaloid constituents, hydrastine and berberine (21117). However, this effect has not been reported in humans.
|
Goldenseal might increase serum levels of drugs metabolized by CYP2D6.
|
Theoretically, goldenseal might increase serum levels of drugs metabolized by CYP2E1.
In vitro research shows that goldenseal root extract can inhibit the activity of CYP2E1 (94140). However, this effect has not been reported in humans.
|
Goldenseal might increase serum levels of drugs metabolized by CYP3A4.
Most clinical and in vitro research shows that goldenseal inhibits CYP3A4 enzyme activity and increases serum levels of CYP3A4 substrates, such as midazolam (6450,13536,21117,91740,111725). However, in one small clinical study, goldenseal did not affect the levels of indinavir, a CYP3A4 substrate, in healthy volunteers (10690,93578). This is likely due to the fact that indinavir has a high oral bioavailability, making it an inadequate probe for CYP3A4 interactions (13536,91740) and/or that it is primarily metabolized by hepatic CYP3A, while goldenseal has more potential to inhibit intestinal CYP3A enzyme activity (111725). Both goldenseal extract and its isolated constituents berberine and hydrastine inhibit CYP3A, with hydrastine possibly having more inhibitory potential than berberine (111725).
|
Theoretically, goldenseal might increase serum levels of dextromethorphan.
Goldenseal contains berberine. A small clinical study shows that berberine can inhibit cytochrome P450 2D6 (CYP2D6) activity and reduce the metabolism of dextromethorphan (34279).
|
Goldenseal might increase serum levels of digoxin, although this effect is unlikely to be clinically significant.
Clinical research shows that goldenseal modestly increases digoxin peak levels by about 14% in healthy volunteers. However, goldenseal does not seem to affect other pharmacokinetic parameters such as area under the curve (AUC) (15132). This suggests that goldenseal does not cause a clinically significant interaction with digoxin. Digoxin is a P-glycoprotein substrate. Some evidence suggests that goldenseal constituents might affect P-glycoprotein; however, it is unclear whether these constituents inhibit or induce P-glycoprotein.
|
Theoretically, goldenseal might decrease the conversion of losartan to its active form.
Goldenseal contains berberine. A small clinical study shows that berberine inhibits cytochrome P450 2C9 (CYP2C9) activity and reduces the metabolism of losartan (34279). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might reduce blood levels of metformin.
In vitro research shows that goldenseal extract decreases the bioavailability of metformin, likely by interfering with transport, intestinal permeability, or other processes involved in metformin absorption. It is unclear which, if any, of metformin's transporters are inhibited by goldenseal. Goldenseal does not appear to alter the clearance or half-life of metformin (105764).
|
Theoretically, goldenseal might reduce the therapeutic effects of oseltamivir by decreasing its conversion to its active form.
In vitro evidence suggests that goldenseal reduces the formation of the active compound from the prodrug oseltamivir (105765). The mechanism of action and clinical relevance is unclear.
|
Theoretically, goldenseal might increase or decrease serum levels of P-glycoprotein (P-gp) substrates.
There is conflicting evidence about the effect of goldenseal on P-gp. In vitro research suggests that berberine, a constituent of goldenseal, modestly inhibits P-gp efflux. Other evidence suggests that berberine induces P-gp. In healthy volunteers, goldenseal modestly increases peak levels of the P-gp substrate digoxin by about 14%. However, it does not seem to affect other pharmacokinetic parameters such as area under the curve (AUC) (15132). This suggests that goldenseal is not a potent inhibitor of P-gp-mediated drug efflux. Until more is known, goldenseal should be used cautiously with P-gp substrates.
|
Theoretically, goldenseal might increase the sedative effects of pentobarbital.
Animal research shows that berberine, a constituent of goldenseal, can prolong pentobarbital-induced sleeping time (13519). However, this effect has not been reported with goldenseal.
|
Theoretically, goldenseal might increase serum levels of tacrolimus.
Goldenseal contains berberine. In a 16-year-old patient with idiopathic nephrotic syndrome who was being treated with tacrolimus 6.5 mg twice daily, intake of berberine 200 mg three times daily increased the blood concentration of tacrolimus from 8 to 22 ng/mL. Following a reduction of tacrolimus dosing to 3 mg daily, blood levels of tacrolimus decreased to 12 ng/mL (91954).
|
Taking milk thistle with antidiabetes drugs may increase the risk of hypoglycemia.
Clinical research shows that milk thistle extract, alone or along with tree turmeric extract, can lower blood glucose levels and glycated hemoglobin (HbA1c) in patients with type 2 diabetes, including those already taking antidiabetes drugs (15102,63190,63314,63318,95019,96140,96141,97624,97626,113987). Additionally, animal research shows that milk thistle extract increases the metformin maximum plasma concentration and area under the curve and decreases the renal clearance of metformin, due to inhibition of the multi-drug and toxin extrusion protein 1 (MATE1) renal tubular transport protein (114919).
|
Theoretically, milk thistle might inhibit CYP2B6.
An in vitro study shows that silybin, a constituent of milk thistle, binds to and noncompetitively inhibits CYP2B6. Additionally, silybin might downregulate the expression of CYP2B6 by decreasing mRNA and protein levels (112229).
|
It is unclear if milk thistle inhibits CYP2C9; research is conflicting.
In vitro research suggests that milk thistle might inhibit CYP2C9 (7089,17973,17976). Additionally, 3 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP2C9 substrates, including imatinib and capecitabine (111644). However, contradictory clinical research shows that milk thistle extract does not inhibit CYP2C9 or significantly affect levels of the CYP2C9 substrate tolbutamide (13712,95026). Differences in results could be due to differences in dosages or formulations utilized (95026).
|
It is unclear if milk thistle inhibits CYP3A4; research is conflicting.
While laboratory research shows conflicting results (7318,17973,17975,17976), pharmacokinetic research shows that taking milk thistle extract 420-1350 mg daily does not significantly affect the metabolism of the CYP3A4 substrates irinotecan, midazolam, or indinavir (8234,17974,93578,95026). However, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP3A4 substrates, including gefitinib, sorafenib, doxorubicin, and vincristine (111644).
|
Theoretically, milk thistle might interfere with estrogen therapy through competition for estrogen receptors.
|
Theoretically, milk thistle might affect the clearance of drugs that undergo glucuronidation.
Laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase levels of glucuronidated drugs. Other laboratory research suggests that a milk thistle extract of silymarin might inhibit beta-glucuronidase (7354), although the significance of this effect is unclear.
|
Theoretically, milk thistle might interfere with statin therapy by decreasing the activity of organic anion transporting polypeptide 1B1 (OATB1B1) and inhibiting breast cancer resistance protein (BCRP).
Preliminary evidence suggests that a milk thistle extract of silymarin can decrease the activity of the OATP1B1, which transports HMG-CoA reductase inhibitors into the liver to their site of action, and animal research shows this increases the maximum plasma concentration of pitavastatin and pravastatin (113975). The silibinin component also inhibits BCRP, which transports statins from the liver into the bile for excretion. However, in a preliminary study in healthy males, silymarin 140 mg three times daily had no effect on the pharmacokinetics of a single 10 mg dose of rosuvastatin (16408).
|
Theoretically, milk thistle may induce cytochrome P450 3A4 (CYP3A4) enzymes and increase the metabolism of indinavir; however, results are conflicting.
One pharmacokinetic study shows that taking milk thistle (Standardized Milk Thistle, General Nutrition Corp.) 175 mg three times daily in combination with multiple doses of indinavir 800 mg every 8 hours decreases the mean trough levels of indinavir by 25% (8234). However, results from the same pharmacokinetic study show that milk thistle does not affect the overall exposure to indinavir (8234). Furthermore, two other pharmacokinetic studies show that taking specific milk thistle extract (Legalon, Rottapharm Madaus; Thisilyn, Nature's Way) 160-450 mg every 8 hours in combination with multiple doses of indinavir 800 mg every 8 hours does not reduce levels of indinavir (93578).
|
Theoretically, milk thistle might increase the levels and clinical effects of ledipasvir.
Animal research in rats shows that milk thistle increases the area under the curve (AUC) for ledipasvir and slows its elimination (109505).
|
Theoretically, concomitant use of milk thistle with morphine might affect serum levels of morphine and either increase or decrease its effects.
Animal research shows that milk thistle reduces serum levels of morphine by up to 66% (101161). In contrast, laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase morphine levels. The effect of taking milk thistle on morphine metabolism in humans is not known.
|
Milk thistle may inhibit one form of OATP, OATP-B1, which could reduce the bioavailability and clinical effects of OATP-B1 substrates.
In vitro research shows that milk thistle inhibits OATP-B1. Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are OATP substrates, including sorafenib and methotrexate (111644). OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds into the body. Inhibition of OATP may reduce the bioavailability of oral drugs that are substrates of OATP.
|
Theoretically, milk thistle might increase the absorption of P-glycoprotein substrates. However, this effect does not seem to be clinically significant.
In vitro research shows that milk thistle can inhibit P-glycoprotein activity (95019,111644) and 1 case report from the World Health Organization (WHO) adverse drug reaction database describes increased abdominal pain in a patient taking milk thistle and the cancer medication vincristine, a P-glycoprotein substrate, though this patient was also taking methotrexate (111644). However, a small pharmacokinetic study in healthy volunteers shows that taking milk thistle (Enzymatic Therapy Inc.) 900 mg, standardized to 80% silymarin, in 3 divided doses daily for 14 days does not affect absorption of digoxin, a P-glycoprotein substrate (35825).
|
Theoretically, milk thistle might decrease the clearance and increase levels of raloxifene.
Laboratory research suggests that the milk thistle constituents silibinin and silymarin inhibit the glucuronidation of raloxifene in the intestines (93024).
|
Milk thistle might decrease the clearance of sirolimus.
Pharmacokinetic research shows that a milk thistle extract of silymarin decreases the apparent clearance of sirolimus in hepatically impaired renal transplant patients (19876). It is unclear if this interaction occurs in patients without hepatic impairment.
|
Theoretically, milk thistle might decrease the levels and clinical effects of sofosbuvir.
Animal research in rats shows that milk thistle reduces the metabolism of sofosbuvir, as well as the hepatic uptake of its active metabolite (109505).
|
Theoretically, the milk thistle constituent silibinin might increase tamoxifen levels and interfere with its conversion to an active metabolite.
Animal research suggests that the milk thistle constituent silibinin might increase plasma levels of tamoxifen and alter its conversion to an active metabolite. The mechanism appears to involve inhibition of pre-systemic metabolism of tamoxifen by cytochrome P450 (CYP) 2C9 and CYP3A4, and inhibition of P-glycoprotein-mediated efflux of tamoxifen into the intestine for excretion (17101). Whether this interaction occurs in humans is not known.
|
Theoretically, milk thistle might increase the effects of warfarin.
In one case report, a man stabilized on warfarin experienced an increase in INR from 2.64 to 4.12 after taking a combination product containing milk thistle 200 mg daily, as well as dandelion, wild yam, niacinamide, and vitamin B12. Levels returned to normal after stopping the supplement (101159). Although a direct correlation between milk thistle and the change in INR cannot be confirmed, some in vitro research suggests that milk thistle might inhibit cytochrome P450 2C9 (CYP2C9), an enzyme involved in the metabolism of various drugs, including warfarin (7089,17973,17976).
|
Although some laboratory research suggests that red clover may have anticoagulant and antiplatelet activity, clinical research has not shown this effect.
In vitro research suggests that genistein in red clover has antiplatelet effects, and historically, red clover was thought to have anticoagulant effects due to its coumarin content. However, some experts state that this is unlikely as most natural coumarins have not been shown to have anticoagulant effects, and their content in red clover is low (17091,19557,19558,19559). Additionally, some clinical research in postmenopausal patients found no effect on coagulation or prothrombin time with the use of red clover flowering tops 378 mg daily for 12 months or red clover isoflavone (Rimostil) 50 mg daily for 2 years (17091,91524).
|
Theoretically, soy might reduce the clearance of caffeine; however, a small clinical study found no effect.
Red clover contains genistein. Taking genistein 1 gram daily for 14 days seems to inhibit caffeine clearance and metabolism in healthy females (23582). However, this effect does not seem to occur with the lower amounts of genistein found in red clover. A clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of caffeine (105693).
|
Theoretically, red clover might increase levels of drugs metabolized by CYP1A2; however, a small clinical study found no effect.
In vitro evidence shows that red clover inhibits CYP1A2 (12479). However, a clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of caffeine, a CYP1A2 probe substrate (105693).
|
Theoretically, red clover might increase the levels and clinical effects of drugs metabolized by CYP2C19.
In vitro evidence suggests that red clover weakly inhibits CYP2C19 (12479). This interaction has not been reported in humans.
|
Theoretically, red clover might increase levels of drugs metabolized by CYP2C9; however, a small clinical study found no effect.
In vitro evidence suggests that red clover might inhibit CYP2C9 (12479). However, a clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of tolbutamide, a CYP2C9 probe substrate (105693).
|
Theoretically, red clover might increase levels of drugs metabolized by CYP3A4; however, a small clinical study found no effect.
In vitro evidence shows that red clover might inhibit CYP3A4 isoenzymes (6450,12479). However, a clinical study in healthy postmenopausal individuals shows that taking red clover capsules standardized to contain 60 mg isoflavones twice daily for 14 days does not affect the pharmacokinetics of alprazolam, a CYP3A4 probe substrate (105693).
|
Theoretically, concomitant use of large amounts of red clover might interfere with estrogen therapy.
|
Theoretically, red clover might increase the risk of methotrexate toxicity.
In a case report, a 52-year-old female receiving weekly methotrexate injections for psoriasis developed symptoms of methotrexate toxicity, including severe vomiting and epigastric pain, after three days of taking red clover 430 mg daily. Toxicity resolved after red clover was discontinued. However, no liver function tests or methotrexate levels were reported (91522).
|
Theoretically, the phytoestrogens in red clover might interfere with tamoxifen.
In vitro and animal research suggests that genistein, a constituent of red clover, might antagonize the antitumor effects of tamoxifen (8192). However, there is some evidence from an animal study that red clover does not reduce the efficacy of tamoxifen (102901). Until more is known, tell patients taking tamoxifen to avoid red clover.
|
Below is general information about the adverse effects of the known ingredients contained in the product Standardized Liver Support. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, artichoke extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, flatulence, hunger, and nausea.
Topically: Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to artichoke inulin has been reported in individuals sensitive to inulin.
Topically: Chest tightness, cough, and dyspnea after occupational exposure in sensitive individuals.
Dermatologic
...Artichoke can cause an allergic reaction in some patients.
Patients sensitive to the Asteraceae/Compositae family may be at the greatest risk. Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs. Topically, allergic contact dermatitis can occur with the use of artichoke. This has been attributed to the constituent cynaropicrin (11,52206,52226,52230). Redness in the face (11774) and sweating (91475) have been reported rarely following oral use of artichoke extract.
Occupational or airborne exposure to artichoke may also cause allergic reactions. In one case, a 52-year-old male presented with severe spongiotic dermatitis in exposed areas that was recurrent over the past 8 years. A patch test confirmed allergies to artichokes and sesquiterpene lactones, a group of allergens from the Compositae family, and the patient confirmed occupational and airborne exposure to artichokes during the time of his symptoms. The patient improved considerably after treatment with dupilumab (111565).
Gastrointestinal
...Orally, artichoke extract might increase abdominal discomfort, flatulence, diarrhea, hunger, and nausea in some patients (2562,52238,91475).
Abdominal pain and a bitter taste in the mouth were reported by a single person following oral use of a dietary supplement containing artichoke extract, as well as red yeast rice, pine bark extract, and garlic extract (89452). It is not clear if this adverse effect was due to artichoke, other ingredients, or the combination.
In one case report, the autopsy of an 84-year-old female revealed a colonic bezoar comprised of artichoke fiber and fragments. This bezoar caused complete intestinal obstruction, leading to fatal acute peritonitis. Although rare, patients who lack adequate teeth and/or who have a history of gastric surgery are at increased risk for fibrous bezoar formation (97716).
Pulmonary/Respiratory
...Following occupational exposure, allergic symptoms including dyspnea, cough, chest tightness, and asthma symptoms or exacerbation have been reported.
The effects were attributed to sensitization to artichoke. Subsequent nasal challenge with artichoke extract caused reduced nasal patency in these patients (52210,52230).
Orally, severe anaphylactic shock in response to artichoke inulin as an ingredient in commercially available products has been reported (52217). Individuals with a noted sensitivity to artichokes should consume inulin with caution. While rare, individuals with a known inulin allergy should avoid artichoke and artichoke extract.
General
...Orally, dandelion seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, heartburn, and stomach discomfort.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...In one report, a 39-year-old obese woman developed palpitations and syncope after taking a weight loss supplement containing a combination of dandelion, bladderwrack, and boldo for 3 weeks. The patient was found to have prolonged QT-interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether dandelion, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Dermatologic ...Topically, dandelion can cause contact dermatitis and erythema multiforme in sensitive individuals. Dandelion can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family (13478,13481,42893,46945,46977). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Endocrine ...In one report, a 56-year-old man with renal impairment developed hyperoxalaemia and peripheral gangrene after ingesting large amounts of dandelion tea (10 to 15 cups daily for 6 months). The adverse effect was attributed to the high oxalate content of dandelion tea (258 mcmol/L) and reduced renal oxalate clearance caused by renal impairment (90639). In another report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemic symptoms 2 weeks after beginning to eat salads containing dandelion (46960). The hypoglycemic effect was attributed to the potential alpha-glucosidase inhibitory activity of dandelion.
Gastrointestinal ...Gastrointestinal symptoms, including stomach discomfort, diarrhea, and heartburn, have been reported following oral use of dandelion (19146,36931). A case of intestinal blockage has been reported for a patient who ingested a large amount of dandelion greens three weeks after undergoing a stomach operation (46981). Also, a case of hemorrhagic cystitis has been reported for a 33-year-old woman who took a specific herbal product (Slim-Kombu, Balestra and Mech, Vicenza, Italy) containing 20 herbal extracts, including dandelion extract. Symptoms resolved after the patient discontinued using the product, and symptoms resumed when the patient began taking the supplement again four months later. While various ingredients in the supplement may have contributed to the symptoms, it is possible that dandelion extract may have contributed to the effect due to its diuretic, laxative, cholagogue, and antirheumatic properties (46959).
Other ...Orally, products containing dandelion pollen can cause allergic reactions, including anaphylaxis (13479,13480). Also, rhinoconjunctivitis and asthma have been reported after handling products such as bird feed containing dandelion and other herbs, with reported positive skin tests for dandelion hypersensitivity (46948). Dandelion pollen may cause pollinosis, such as allergic rhinitis and conjunctivitis (18065,46951,46964,46966,46972).
General
...There is limited reliable information available about the safety of goldenseal when used in more than a single dose.
Berberine, a constituent of goldenseal, is generally well tolerated when used orally.
Most Common Adverse Effects:
Orally: Berberine, a constituent of goldenseal, can cause abdominal distension, abdominal pain, bitter taste, constipation, diarrhea, flatulence, headache, nausea, and vomiting.
Dermatologic ...Orally, berberine, a constituent of goldenseal, may cause rash. However, this appears to be rare (34285). A case of photosensitivity characterized by pruritic, erythematous rash on sun-exposed skin has been reported in a 32-year-old female taking a combination product containing goldenseal, ginseng, bee pollen, and other ingredients. The rash resolved following discontinuation of the supplement and treatment with corticosteroids (33954). It is not clear if this adverse effect is due to goldenseal, other ingredients, or the combination.
Endocrine ...A case of severe, reversible hypernatremia has been reported in an 11-year-old female with new-onset type 1 diabetes and diabetic ketoacidosis who took a goldenseal supplement (52592).
Gastrointestinal ...Orally, berberine, a constituent of goldenseal, may cause diarrhea, constipation, flatulence, vomiting, abdominal pain, abdominal distention, and bitter taste (33648,33689,34245,34247,34285,91953). Theoretically, these effects may occur in patients taking goldenseal. However, this hasn't been reported in clinical research or case reports.
Neurologic/CNS ...Orally, berberine, a constituent of goldenseal, may cause headache when taken in a dose of 5 mg/kg daily (33648). Theoretically, this may occur with goldenseal, but this hasn't been reported in clinical research or case reports.
General
...Orally, milk thistle is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal bloating, diarrhea, dyspepsia, flatulence, and nausea. However, these adverse effects do not typically occur at a greater frequency than with placebo.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis, have been reported.
Dermatologic ...Orally, milk thistle may cause allergic reactions including urticaria, eczema, skin rash, and anaphylaxis in some people (6879,7355,8956,63210,63212,63238,63251,63315,63325,95029). Allergic reactions may be more likely to occur in patients sensitive to the Asteraceae/Compositae family (6879,8956). A case report describes a 49-year-old female who developed clinical, serologic, and immunopathologic features of bullous pemphigoid after taking milk thistle orally for 6 weeks. Symptoms resolved after treatment with prednisone and methotrexate (107376). Topically, milk thistle can cause erythema (110489).
Gastrointestinal ...Mild gastrointestinal symptoms have been reported, including nausea, vomiting, bloating, diarrhea, epigastric pain, abdominal colic or discomfort, dyspepsia, dysgeusia, flatulence, constipation, and loss of appetite (2616,6879,8956,13170,63140,63146,63160,63210,63218,63219)(63221,63244,63247,63250,63251,63320,63321,63323,63324,63325)(63327,63328,95024,95029,107374,114914). There is one report of a 57-year-old female with sweating, nausea, colicky abdominal pain, diarrhea, vomiting, weakness, and collapse after ingesting milk thistle; symptoms subsided after 24-48 hours without medical treatment and recurred with re-challenge (63329).
Musculoskeletal ...In one clinical study three patients taking milk thistle 200 mg orally three times daily experienced tremor; the incidence of this adverse effect was similar for patients treated with fluoxetine 10 mg three times daily (63219).
Neurologic/CNS ...With oral milk thistle use, CNS symptoms have been reported, including headache, dizziness, and sleep disturbances (114913,114914).
General
...Orally and topically, red clover seems to be well tolerated.
Most Common Adverse Effects:
Orally: Myalgia, nausea, and vaginal spotting.
Dermatologic ...Orally, a specific red clover isoflavone product (Promensil) has been associated with mild cases of psoriasis and thrush, although a direct causal link has not been established (9552).
Gastrointestinal ...Orally, red clover has been reported to cause nausea (8194).
Genitourinary ...In human research, 80 mg, but not 40 mg, of a specific red clover isoflavone product (Promensil) increased the duration of menstrual cycles in patients with mastalgia (9552). Red clover has also been reported to cause vaginal spotting (8194).
Hematologic ...In one case report, a 53-year-old female had a spontaneous subarachnoid hemorrhage associated with the use of an herbal supplement containing red clover, dong quai, and eleuthero. It is not clear if this was due to red clover, another ingredient, the combination of ingredients, or other factors (70419). In another case report, a 55-year-old female with protein S deficiency and systemic lupus erythematosus (SLE) had temporary vision loss in the left eye from hemiretinal vein thrombosis 3 days after taking a combination phytoestrogen product containing red clover 250 mg, wild yam 276 mg, dong quai 100 mg, and black cohosh 250 mg (13155). It is unclear if red clover contributed to this event.
Musculoskeletal ...Orally, red clover has been reported to cause myalgia (8194).
Neurologic/CNS ...Orally, a specific red clover isoflavone product (Medoflavon) has been associated with headache, although with a similar frequency to placebo (19545).
Oncologic ...Due to potential estrogenic effects of red clover isoflavones, there has been some concern that red clover might increase the risk of estrogen-sensitive cancers such as breast cancer or uterine cancer. A meta-analysis of 8 clinical trials suggests that increased intake of red clover- and soy-derived isoflavones may modestly increase mammographic breast density in premenopausal, but not postmenopausal, adults when compared with placebo. However, in a sub-group analysis assessing only isolated red clover isoflavones, there was no change in breast density (70428). Furthermore, a 2015 review by the European Food Safety Authority (EFSA) reported no increase in risk of breast cancer in females taking isoflavone-containing supplements (91725). Similarly, no effect was found on endometrial thickness and histopathological changes in the uterus after up to 36 months of supplementation with 40-120 mg daily of isoflavones from red clover extract (91725).