Each pak contains:
Mental Energy Formula (one red caplet), GABA (one white capsule), Phosphatidyl Serine (one off-white capsule), Huperzine-A (one off-white capsule).
Mental Energy Formula
Each caplet contains: Guarana seed extract (paullina cupana, 35% caffeine [90 mg]) 247.5 mg • Black Tea leaves extract (camellia sinensis) 136 mg • MegaNatural brand Grape skin & seed extract (vitis vinifera) 105 mg • Ginger root extract (zingiber officinale) 100 mg • MegaNatural Gold brand Grapeseed extract (vitis vinifera) 62.5 mg • Dillweed extract (anethum graveolens) 2.5 mg.
GABA
Each capsule contains: Gamma-Aminobutyric Acid 750 mg.
Phosphatidyl Serine
Each capsule contains:
Phosphatidyl Serine (PS) 300 mg.
Huperzine-A
Each capsule contains: Huperzine-A (huperzia serrata) 50 mcg.
Other Ingredients:
Mental Energy Formula: Dextrose, Cellulose, FD&C Yellow #6 Lake, FD&C Red #40 Lake, Titanium Dioxide (natural mineral whitener), Cinnamon Bark Extract, Natural Vanilla Flavor, Sucralose.
GABA: Gelatin.
Phosphatidyl Serine: Other Ingredients: Dicalcium Phosphate, Gelatin, Cellulose.
Huperzine-A: Dicalcium Phosphate, Cellulose, Vegetable Cellulose Capsule.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Stat Get Focused Paks. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Stat Get Focused Paks. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when consumed orally in moderate amounts (1452,9222,9223,9224,9228,9233,9234,9235,9236,36376)(36426,36434,36436,36581). Black tea contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 4 cups of black tea daily, or approximately 400 mg of caffeine, is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806).
POSSIBLY UNSAFE ...when consumed orally long term or in high amounts. Black tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Doses of caffeine greater than 600 mg per day, or approximately 6 cups of black tea, have been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832). These effects would not be expected to occur with the consumption of decaffeinated black tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as black tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LIKELY UNSAFE ...when consumed orally in very high amounts. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, prior caffeine use, etc. (11832).
CHILDREN: POSSIBLY SAFE
when used in food and beverage amounts (4912,11833).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of black tea, mothers should closely monitor their intake to ensure moderate consumption. Caffeine crosses the human placenta but is not considered a teratogen. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,37802,37584). In some studies, consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in females with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy patients can safely consume doses up to 300 mg daily during pregnancy without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 3 cups of black tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as black tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine from black tea crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. This is similar to the amount of caffeine in about 3 cups of black tea. High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,24995,24998,37561,37898,38012,38186,38199,38212)(38285,38290). Preliminary evidence from a population study also suggests that increasing consumption of black tea might increase the risk of spina bifida (15112); however, this finding needs to be verified with additional research.
Cohort studies suggest that consuming large amounts of caffeine during pregnancy may reduce the height and weight of the infants born as they grow up. In a cohort of mother/infant pairs with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg respectively. In another cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as black tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
More evidence is needed to determine the safety of using black tea during pregnancy. For now, advise avoidance of large quantities of black tea during pregnancy.
LACTATION: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of black tea, caffeine intake should be closely monitored. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations. Minimal consumption would likely result in limited exposure to a nursing infant (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of black tea might cause irritability and increased bowel activity in nursing infants (6026). Black tea might also interfere with iron metabolism and folic acid bioavailability in nursing infants (631,53782). Large doses or excessive intake of black tea should be avoided during lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dill has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dill when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used in medicinal amounts.
Dill seed is used to stimulate menstrual flow (19). Theoretically, dill seed might adversely affect pregnancy.
LACTATION:
Insufficient reliable information available; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. GABA has been used with apparent safety in doses of 75 mg to 1.5 grams daily for up to one month in small clinical studies (19361,19363,19369,110134,110135). There is insufficient reliable information available about the safety of GABA when used orally for longer than one month or when used sublingually or intravenously.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when the whole fruit of the grape, or extracts of the fruit, seed, or leaf, are used orally and appropriately in medicinal amounts. Grape seed extracts have been used with apparent safety in doses up to 200 mg daily for up to 11 months (9182,53016) and in doses up to 2000 mg daily for up to 3 months (53149,53190). Specific grape fruit extracts (Stilvid, Actafarma; Cognigrape, Bionap srl) have been used with apparent safety in doses up to 250-350 mg daily for 3-12 months or 700 mg daily for 6 months (53254,53256,96198). A specific grape leaf extract (AS 195, Antistax, Boehringer Ingelheim) has been used with apparent safety in doses up to 720 mg daily for up to 3 months (2538,52985,53005,53206). A preparation of dehydrated whole grapes, equivalent to 250 grams of fresh grapes daily, has also been used with apparent safety for up to 30 days (18228). A specific grape seed extract (Enovita; Indena SpA) 150 mg twice daily, standardized to provide at least 95% oligomeric proanthocyanins, has been used with apparent safety for up to 16 weeks (108091) ...when used topically and appropriately. Creams and ointments containing grape seed extract 2% or 5% have been used topically with apparent safety for up to 3 weeks (91539,100955). There is insufficient reliable information available about the safety of other grape plant parts when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). However, whole grapes should be eaten with caution in children aged 5 years and under. Whole grapes can be a choking hazard for young children (96193). To reduce the risk of choking, whole grapes should be cut in half or quartered before being given to children. There is insufficient reliable information available about the safety of grape when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of medicinal amounts during pregnancy and breast-feeding; avoid using in amounts greater than what is commonly found in foods.
LIKELY SAFE ...when consumed in amounts typically found in foods. Guarana has Generally Recognized as Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately, short-term (12). Guarana contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of caffeine up to 400 mg daily are not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. Guarana contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Acute use of high doses, typically above 400 mg per day, has been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832,95503,98806). These effects would not be expected to occur with the consumption of decaffeinated guarana.
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, or prior caffeine use (11832,54425).
PREGNANCY: POSSIBLY SAFE
when consumed in amounts commonly found in foods.
Due to the caffeine content of guarana, intake should be closely monitored during pregnancy to ensure moderate consumption. Although it is not considered a teratogen, caffeine crosses the placenta and causes dose-dependent increases in fetal blood concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,98806). In some studies, consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in individuals with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, caffeine can be safely consumed in doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). Advise individuals to keep caffeine consumption below 300 mg daily during pregnancy.
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts over 300 mg daily.
Although it is not considered a teratogen, caffeine crosses the placenta and causes dose-dependent increases in fetal blood concentrations (4260,98806). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. High maternal doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711).
LACTATION: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Due to the caffeine content of guarana, intake should be closely monitored when breast-feeding. Breast milk concentrations of caffeine are thought to be approximately 50% of serum concentrations (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of guarana might cause irritability and increased bowel activity in nursing infants (6026). Large doses or excessive intake of guarana should be avoided when breast-feeding.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Huperzine A 200-800 mcg daily has been used with apparent safety in clinical trials lasting up to 6 months (3171,3561,4626,93478,93479,93480,93481,93482,93483,93485).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Huperzine A has been used with apparent safety in clinical research lasting for 1 month (4626).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Phosphatidylserine has been used with apparent safety at dose of up to 300 mg daily for up to 6 months (2255,2437,2438,2439,2440,2441,7118,15539,68855).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (7117).
Phosphatidylserine has been used with apparent safety in clinical research in doses of 200-300 mg daily for up to 4 months in children aged 4-18 years (7117,89498).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Stat Get Focused Paks. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, black tea might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Black tea contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level (38172). However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products, be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
|
Theoretically, black tea may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking black tea with antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, concomitant use of large amounts of black tea might increase cardiac inotropic effects of beta-agonists.
Black tea contains caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, black tea might reduce the effects of carbamazepine and increase the risk for convulsion.
Black tea contains caffeine. Animal research suggests that caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in black tea.
|
Theoretically, black tea might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Concomitant administration of black tea and clozapine might theoretically cause acute exacerbation of psychotic symptoms due to the caffeine in black tea. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in black tea.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Caffeine is metabolized by CYP1A2 (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from black tea and increase caffeine levels.
|
Theoretically, black tea might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Black tea contains caffeine. Caffeine is a methylxanthine that may inhibit dipyridamole-induced vasodilation (11770,11772,24974,37985,53795). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products such as black tea, be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
Black tea contains caffeine. In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using black tea with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for simulant adverse effects.
Black tea contains caffeine. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (6486,9740,10307). Tell patients to avoid taking caffeine with ephedrine and other stimulants.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, black tea might reduce the effects of ethosuximide and increase the risk for convulsions.
Black tea contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been observed in humans.
|
Theoretically, black tea might reduce the effects of felbamate and increase the risk for convulsions.
Black tea contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decrease the anticonvulsant activity of felbamate (23563). However, this effect has not been observed in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
|
Theoretically, black tea might decrease the metabolism of flurbiprofen.
In vitro research shows that black tea decreases the metabolism of flurbiprofen, a cytochrome P450 2C9 (CYP2C9) substrate, by about 10%. However, clinical research suggests that drinking black tea does not significantly affect flurbiprofen plasma levels, metabolism, or elimination (11094).
|
Theoretically, black tea might increase the levels and adverse effects of flutamide.
Black tea contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). Theoretically, concomitant use of caffeine and flutamide might increase serum concentrations of flutamide and increase the risk of adverse effects.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
|
Theoretically, abrupt black tea withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). Theoretically, concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Methoxsalen can reduce caffeine metabolism (23572). Concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Black tea contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinate coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patients switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Black tea contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, black tea might reduce the absorption of organic anion-transporting polypeptide (OATP) substrates.
In vitro, black tea extract inhibits organic anion-transporting polypeptide (OATP)2B1. OATP2B1 is expressed in the small intestine and liver and is responsible for the uptake of drugs and other compounds. In an animal model, black tea extract was found to inhibit the absorption of rosuvastatin, a substrate of OATP2B1 (104584). However, this effect has not been reported in humans.
|
Theoretically, black tea might decrease the effects of pentobarbital.
Black tea contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, black tea might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine. Also, black tea may bind to phenothiazines and reduce their absorption.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, black tea might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, black tea might increase the levels and clinical effects of pioglitazone.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Black tea contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might decrease the levels and clinical effects of rosuvastatin.
In animals, taking black tea extract along with rosuvastatin reduces plasma levels of rosuvastatin by approximately 48%. In vitro, black tea extract was found to inhibit organic anion-transporting polypeptide (OATP)2B1, a protein expressed in the small intestine that is responsible for the uptake of rosuvastatin and other compounds (104584). This effect has not been reported in humans.
|
Theoretically, concomitant use might increase stimulant adverse effects.
Black tea contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, black tea might increase the levels and adverse effects of theophylline.
|
Theoretically, black tea might increase the levels and adverse effects of tiagabine.
Black tea contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, TCAs might bind with black tea constituents when taken at the same time.
|
Theoretically, black tea might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Black tea contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Consuming large amounts of black tea might decrease the effects of warfarin.
In one case, a 67-year-old female who took warfarin and who regularly consumed large amounts of black tea had a stable international normalized ratio (INR) of 1.7 to 2.7. However, the INR increased to 5 when tea consumption was discontinued. It is thought that the vitamin K content of black tea may have reduced the effects of warfarin (16902). Monitor patients carefully who start or discontinue drinking black tea while taking warfarin.
|
Theoretically, dill extract might have additive effects with antidiabetes drugs and increase the risk of hypoglycemia. Animal research shows that dill extract can reduce blood sugar levels (47799,47817). Monitor blood glucose levels closely. Dose adjustments might be necessary.
Some antidiabetes drugs include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Dill is thought to have diuretic properties (11). Theoretically, due to these potential diuretic effects, dill might reduce excretion and increase levels of lithium. The dose of lithium might need to be decreased.
|
Theoretically, taking GABA with antihypertensive drugs might increase the risk of hypotension.
Some clinical research shows that GABA can decrease blood pressure in patients with hypertension (19367).
|
Theoretically, GABA might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
Endogenous GABA has well-established relaxant effects (51152) and GABA(A) receptors have an established physiological role in sleep (51143). However, the effects of GABA supplements are unclear, as it is unknown whether exogenous GABA crosses the blood-brain barrier (51120,51153,90570). Although there have been limited reports of drowsiness or tiredness with GABA supplements (5115,19364), these effects have not been widely reported in clinical studies. Additionally, intravenous GABA 0.1-1 mg/kg has been shown to induce anxiety in a dose-dependent manner (5116).
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, grape extracts may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Ingesting grape juice with cyclosporine can reduce cyclosporine absorption.
A small pharmacokinetic study in healthy young adults shows that intake of purple grape juice 200 mL along with cyclosporine can decrease the absorption of cyclosporine by up to 30% when compared with water (53177). Separate doses of grape juice and cyclosporine by at least 2 hours to avoid this interaction.
|
Theoretically, grape juice might reduce the levels of CYP1A2 substrates.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of CYP1A2 (2539).
|
It is unclear if grape juice or grape seed extract inhibits CYP2C9; research is conflicting.
In vitro evidence shows that grape seed extract or grape juice might inhibit CYP2C9 enzymes (11094,53011,53089). However, a small pharmacokinetic study in healthy adults shows that drinking 8 ounces of grape juice once does not affect the clearance of flurbiprofen, a probe-drug for CYP2C9 metabolism (11094). The effects of continued grape juice consumption are unclear.
|
Theoretically, grape seed extract may increase the levels of CYP2D6 substrates.
In vitro evidence suggests that grape seed extract might inhibit CYP2D6 enzymes (53011). However, this interaction has not been reported in humans.
|
Theoretically, grape seed extract might increase the levels of CYP2E1 substrates.
In vitro and animal research suggests that grape seed proanthocyanidin extract inhibits CYP2E1 enzymes (52949). However, this interaction has not been reported in humans.
|
It is unclear if grape seed extract inhibits or induces CYP3A4; research is conflicting.
|
Theoretically, long-term intake of grape seed extract might decrease the effects of midazolam.
Animal research shows that subchronic ingestions of grape seed extract can increase the elimination of intravenous midazolam by increasing hepatic CYP3A4 activity. Single doses of grape seed extract do not appear to affect midazolam elimination (53011).
|
Grape juice might decrease phenacetin absorption.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of cytochrome P450 1A2 (CYP1A2) (2539).
|
Theoretically, guarana might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Guarana contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. Concomitant use of alcohol can increase caffeine serum concentrations and the risk of caffeine adverse effects. Alcohol reduces caffeine metabolism (6370).
|
Theoretically, guarana may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking guarana with antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, concomitant use might increase the clinical effects of beta-adrenergic agonists.
Guarana contains caffeine. Theoretically, concomitant use of large amounts of caffeine might increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, guarana might reduce the effects of carbamazepine and increase the risk for convulsions.
Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when given to animals in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine two-fold in healthy individuals (23562).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in guarana.
Guarana contains caffeine. Cimetidine decreases the rate of caffeine clearance by 31% to 42% (11736).
|
Theoretically, guarana might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Guarana contains caffeine. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in guarana.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
|
Theoretically, guarana might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Guarana contains caffeine. Caffeine might inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using guarana with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Guarana contains caffeine. Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, guarana might reduce the effects of ethosuximide and increase the risk for convulsions.
Guarana contains caffeine. Animal research shows that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). This effect has not been observed in humans.
|
Theoretically, guarana might reduce the effects of felbamate and increase the risk for convulsions.
Guarana contains caffeine. Animal research shows that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). This effect has not been observed in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, guarana might increase the levels and adverse effects of flutamide.
Guarana contains caffeine. In vitro evidence shows that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, abrupt guarana withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. Animal research shows that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. Methoxsalen can reduce caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Guarana contains caffeine. Caffeine has been shown to inhibit MAO-A and -B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Guarana contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, guarana might decrease the effects of pentobarbital.
|
Theoretically, guarana might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, guarana might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, guarana might increase the levels and clinical effects of pioglitazone.
Guarana contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Guarana contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Guarana contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, guarana might increase the levels and adverse effects of theophylline.
Guarana contains caffeine. Large amounts of caffeine might decrease theophylline clearance by 23% to 29% (11741).
|
Theoretically, guarana might increase the levels and adverse effects of tiagabine.
Guarana contains caffeine. Animal research shows that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Guarana contains caffeine. In vitro evidence shows that ticlopidine can inhibit the metabolism of caffeine (23557). However, this interaction has not been reported in humans.
|
Theoretically, guarana might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, verapamil might increase the levels and adverse effects of caffeine.
Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, huperzine A might decrease the effects of anticholinergic drugs.
|
Theoretically, concurrent use of huperzine A with cholinergic drugs might increase the effects and side effects of these medications.
Huperzine A can inhibit acetylcholinesterase (AChE) and might cause cumulative effects if used with cholinergic drugs (3131).
|
Theoretically, phosphatidylserine might decrease the effectiveness anticholinergic drugs.
|
Theoretically, phosphatidylserine might have additive effects with cholinergic drugs.
|
Below is general information about the adverse effects of the known ingredients contained in the product Stat Get Focused Paks. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, black tea is well tolerated when consumed as a beverage in moderate amounts.
Most Common Adverse Effects:
Orally: Many of the adverse effects of black tea can be attributed to its caffeine content, such as diuresis, gastric irritation, insomnia, nausea, nervousness, restlessness, tachycardia, tachypnea, tremors, and vomiting.
Serious Adverse Effects (Rare):
Orally: Many of the adverse effects of black tea can be attributed to its caffeine content, such as arrhythmia, chest pain, convulsions, delirium, premature heartbeat, and respiratory alkalosis. Large doses of caffeine can cause massive catecholamine release and subsequent sinus tachycardia, metabolic acidosis, hyperglycemia, and ketosis.
Cardiovascular
...Orally, black tea can cause some cardiovascular-related adverse events.
Some of these effects may be due to the caffeine content of black tea. Acute administration of black tea can cause increased blood pressure. However, regular consumption does not seem to increase blood pressure or pulse, even in patients with mild hypertension (1451,1452,2722). Also, epidemiological research suggests that there is no association of caffeine consumption with incidence of hypertension (13739).
Black tea, which contains caffeine, may cause other adverse cardiovascular effects when used orally. These effects include tachycardia, tachypnea, chest pain, premature heartbeat, arrhythmia, and hypertension (2729,11832,11838,13735). Large doses of caffeine can also cause massive catecholamine release and subsequent sinus tachycardia (13734).
There is evidence that daily consumption of strong black tea (2 liters) or black tea solids (4 grams) can raise plasma homocysteine levels. It is unclear if lower doses have this effect (8035). Some epidemiological research has linked tea consumption with ischemic heart disease and total mortality (220,36339). Combining caffeinated beverages such as black tea with ephedra may theoretically increase the risk of adverse cardiovascular events. There is a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for 6 weeks (1275).
Dental ...Orally, black tea may cause tooth surface loss and teeth staining (36370).
Endocrine
...Black tea contains caffeine.
Large doses of caffeine can cause massive catecholamine release and subsequent metabolic acidosis, hyperglycemia, and ketosis (13734).
Some evidence shows caffeine is associated with fibrocystic breast disease, breast cancer, and endometriosis. However, other research has not supported this finding (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study found no association between consumption of caffeine-containing beverages such as black tea and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of two low-quality observational studies found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Gastrointestinal ...Orally, caffeine in black tea can cause gastric irritation, nausea, and vomiting (11832,11838,13735). Some believe that long-term use of caffeine can cause withdrawal symptoms following discontinuation of use. However, the existence of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Gastrointestinal withdrawal symptoms such as nausea and vomiting have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant gastrointestinal symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Hematologic ...Orally, caffeine in black tea can cause hypokalemia (11832,11838,13735). In infants, black tea can cause microcytic anemia (631).
Immunologic ...Orally, caffeine in black tea can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Some epidemiological research suggests that caffeine, which is found in black tea, may be associated with an increased risk of osteoporosis, but conflicting evidence exists.
Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg per day, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Some researchers believe that stopping regular use of caffeine may cause withdrawal symptoms such as muscle tension and muscle pains. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Neurologic/CNS
...Orally, caffeine in black tea can cause insomnia, nervousness, headache, anxiety, agitation, jitteriness, restlessness, ringing in the ears, tremors, delirium, and convulsions (11832,11838,13735).
Caffeine may also exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204).
There is some concern that stopping regular use of caffeine may cause withdrawal symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Other symptoms such as delirium, nervousness, restlessness, and anxiety have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Oncologic ...There is some evidence that consumption of black tea (greater than 1 cup per day) may increase the risk of colon and rectal cancers (8041,36482). Drinking 3 or more cups daily has been shown to increase the risk of pancreatic cancer (36507). In addition, drinking black tea more than once a day, drinking strong black tea, or using more than 300 grams of tea leaves per month is associated with an approximately 2-fold increased risk of esophageal cancer when compared with drinking black tea up to once daily, drinking mild to moderate black tea, or using up to 300 grams of tea leaves per month (102756). Some evidence also shows caffeine, which is found in black tea, is associated with breast cancer in females. However, this is controversial since findings are conflicting (8043).
Pulmonary/Respiratory ...Orally, caffeine in black tea may cause tachypnea-induced respiratory alkalosis (11832,11838,13735). Some researchers think that stopping regular use of caffeine may cause withdrawal symptoms such as runny nose. However, this symptom may be from nonpharmacological factors related to knowledge and expectation of effects (2723,11839).
Renal ...Orally, caffeine in black tea may cause diuresis (11832,11838,13735).
General
...Orally, dill is well tolerated when used in amounts commonly found in foods (4912).
Dill seems to be well tolerated when used as medicine (12). However, a thorough evaluation of safety outcomes has not been conducted. Some people are allergic to dill (47751,47753).
Topically, photodermatosis is possible after contact with juice from freshly harvested plants (19). Dill can also cause contact dermatitis (19,47767,47773).
Dermatologic ...Topically, photodermatosis is possible after contact with juice from freshly harvested plants (19).
Immunologic
...Orally, there are case reports of individuals allergic to dill (47751,47753).
In one case, symptoms, including swelling around the eyes, itching, rash, and chapped lips, occurred after a delay of 12 hours (47751). In another case, immediate symptoms of anaphylaxis, as well as vomiting and diarrhea, occurred following intake and inhalation of foods cooked with dill (47753).
Topically, dill has resulted in contact dermatitis (47767,47773).
General
...Orally, GABA seems to be generally well tolerated.
Sublingually, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Drowsiness, gastric upset, minor throat burning, muscle weakness, and nausea.
Cardiovascular ...Intravenously, GABA can cause dose-related increases in blood pressure and pulse (5116).
Gastrointestinal ...Orally, minor throat burning has been associated with GABA in one study (5115). In another study in which GABA was administered with phosphatidylserine, one patient experienced severe gastric distress, two patients reported moderate nausea, and one reported constipation (19364). Children with cerebral palsy taking GABA experienced nausea and decreased appetite (19362).
Genitourinary ...In one study, one patient treated with oral GABA and phosphatidylserine reported transient amenorrhea (19364).
Musculoskeletal ...Orally, minor adverse effects associated with GABA included muscle weakness (5115).
Neurologic/CNS ...Orally, GABA may cause drowsiness, headache, or tiredness (5115,19364,112830). Four children with cerebral palsy taking GABA had convulsions, and an unspecified number experienced motor restlessness. However, causality of these adverse effects was not clear, and the dose of GABA was not specified (19362). Intravenously, GABA 50 mg has been associated with a "lack of alertness" in healthy female volunteers (51159).
Psychiatric ...Intravenously, GABA 0. 1-1.0 mg/kg has been shown to induce anxiety, dysphoria, and mood disturbances in a dose-dependent manner (5116).
Other ...In one study, patients taking GABA experienced a slight warming of the body (19370).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, the whole fruit, as well as the seed, fruit, and leaf extracts, seem to be well tolerated.
Topically, grape seed extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, dry mouth, dyspepsia, headache, joint pain, and nausea.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to grape skin has been reported.
Dermatologic ...Orally, mild hair thinning has been reported in a patient taking a specific grape leaf extract AS195 KG) (2538). Urticaria (hives) has also been reported with this same extract (53206). Cases of contact dermatitis have been reported in grape workers, including those working in California vineyards (53270,53272,53275).
Gastrointestinal ...Orally, abdominal pain and nausea have been reported with use of grape seed extract, but these effects typically occur at rates similar to placebo (9182,13162). In a case report of a 57-year-old man, intermittent nausea, vomiting, and diarrhea occurred over a 10-day period and improved once grape seed extract was stopped (96764). Gastrointestinal adverse effects have also been reported with use of a different grape seed extract (Entelon, Hanlim Pharm). However, the specific types of gastrointestinal effects were not described (100954). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused flatulence, mild constipation, gastrointestinal discomfort, diarrhea, dyspepsia, dry mouth, and retching (2538,52985,53206). Diarrhea, gastrointestinal distress, indigestion, and aversion to taste have been reported with use of Concord grape juice (52972,53166,53175,53181,53199). Loose stools have been reported in a clinical trial of grape pomace (99270). Bowel obstruction caused by intact grapes and grape seeds has been described in case reports (53241,53284,53278). Excessive consumption of grapes, dried grapes, raisins, or sultanas might cause diarrhea due to laxative effects (4201).
Hematologic ...Orally, one case of leg hematoma following a minor trauma was reported in a person using grape leaf extract (2538). Also, one case of bruising was reported in a person drinking Concord grape juice daily for 2 weeks (52972).
Immunologic ...Orally, there is one report of an anaphylactic reaction to oral grape skin extract, which included urticaria and angioedema (4073).
Musculoskeletal ...Orally, musculoskeletal disorders, including back pain, have been reported with use of a specific grape leaf extract AS195 KG) (2538,53206). Joint pain and lumbago have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (91541).
Neurologic/CNS ...Orally, headache has been reported with use of grape seed extract, but this effect occurs at rates similar to placebo (9182,91541). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused dizziness, tiredness, headache, and sleep problems (2538,53206). As a class, nervous system adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of adverse neurologic effects were not described (100954).
Ocular/Otic ...Orally, ocular adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of ocular adverse effects were not described (100954).
Pulmonary/Respiratory ...Orally, nasopharyngitis and oropharyngeal pain have been reported with use of a specific grape leaf extract AS195 KG) (53206). Sore throat, cough, allergic rhinitis, and nasopharyngitis have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (9182,91541). One case report describes a 16-year-old female who developed increased levels of immunoglobulin E (IgE) following skin-prick exposure to grape vine pollen, as well as positive test responses following bronchial and conjunctival provocation (53301). Reduced forced vital capacity has been described in California grape workers (53080,53081). Occupational eosinophilic lung was diagnosed in a grape grower with a history of asthma. Respiratory exposure to sulfites in grape was implicated as the cause of the adverse reaction (53285).
Other
...Orally, grape products can cause adverse effects due to contamination with pesticides or mycotoxins.
Some evidence has shown that pesticides used in vineyards may remain on grape surfaces post-harvesting. For example, the fungicide folpet sprayed on grapevines has been shown to remain on the grape surface. Although there was minimal penetration of the epicuticular wax, it showed high resistance to washing (52935). Carbaryl has been identified in over 58% of juice samples collected in Canada. This pesticide reportedly occurred more frequently in grape than in other juices. However, estimates of short-term intake were below proposed acute reference doses (53003).
Ochratoxin A is a mycotoxin that is suspected to be nephrotoxic, teratogenic, hepatotoxic and carcinogenic and has been identified in grape juice, frozen grape pulps, and red and white wine sold in Rio de Janeiro, Brazil. However, the highest levels identified in grape products were lower than the established virtually safe dose of 5 ng/kg of body weight daily (53010,53004). Ochratoxin A has also been identified in red, but not white, grape juice marketed in Switzerland, Canada, and the U.S. (53292,53020).
General
...Orally, guarana is typically well tolerated when used in moderation.
Due to its caffeine content, use of large doses may be unsafe.
Most Common Adverse Effects:
Orally: Stomach burning and nausea.
Cardiovascular
...Orally, a case of premature ventricular contraction has been reported for a 51-year-old female who used guarana as part of a multi-ingredient herbal product (54372).
Guarana contains caffeine. Although acute administration of caffeine can increase blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722). Also, epidemiological research suggests there is no association between caffeine consumption and increased incidence of hypertension. Habitual coffee consumption doesn't seem to be related to hypertension, but habitual consumption of sugared or diet cola is associated with development of hypertension (13739).
Combining ephedra with guarana can increase the risk of adverse effects. Cases of hypertension and chest pain have been reported for patients who took products containing guarana and ephedra (8644,54376). A case of cerebral infarction has also been reported for a patient consuming ephedra extract and guarana (48746). There is also a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for six weeks (1275).
Dermatologic ...Guarana contains caffeine. There are several case reports of urticaria after caffeine ingestion (36546,36448,36475).
Endocrine
...Guarana contains caffeine.
Some evidence shows caffeine is associated with fibrocystic breast disease, breast cancer, and endometriosis; however, this is controversial since findings are conflicting (8043). Restricting caffeine in people with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Although the effects of guarana alone are not clear, the combination of guarana along with ephedra has been reported to cause increased blood glucose levels and decreased blood levels of potassium (54376).
Gastrointestinal ...Orally, guarana can cause a sensation of burning in the stomach and vomiting (54414,91487). These effects may be due to caffeine in guarana. Orally, caffeine can cause gastric irritation, nausea, and vomiting (11832,11838,13735). In infants, caffeine may also cause feeding intolerance and gastrointestinal irritation (6023).
Immunologic ...Guarana contains caffeine. When taken orally, caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...In a clinical trial of guarana extract, one person abandoned treatment due to symptoms of arthritis with edema.
It is not clear if this adverse effect is due to guarana (91487).
Cases of rhabdomyolysis and myoglobinuria have been reported in individuals that have taken products containing guarana in combination with ephedra and other herbal products. These adverse effects are thought to be related to the caffeine content of guarana (19154,36466).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Women identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg per day, does not seem to significantly increase osteoporosis risk in most postmenopausal women with normal calcium intake (2669,6025,10202,11317).
Neurologic/CNS
...Orally, guarana can cause dizziness (91483).
The caffeine in guarana can cause insomnia (especially in children), nervousness, restlessness, dizziness, tremors, delirium, and convulsions. Other symptoms include headache, anxiety, and agitation (10755,11832,11838,13735,108016).
Taking guarana with ephedra can cause insomnia, irritability, dizziness, and headache (3719). The combination of ephedra and caffeine in guarana might also increase the risk of adverse effects such as jitteriness, seizures, and temporary loss of consciousness (2729,21015).
Ocular/Otic ...Guarana contains caffeine. When taken orally, caffeine can cause ringing in the ears (11832,11838,13735).
Psychiatric ...In a clinical trial, depression was reported by one person taking guarana extract (91483).
Renal ...Guarana contains caffeine. When taken orally, caffeine can cause diuresis (11832,11838,13735).
Other ...Guarana contains caffeine. The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Other researchers suggest symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
General
...Orally, huperzine A seems to be well tolerated.
There is currently a limited amount of information about the tolerability of intramuscular huperzine A.
Most Common Adverse Effects:
All ROAs: Huperzine A can cause dose-dependent cholinergic side effects such as blurred vision, constipation, diarrhea, dizziness, dry mouth, insomnia, nausea, sweating, and vomiting.
Cardiovascular ...Orally, huperzine A might cause decreased heart rate (3138,93482). There are two cases reported where consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including hypertension (13193).
Gastrointestinal ...Orally, huperzine A can cause cholinergic side effects such as nausea, vomiting, diarrhea, and anorexia (93480,93481,93482,93483). Constipation and thirst have also been reported (93482,93483). In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including vomiting and diarrhea (13193).
Musculoskeletal ...In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including leg cramps (13193).
Neurologic/CNS ...Orally, huperzine A can cause cholinergic side effects such as dizziness (3140,55613,93481,93482) and sweating (93482). Huperzine A can also cause hyperactivity and insomnia (3138,3140,55613,93482). Fainting has also been reported (4624). In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including sweating and slurred speech (13193).
General
...Orally, phosphatidylserine is generally well tolerated.
Most Common Adverse Effects:
Orally: Flatulence, gastrointestinal upset, headache, insomnia, and nausea.
Gastrointestinal ...Orally, phosphatidylserine can cause gastrointestinal upset such as flatulence or nausea. Gastrointestinal upset can occur at doses of 200-300 mg/day (7116,7121,15539,68862,90711).
Neurologic/CNS ...Orally, phosphatidylserine can cause insomnia. Insomnia is more likely to occur with a higher dose of 600 mg (7121,68844). Headache has also been reported (90711).