Each capsule contains: Boswellia serrata gum extract 900 mg, providing Boswellic Acid 97.5 mg • Sambucus Nigra flower extract (elderberry) 400 mg • Euphrasia officinalis herb extract (eyebright) 500 mg • Trigonella foenum-graecum seed extract (fenugreek) 150 mg • Perilla frutescens leaf extract (perilla) 150 mg • Scutellaria baicalensis root extract (baical skullcap) 200 mg • Histidine 25 mg • Quercetin 25 mg.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Allergy check. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Allergy check. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Oral Baikal skullcap 0.5-3.52 grams daily has been used with apparent safety for up to 8 weeks (92776,101738,101739,110023). However, a high quality assessment of safety has not been conducted. A specific product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been associated with an increased risk for liver and lung injury. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination. There is insufficient reliable information available about the safety of Baikal skullcap when used intravenously or topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Boswellia serrata extract in doses up to 1000 mg daily has been safely used in several clinical trials lasting up to 6 months (1708,1709,12432,12434,12438,17948,17949,17950,91379)(100699,100713,102089,109568). Boswellia serrata extract has been used with apparent safety at a dose of 2400 mg for up to 1 month (102092).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of using Boswellia serrata in medicinal amounts; avoid using.
LIKELY SAFE ...when used orally in the amounts typically found in foods. Elderberry has generally recognized as safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when elderberry fruit extract is used orally, short-term. One specific elderberry fruit extract (Sambucol, Nature's Way) has been used with apparent safety for up to 5 days (5260,12235,103831); another (BerryPharma, Iprona AG) has been used with apparent safety for up to 15 days (91374). A specific elderberry fruit extract lozenge (ViraBLOC, HerbalScience) has been used with apparent safety for 2 days (17022). Other elderberry fruit extracts have been used with apparent safety for up to 12 weeks (21141,21142).
POSSIBLY UNSAFE ...when elder tree leaves and stems, or unripe or uncooked elderberries, are consumed. The unripe green fruit, as well as the leaves and stems of the elder tree, contain a cyanide-producing chemical, which can cause serious toxicity (17020,17021,21143,21144,91374). Cooking eliminates the toxin.
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally for up to 3 days.
A specific fruit extract (Sambucol, Nature's Way) has been used in doses of 15 mL twice daily for 3 days in children 5 years and older (5260,103831).
CHILDREN: POSSIBLY UNSAFE
when unripe or uncooked elderberries are consumed.
The unripe green fruit, as well as the leaves and stems of the elder tree, contain a cyanide-producing chemical , which can cause serious toxicity (17020,17021,21143,21144,91374). Cooking eliminates the toxin.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of elderberry when used for medicinal purposes; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Eyebright is listed by the Council of Europe as a natural source of food flavoring (4).
POSSIBLY UNSAFE ...when applied into the eyes. Avoid using due to hygienic concerns; eyebright ophthalmic products may be subject to contamination (8,11). There is insufficient reliable information available about the safety of eyebright when used orally in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fenugreek has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the seed is used orally in medicinal amounts. Fenugreek seed powder 5-10 grams daily has been used with apparent safety for up to 3 years. Fenugreek seed extract 1 gram daily has been used with apparent safety for up to 3 months (7389,9783,18359,18362,49868,90112,90113,90117,93419,93420)(93421,93422,93423,96065,103285,108704).
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of fenugreek when used in larger amounts. Unusual body and urine odor has been reported after consumption of fenugreek tea. Although the odor appears to be harmless, it may be misdiagnosed as maple syrup urine disease (9782,96068).
PREGNANCY: LIKELY UNSAFE
when used orally in amounts greater than those found in food.
Fenugreek has potential oxytoxic and uterine stimulant activity (12531). There are case reports of congenital malformations, including hydrocephalus, anencephaly, cleft palate, and spina bifida, after consumption of fenugreek seeds during pregnancy (96068). Consumption of fenugreek immediately prior to delivery may cause the neonate to have unusual body odor. Although this does not appear to cause long-term sequelae, it may be misdiagnosed as maple syrup urine disease (9781,96068).
LACTATION: POSSIBLY SAFE
when used orally to stimulate lactation, short-term.
Although most available clinical studies lack safety testing in the lactating parent or infant (12535,22569,22570), some evidence suggests that taking fenugreek 1725 mg three times daily orally for 21 days does not cause negative side effects in the infant (90115).
LIKELY SAFE ...when used orally in the amounts found in foods.
POSSIBLY SAFE ...when used orally in larger amounts, short-term. L-histidine has been used with apparent safety in doses of up to 4 grams daily for up to 12 weeks (2347,2353,96311,108621), or in doses of up to 8 grams daily for up to 4 weeks (108620).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts found in foods.
There is insufficient reliable information available about the safety of histidine when used in larger amounts during pregnancy or lactation.
POSSIBLY SAFE ...when perilla oil or extract is used orally and appropriately. There is some evidence that perilla can be safely used for up to 12 months (1338,68676,94312,105525).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Quercetin has been used with apparent safety in doses up to 1 gram daily for up to 12 weeks (481,1998,1999,16418,16429,16430,16431,96774,96775,96782)(99237,102539,102540,102541,104229,104679,106498,106499,107450,109620)(109621). ...when used intravenously and appropriately. Quercetin has been used with apparent safety in doses less than 945 mg/m2. Higher doses have been reported to cause nephrotoxicity (9564,16418). There is insufficient reliable information available about the safety of quercetin when used topically.
POSSIBLY UNSAFE ...when used intravenously in large amounts. Doses greater than 945 mg/m2 have been reported to cause nephrotoxicity (9564,16418).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Allergy check. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol.
Details
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap might increase the risk of bleeding when used concomitantly with anticoagulant and antiplatelet drugs.
Details
Preliminary clinical research suggests that taking capsules containing a combination of astragalus, goldthread, and Baikal skullcap daily for 4 weeks inhibits platelet aggregation; the effect seems to be similar to that of aspirin 50 mg daily (33075). It is unclear if this effect is due to Baikal skullcap, other ingredients, or the combination.
|
Theoretically, concomitant use of Baikal skullcap with antidiabetes drugs might enhance blood glucose lowering effects.
Details
Baicalein, a constituent of Baikal skullcap, has alpha-glucosidase inhibitory activity in vitro (6292). Animal research also suggests that Baikal skullcap enhances the antidiabetic effects of metformin (33408). However, in a small human study, taking Baikal skullcap extract did not enhance the antidiabetic effects of metformin, although it did modestly lower glucose levels during an oral glucose tolerance test (OGTT) (101738). Until more is known, use cautiously.
|
Theoretically, concomitant use of Baikal skullcap with antihypertensive drugs might have additive effects and increase the risk of hypotension.
Details
Animal research suggests that baicalein, a constituent of Baikal skullcap, might lower blood pressure (33374).
|
Theoretically, concomitant use of Baikal skullcap and antithyroid drugs may result in additive activity and increase the risk of hypothyroidism.
Details
In an animal hyperthyroid model, Baikal skullcap improved levels of triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) (101736). The clinical significance of this effect is unclear.
|
Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties.
Details
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap may increase levels of drugs metabolized by CYP1A2 enzymes.
Details
|
Theoretically, Baikal skullcap might increase levels of drugs metabolized by CYP2C19 enzymes.
Details
In vitro evidence suggest that wogonin, a constituent of Baikal skullcap, modestly inhibits the activity of CYP2C19 enzymes (33484). This effect has not been reported in humans.
|
Theoretically, concomitant use of large amounts of Baikal skullcap might interfere with hormone replacement therapy, due to competition for estrogen receptors.
Details
In vitro evidence suggests that Baikal skullcap has estrogenic activity (16061).
|
Theoretically, Baikal skullcap might reduce lithium excretion and increase serum levels of lithium.
Details
Baikal skullcap is thought to have diuretic properties, which may reduce lithium excretion (5541). The dose of lithium might need to be decreased.
|
Theoretically, Baikal skullcap might alter the levels and clinical effects of OATP substrates.
Details
Some pharmacokinetic research shows that baicalin, a constituent of Baikal skullcap, can decrease plasma levels of rosuvastatin. The mechanism is thought to involve stimulation of the activity of the organic anion-transporting polypeptide 1B1 (OATP1B1), which transports rosuvastatin into the liver. This decreases plasma levels of the drug, but increases levels at the site of action in the liver. The degree to which rosuvastatin levels are affected depends on the OATP1B1 haplotype of the individual (16395). Baikal skullcap might also affect other OATP1B1 substrates (16396,16397,16398).
|
Theoretically, Baikal skullcap might increase levels of drugs transported by P-glycoprotein.
Details
|
Theoretically, Boswellia serrata might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP1A2 enzymes (21178).
|
Theoretically, Boswellia serrata might increase the levels of CYP2C19 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP2C19 enzymes (21178).
|
Theoretically, Boswellia serrata might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP2C9 enzymes (21178).
|
Theoretically, Boswellia serrata might increase the levels of CYP2D6 substrates.
Details
In vitro research shows that Boswellia serrata gum resin inhibits CYP2D6 enzymes (21178).
|
Theoretically, Boswellia serrata might increase or decrease the levels and clinical effects of CYP3A4 substrates.
Details
|
Theoretically, Boswellia serrata might alter the effects of immunosuppressive drugs.
Details
Some in vitro research suggests that Boswellia serrata extracts might inhibit mediators of autoimmune disorders such as leukotrienes and reduce production of antibodies and cell-mediated immunity (12432,12435,12437,12438). However, other in vitro research suggests that, when coupled with calcium ions, boswellic acids containing the keto group have immunostimulant properties within specific cell signaling pathways (21180).
|
Theoretically, elderberry might interfere with immunosuppressant therapy due to its immunostimulant activity.
Details
Elderberry has immunostimulant activity, increasing the production of cytokines, including interleukin and tumor necrosis factor (10796).
|
Theoretically, elderberry might interact with pazopanib, potentially increasing the risk of adverse effects.
Details
|
Theoretically, eyebright might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal research suggests that eyebright lowers blood glucose levels (49393).
|
Theoretically, fenugreek might have additive effects when used with anticoagulant or antiplatelet drugs.
Details
Some of the constituents in fenugreek have antiplatelet effects in animal and in vitro research. However, common fenugreek products might not contain sufficient concentrations of these constituents for clinical effects. A clinical study in patients with coronary artery disease or diabetes shows that taking fenugreek seed powder 2.5 grams twice daily for 3 months does not affect platelet aggregation, fibrinolytic activity, or fibrinogen levels (5191,7389,49643).
|
Theoretically, fenugreek seed might have additive hypoglycemic effects when used with antidiabetes drugs.
Details
|
Theoretically, fenugreek seed might alter the clinical effects of clopidogrel by inhibiting its conversion to the active form.
Details
Animal research shows that fenugreek seed 200 mg/kg daily for 14 days increases the maximum serum concentration of clopidogrel by 21%. It is unclear how this affects the pharmacokinetics of the active metabolite of clopidogrel; however, this study found that concomitant use of fenugreek seed and clopidogrel prolonged bleeding time by an additional 11% (108701).
|
Theoretically, fenugreek seed might have additive hypotensive effects when used with metoprolol.
Details
Animal research shows that fenugreek seed 300 mg/kg daily for 2 weeks decreases systolic and diastolic blood pressure by 9% and 11%, respectively, when administered alone, and by 15% and 22%, respectively, when given with metoprolol 10 mg/kg (108703).
|
Theoretically, fenugreek might decrease plasma levels of phenytoin.
Details
Animal research shows that taking fenugreek seeds for 1 week decreases maximum concentrations and the area under the curve of a single dose of phenytoin by 44% and 72%, respectively. This seems to be related to increased clearance (110905). So far, this interaction has not been reported in humans.
|
Theoretically, concurrent use of sildenafil and fenugreek might reduce levels and therapeutic effects of sildenafil.
Details
Animal research shows that taking fenugreek seeds for 1 week reduces maximum concentrations and the area under the curve of a single dose of sildenafil by 27% and 48%, respectively (110898). So far, this interaction has not been reported in humans.
|
Theoretically, fenugreek may reduce the levels and clinical effects of theophylline.
Details
Animal research shows that fenugreek 50 grams daily for 7 days reduces the maximum serum concentration (Cmax) of theophylline by 28% and the area under the plasma drug concentration-time curve (AUC) by 22% (90118).
|
Theoretically, fenugreek might have additive effects with warfarin and increase the international normalized ratio (INR).
Details
|
Theoretically, concomitant use of quercetin and antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research suggests that a combination of quercetin, myricetin, and chlorogenic acid reduce levels of fasting glucose in patients with type 2 diabetes, including those already taking antidiabetes agents (96779). The effect of quercetin alone is unknown. |
Theoretically, taking quercetin with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of cyclosporine.
Details
A small study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine, possibly due to inhibition of p-glycoprotein or cytochrome P450 3A4 (CYP3A4), which metabolizes cyclosporin (16434). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C8 substrates.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of CYP2C9 substrates.
Details
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac, a CYP2C9 substrate, increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5% (97931). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar), a substrate of CYP2C9 (100968). Furthermore, laboratory research shows that quercetin inhibits CYP2C9 (15549,16433). |
Theoretically, concomitant use might increase the levels and adverse effects of CYP2D6 substrates.
Details
|
Theoretically, concomitant use might alter the effects and adverse effects of CYP3A4 substrates.
Details
A small clinical study in healthy volunteers shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of a single dose of cyclosporine (Neoral, Sandimmune), a substrate of CYP3A4 (16434). Animal research also shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) and quetiapine (Seroquel), substrates of CYP3A4 (100968,104228). Other laboratory research also shows that quercetin inhibits CYP3A4 (15549,16433,16435). However, one clinical study shows that quercetin can increase the metabolism of midazolam, a substrate of CYP3A4, and decrease serum concentrations of midazolam by about 24% in some healthy individuals, suggesting possible induction of CYP3A4 (91573).
|
Theoretically, concomitant use might increase the levels and adverse effects of diclofenac.
Details
A small clinical study in healthy volunteers shows that taking quercetin 500 mg twice daily for 10 days prior to taking diclofenac increases diclofenac plasma levels by 75% and prolongs the half-life by 32.5%. This is thought to be due to inhibition of CYP2C9 by quercetin (97931). |
Theoretically, concomitant use might increase the effects and adverse effects of losartan and decrease the effects of its active metabolite.
Details
Animal research shows that pretreatment with quercetin increases plasma levels and prolongs the half-life of losartan (Cozaar) while decreasing plasma levels of losartan's active metabolite. This metabolite, which is around 10-fold more potent than losartan, is the result of cytochrome P450 (CYP) 2C9- and CYP3A4-mediated transformation of losartan. Additionally, in vitro research shows that quercetin may inhibit P-glycoprotein-mediated efflux of losartan from the intestines, resulting in increased absorption of losartan (100968). These results suggest that concomitant use of quercetin and losartan might increase systemic exposure to losartan while also decreasing plasma concentrations of losartan's active and more potent metabolite. |
Theoretically, concomitant use might decrease the levels and effects of midazolam.
Details
A small clinical study in healthy volunteers shows that quercetin can increase the metabolism of midazolam, with a decrease in AUC of about 24% (91573). |
Theoretically, quercetin might increase the effects and adverse effects of mitoxantrone.
Details
In vitro research shows that quercetin increases the intracellular accumulation and cytotoxicity of mitoxantrone, possibly through inhibition of breast cancer resistance protein (BCRP), of which mitoxantrone is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of OAT1 substrates.
Details
In vitro research shows that quercetin is a strong non-competitive inhibitor of OAT1, with half-maximal inhibitory concentration (IC50) values less than 10 mcM (104454). So far, this interaction has not been reported in humans. |
Theoretically, concomitant use might increase the effects and adverse effects of OAT3 substrates.
Details
|
Theoretically, concomitant use might increase the effects and adverse effects of OATP substrates.
Details
In vitro evidence shows that quercetin can inhibit organic anion-transporting peptide (OATP) 1B1-mediated uptake of estrone-3-sulfate and pravastatin (91581). Furthermore, clinical research in healthy males shows that intake of quercetin along with pravastatin increases the AUC of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581). |
Theoretically, concomitant use might alter the effects and adverse effects of P-glycoprotein substrates.
Details
There is preliminary evidence that quercetin inhibits the gastrointestinal P-glycoprotein efflux pump, which might increase the bioavailability and serum levels of drugs transported by the pump (16433,16434,16435,100968,104228). A small study in healthy volunteers reported that pretreatment with quercetin increased bioavailability and plasma levels after a single dose of cyclosporine (Neoral, Sandimmune) (16434). Also, two small studies have shown that quercetin might decrease the absorption of talinolol, a substrate transported by the gastrointestinal P-glycoprotein efflux pump (91579,91580). However, in another small study, several days of quercetin treatment did not significantly affect the pharmacokinetics of saquinavir (Invirase) (16433). The reason for these discrepancies is not entirely clear (91580). Until more is known, use quercetin cautiously in combination with P-glycoprotein substrates. |
Theoretically, concomitant use might increase the effects and adverse effects of pravastatin.
Details
In vitro evidence shows that quercetin can inhibit OATP 1B1-mediated uptake of pravastatin (91581). Also, preliminary clinical research in healthy males shows that intake of quercetin along with pravastatin increases the maximum concentration of pravastatin by 24%, prolongs its half-life by 14%, and decreases its apparent clearance by 18%, suggesting that quercetin modestly inhibits the uptake of pravastatin in hepatic cells (91581).
|
Theoretically, quercetin might increase the effects and adverse effects of prazosin.
Details
In vitro research shows that quercetin inhibits the transcellular efflux of prazosin, possibly through inhibition of breast cancer resistance protein (BCRP), of which prazosin is a substrate. BCRP is an ATP-binding cassette efflux transporter in the intestines, kidneys, and liver (107897). So far, this interaction has not been reported in humans.
|
Theoretically, concomitant use might increase the effects and adverse effects of quetiapine.
Details
Animal research shows that pretreatment with quercetin can increase plasma levels of quetiapine and prolong its clearance, possibly due to inhibition of cytochrome P450 3A4 (CYP3A4) by quercetin. Additionally, the brain-to-plasma ratio of quetiapine concentrations increased, possibly due to inhibition of P-glycoprotein at the blood-brain barrier (104228). This interaction has not been reported in humans.
|
Theoretically, concomitant use might inhibit the effects of quinolone antibiotics.
Details
In vitro, quercetin binds to the DNA gyrase site on bacteria (481), which may interfere with the activity of quinolone antibiotics.
|
Theoretically, quercetin might increase the effects and adverse effects of sulfasalazine.
Details
Animal research shows that quercetin increases the maximum serum concentration (Cmax) and area under the curve (AUC) of sulfasalazine, possibly through inhibition of breast cancer resistance protein (BCRP), of which sulfasalazine is a substrate (107897). So far, this interaction has not been reported in humans.
|
Theoretically, quercetin may increase the risk of bleeding if used with warfarin.
Details
Animal and in vitro studies show that quercetin might increase serum levels of warfarin (17213,109619). Quercetin and warfarin have the same human serum albumin (HSA) binding site, and in vitro research shows that quercetin has stronger affinity for the HSA binding site and can theoretically displace warfarin, causing higher serum levels of warfarin (17213). Animal research shows that taking quercetin for 2 weeks before initiating warfarin increases the maximum serum level of warfarin by 30%, the half-life by 10%, and the overall exposure by 63% when compared with control. Concomitant administration of quercetin and warfarin, without quercetin pre-treatment, also increased these measures, but to a lesser degree. Researchers theorize that inhibition of CYP3A4 by quercetin may explain these effects (109619). So far, this interaction has not been reported in humans.
|
Below is general information about the adverse effects of the known ingredients contained in the product Allergy check. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, Baikal skullcap seems to be well-tolerated.
There is currently a limited amount of information on the adverse effects of intravenous and topical Baikal skullcap.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, erythema, nausea, pruritus, and vomiting.
Intravenously: Skin reactions.
Topically: Dermatitis.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity and hypersensitivity pneumonitis have been reported with a specific combination product (Limbrel, Primus Pharmaceuticals) containing extracts of Baikal skullcap and catechu.
Cardiovascular ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, elevated triglyceride levels occurred in 1 of 10 patients who received 400 mg every 8 hours and 2 of 10 patients treated with 600 mg every 8 hours, compared with 0 of 10 patients who received 200 mg every 8 hours and 0 of 6 patients who received placebo. Triglyceride elevations were considered mild and resolved after discontinuation (110023).
Dermatologic
...Orally, taking Baikal skullcap may cause erythema and pruritus (105867).
Intravenously, Baikal skullcap as part of a Tanreqing injection has been associated with reports of skin reactions in some pediatric patients (96281).
Topically, several cases of allergic contact dermatitis have been reported after applying sunscreen containing Baikal skullcap extract (105869,105870). Allergic contact dermatitis has also been reported after applying a facial cream (Resveratrol BE, Skinceuticals) containing Baikal skullcap root extract 0.5% and resveratrol 1%. Patch testing identified a positive reaction to both ingredients (110024). Baikal skullcap-induced dermatitis appears to respond to treatment with a topical corticosteroid and calcineurin inhibitor (105870).
Gastrointestinal ...Orally, use of Baikal skullcap has been associated with epigastric pain, abdominal pain, constipation, diarrhea, nausea, and vomiting (101738,105867).
Hepatic
...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of acute liver damage.
There have been at least five published reports of liver damage associated with this product. In all cases, the patients were females aged 54-68 years taking doses of 250-500 mg twice daily for 1-3 months. Signs and symptoms included jaundice, pruritus, abdominal pain, fever, rash, and elevated serum bilirubin and liver transaminase levels. All patients fully recovered and levels normalized within 3 months after discontinuation (18009,96282). In addition to these published case reports, approximately 30 liver-related adverse events have been reported to the manufacturer of this product (18009). The mechanism of hepatotoxicity is unclear (18009,18010); it is estimated that the incidence of hepatotoxicity with this product is around 1 in 10,000, although the actual incidence is unknown (18010). In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Hepatotoxicity has also been reported in two patients taking a specific dietary supplement (Move Free Advanced, Reckitt Benckiser) containing Baikal skullcap, black catechu, glucosamine, chondroitin, and hyaluronic acid (33460) and in a patient taking Baikal skullcap, elderflower, horseradish, and white willow (101737). The investigators determined that the hepatotoxicity was likely caused by Baikal skullcap in these cases (33460,101737). Additionally, cases of liver injury are reported in 4 of 37 patients taking various Kampo formulations containing Baikal skullcap and other herbs daily. Patients presented with elevated liver function tests 7 to 38 days after consumption (112179). It is unclear if this adverse effect is from Baikal skullcap, other ingredients, or the combination.
In a small study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, liver transaminase elevations occurred in 2 of 10 patients who received 400 mg every 8 hours for 6 days, compared with 0 of 6 patients who received placebo. No patients receiving either 200 mg or 600 mg every 8 hours experienced liver transaminase elevations. The elevations were considered mild and resolved after discontinuation (110023).
Pulmonary/Respiratory ...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of hypersensitivity pneumonitis. Symptoms include fever, chills, headache, cough, chronic bronchitis, shortness of breath, weight loss, and fatigue. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Renal ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, proteinuria of undefined severity occurred in 1 of 10 patients who received 200 mg every 8 hours for 6 days, 3 of 10 patients who received 400 mg every 8 hours for 6 days, and 5 of 10 patients who received 600 mg every 8 hours for 6 days, compared with 1 of 6 patients who received placebo. The proteinuria was considered mild and resolved after discontinuation (110023).
General
...Orally, Boswellia serrata extract is generally well-tolerated.
For information on the safety of Boswellia serrata when applied topically or used as aromatherapy, see the Frankincense monograph.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, headache, heartburn, itching, nausea.
Serious Adverse Effects (Rare):
Orally: Large amounts of Boswellia serrata gum resin can cause bezoar formation.
Dermatologic ...Orally, Boswellia serrata extract (5-Loxin) has been associated with itching at doses of 100-250 mg daily (17948).
Gastrointestinal ...Orally, Boswellia serrata extract may cause diarrhea, nausea, abdominal pain, and heartburn (1708,12432,12438,17948,17949,17950,21149,109567,114685). A case of a large gastrointestinal bezoar has been reported in a 17-year-old female who chewed and swallowed large quantities of boswellia gum resin (Boswellia species not specified) for celiac disease (36914).
Musculoskeletal ...Orally, Boswellia serrata extract (5-Loxin) has been associated with one case of foot edema and four cases of generalized weakness in one clinical study (17948).
Neurologic/CNS ...Orally, Boswellia serrata extract may cause dizziness, headache, and vertigo. In one clinical study, nearly 11% of patients taking a specific Boswellia serrata extract (K-Vie) reported headache. Dizziness and vertigo were also reported, but at lower rates (109567). In another study, headache was reported in one patient taking a specific Boswellia serrata extract (5-Loxin) (17948).
Psychiatric ...Orally, one case of mania is reported in a 73-year-old male who took Boswellia powder mixed with honey for 3 days. The patient recovered after hospitalization and treatment with olanzapine (110526).
General
...Orally, elderberry extracts prepared from ripe fruit seem to be well tolerated.
Most Common Adverse Effects:
Orally: When adverse effects occur, they are likely due to ingestion of raw and unripe elderberries, or seeds, leaves, and other plant parts. Due to cyanogenic glycosides, these may cause nausea, vomiting, severe diarrhea, weakness, dizziness, numbness, and stupor. Cooking eliminates the toxin.
Gastrointestinal
...Orally, nausea and vomiting have been reported after consuming a specific elderberry and echinacea product
Vogel Bioforce AG) (95650). However, it is unclear if this was due to the elderberry or Echinacea contained in the product.
Raw and unripe elderberries, and the seeds, leaves, and other elder tree parts might cause nausea, vomiting, or severe diarrhea due to cyanogenic glycosides (17020,17021). Cooking eliminates the toxin.
Hepatic ...In one case report, a 60-year-old female with underlying autoimmune disease presented with autoimmune hepatitis after taking elderberry at an unknown dose for several years. The patient presented with nausea, jaundice, abdominal pain, and abdominal distention. Liver function tests returned to baseline 4 weeks after initiating treatment with prednisone 40 mg daily and discontinuing elderberry (110123).
Immunologic ...Elder tree pollen might cause an allergic reaction characterized by rhinitis and dyspnea in some patients who are allergic to grass pollen. These patients might also experience an allergic reaction to elderberry extracts (11095).
Neurologic/CNS ...Raw and unripe elderberries might cause weakness, dizziness, numbness, and stupor due to cyanogenic glycosides (17020,17021). Cooking eliminates the toxin.
General ...Orally, eyebright is generally well tolerated when used in food amounts. Topically, eyebright might be unsafe due to the potential for contamination.
Gastrointestinal ...Orally, eyebright has been reported to cause nausea and constipation (4).
Genitourinary ...Orally, eyebright has been reported to cause polyuria (4).
Neurologic/CNS ...Orally, eyebright has been reported to cause confusion and headache (4).
Ocular/Otic ...Topically, eyebright has been reported to cause increased ocular pressure, lacrimation, pruritus, redness, swelling of eyelid margins, vision changes, and photophobia when applied to the eyes (4). Ophthalmic eyebright products should be used with caution due to the potential for contamination (8,11).
Pulmonary/Respiratory ...Orally, eyebright has been reported to cause cough, dyspnea, and nasal congestion (4).
General
...Orally, fenugreek seed is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, diarrhea, dyspepsia, flatulence, hypoglycemia, and nausea.
Serious Adverse Effects (Rare):
All ROA: Severe allergic reactions including angioedema, bronchospasm, and shock.
Endocrine ...Orally, large doses of fenugreek seed, 100 grams daily of defatted powder, have caused hypoglycemia (164,96068).
Gastrointestinal ...Orally, fenugreek seed can cause mild gastrointestinal symptoms, such as diarrhea, dyspepsia, abdominal distention and pain, nausea, and flatulence, especially when taken on an empty stomach (622,12534,18349,93421,96065,96068,105016).
Immunologic ...Fenugreek can cause allergic reactions when used orally and topically, and when the powder is inhaled (719,96068). Orally, fenugreek has caused bronchospasm, diarrhea, and itching, and skin reactions severe enough to require intravenous human immunoglobulin (96068). Topically, fenugreek paste has resulted in facial swelling, wheezing, and numbness around the head (719,96068). When used both orally and topically by a single individual, asthma and rhinitis occurred (96068). Inhalation of fenugreek powder has resulted in fainting, sneezing, runny nose, and eye tearing (719,96068).
Neurologic/CNS ...Orally, loss of consciousness has occurred in a 5 week-old infant drinking tea made from fenugreek (9782). Dizziness and headaches have been reported in clinical research of fenugreek extract (49551,93419). However, these events are rare.
Renal ...Orally, fenugreek aqueous see extract may increase the frequency of micturition, although this even appears to be rare (49551).
Other
...Consumption of fenugreek during pregnancy, immediately prior to delivery, may cause the neonate to have an unusual body odor, which may be confused with maple syrup urine disease.
It does not appear to cause long-term sequelae (9781). This unusual body odor may also occur in children drinking fenugreek tea. A case of a specific urine and sweat smell following oral fenugreek extract use has been reported for a patient in one clinical trial (18349).
In 2011, outbreaks of enteroaggregative hemorrhagic Escherichia coli (EATEC) O104:H4 infection occurred in Germany and Spain. Epidemiological studies linked the outbreaks to fenugreek seeds that had been imported from Africa. However, laboratory analyses were unable to isolate the causative strain of bacteria from fenugreek seed samples (49776,49777,49781,90114).
General ...Orally, histidine has been used with apparent safety in clinical research; however, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, perilla seems to be well tolerated.
Topically, there is currently a limited amount of information on the adverse effects of perilla.
Most Common Adverse Effects:
Topically: Dermatitis.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Dermatologic ...Topically, perilla may cause contact dermatitis (6,68664,94313).
Immunologic ...Orally, many cases of anaphylaxis have been reported in adults and children who consumed perilla seeds (94313,110611). Some research suggests that oleosin is the major constituent responsible for perilla allergies (110611).
Pulmonary/Respiratory ...Occupational asthma has been reported from breathing in smoke from roasted perilla seeds (94313).
General ...Orally and intravenously, quercetin seems to be well tolerated in appropriate doses. Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Gastrointestinal ...Intravenous administration of quercetin is associated with nausea and vomiting (9564).
Neurologic/CNS ...Orally, quercetin may cause headache and tingling of the extremities (481,111500). Intravenously, quercetin may cause pain at the injection site. Injection pain can be minimized by premedicating patients with 10 mg of morphine and administering amounts greater than 945 mg/m2 over 5 minutes (9564). In addition, intravenous administration of quercetin is associated with flushing and sweating (9564).
Pulmonary/Respiratory ...Intravenous administration of quercetin at doses as high as 2000 mg/m2 is associated with dyspnea that may persist for up to 5 minutes (9564).
Renal ...Intravenously, nephrotoxicity has been reported with quercetin in amounts greater than 945 mg/m2 (9563,9564,70304).