Each tablet contains: Proprietary Blend: Senna extract, Wheat Grass powder, Cranberry juice powder, Burdock extract, Astragalus extract, Echinacea extract, Milk Thistle extract, Schisandra extract, Beet root powder • Odorless Garlic bulb powder.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
This product has been discontinued by the manufacturer.
This formula has been discontinued by the manufacturer and has been reformulated.. The new formulation is still available under the same name. This product is also available as part of the AdvoCare Herbal Cleanse.
Below is general information about the effectiveness of the known ingredients contained in the product Herbal Cleanse Tablet. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Herbal Cleanse Tablet. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Doses of astragalus up to 60 grams daily for up to 4 months have been used without reported adverse effects (32920,33038,95909,114804). ...when used intravenously. Infusion of doses up to 80 grams daily for up to 4 months under the supervision of a medical professional have been used with apparent safety (32811,32812,32828,95909,114688,114804). There is insufficient reliable information available about the safety of astragalus when used topically.
PREGNANCY AND LACTATION:
There is insufficient reliable information in humans.
However, astragaloside, a constituent of astragalus, has maternal and fetal toxic effects in animals (32881). Avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used in amounts commonly found in foods (12659,12660). Burdock root is commonly eaten as a vegetable (37422,92153,92154)
POSSIBLY SAFE ...when used topically, short-term. An emulsion containing burdock fruit extract 1.2% has been safely applied to the face twice daily for 4 weeks (37420). There is insufficient reliable information available about the safety of burdock when used orally in supplemental doses.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE . .when used orally and appropriately. Cranberry juice up to 300 mL daily and cranberry extracts in doses up to 800 mg twice daily have been safely used in clinical trials (3333,3334,6758,6760,7008,8252,8253,8254,8995,11328) (16415,16720,17100,17126,17176,17210,17524,46379,46388,46389)(46390,46425,46439,46443,46465,46456,46466,46467,46469,46471)(46496,46499,90044,102847,111407).
CHILDREN: LIKELY SAFE
when cranberry juice is consumed in amounts commonly found in the diet (2811,6759,46441,46452,46470,111407).
There is insufficient reliable information available about the safety of cranberry when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in the diet.
There is insufficient reliable information available about the safety of cranberry when used therapeutically during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Various liquid extracts of Echinacea purpurea have been used safely for up to 10 days, including EchinaGuard (Madaus AG) 20 drops every 2 hours for 1 day, then three times daily (10320), or Echinilin (Inovobiologic Inc.) 40 mL in divided doses for 1 day, then 15 mL in divided doses daily thereafter (12355,20062). Other liquid extracts have been used safely for relatively longer periods, including Echinaforce (A. Vogel Bioforce AG) 2.4 grams daily for 4 months or 1.6 grams daily for 6 months (7087,18225), and Echinacin (Madaus AG) 5 mL twice daily for 10 days, or 4 mL twice daily for 8 weeks (3282,10802). Specific solid dosage forms of echinacea that have been used safely for up to 10 days include Echinacea purpurea above-ground parts (EchinaFresh, Enzymatic Therapy) 300 mg daily (11970), and mixtures of Echinacea purpurea and Echinacea angustifolia herb in divided doses of 6 grams to 10.5 grams for 1 day then 3 grams to 5.1 grams daily (10800,17519,20059). A specific Echinacea angustifolia extract (ExtractumPharma ZRT) has also been used with apparent safety at a dose of 40 mg once or twice daily for up to 7 days (20064,103233). An Echinacea purpurea product (Natures Resource) has been used safely at a dose of 1.8 grams daily for 8 weeks (17521), and echinacea (Puritan's Pride) has been used safely at 8 grams daily for 28 days (20066).
POSSIBLY SAFE ...when used topically, short-term. A specific cream (Linola Plus Cream, Dr. August Wolff GmbH & Co.) containing echinacea extract (WO 3260) has been applied to the skin safely 2-3 times daily for up to 12 weeks (97499). There is insufficient reliable evidence about the safety of echinacea when used parenterally.
CHILDREN: POSSIBLY SAFE
when used orally, short-term.
Some clinical research shows that an extract of the above-ground parts of Echinacea purpurea (EC31J2, Echinacin Saft, Madaus AG) in a dose of 3.75 mL twice daily (for ages 2 years to 5 years) or 7.5 mL twice daily (for ages 6 years to 11 years) is safe when used for up to 10 days (4989). However, about 7% of children experienced a rash after taking echinacea, which might have been caused by an allergic reaction (4989). There is concern that allergic reactions could be severe in some children. The Medicines and Healthcare Products Regulatory Agency in the United Kingdom recommends against the use of oral echinacea products in children under 12 years of age due to this risk of allergic reaction (18207). In contrast, another clinical study in children 4-12 years old shows that a specific Echinacea purpurea product (Echinaforce Junior, A. Vogel) does not cause allergic or urticarial reactions more frequently than vitamin C (105719).
PREGNANCY: POSSIBLY SAFE
when used orally, short-term.
There is preliminary evidence that mothers can safely use echinacea in the form of E. purpurea or E. angustifolia solid dosage forms, 250-1000 mg daily, or tinctures, up to 30 drops daily, for 5 days to 7 days during the first trimester without adversely affecting the fetus (7056,13418,15123). There is insufficient reliable information available about the safety of echinacea when used for longer than 7 days.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Garlic has been used safely in clinical studies lasting up to 7 years without reports of significant toxicity (1873,4782,4783,4784,4785,4786,4787,4789,4790,4797)(4798,6457,6897,14447,96008,96009,96014,102016,102670,103479)(107238,107239,107352,108607,110722,111763,114892).
POSSIBLY SAFE ...when used topically. Garlic-containing gels, lipid-soluble garlic extracts, garlic pastes, and garlic mouthwashes have been safely used in clinical research for up to 3 months (4766,4767,8019,15030,51330,51386). ...when used intravaginally. A vaginal cream containing garlic and thyme has been safely used nightly for 7 nights (88387).
POSSIBLY UNSAFE ...when raw garlic is used topically (585). Raw garlic might cause severe skin irritation when applied topically.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (3319).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Garlic is reported to have abortifacient activity (11020). One study also suggests that garlic constituents are distributed to the amniotic fluid after a single dose of garlic (4828). However, there are no published reports of garlic adversely affecting pregnancy. In clinical research, garlic 800 mg daily was used during the third trimester of pregnancy with no reported adverse outcomes (9201,51626). There is insufficient reliable information available about the safety of topical garlic during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (3319).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts greater than those found in foods.
Several small studies suggest that garlic constituents are secreted in breast milk, and that nursing infants of mothers consuming garlic are prone to extended nursing (3319,4829,4830). There is insufficient reliable information available about the safety of topical garlic during lactation.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately for up to 8 weeks.
Garlic extract 300 mg three times daily has been used with apparent safety for up 8 weeks in children ages 8-18 years (4796). There is insufficient reliable information available about the safety of garlic when used over longer durations or in higher doses.
CHILDREN: POSSIBLY UNSAFE
when raw garlic is used topically.
Raw garlic might cause severe skin irritation when applied topically (585,51210).
LIKELY SAFE ...when used orally and appropriately. A specific milk thistle extract standardized to contain 70% to 80% silymarin (Legalon, Madaus GmbH) has been safely used in doses up to 420 mg daily for up to 4 years (2613,2614,2616,7355,63210,63212,63278,63280,63299,63340)(88154,97626,105792). Higher doses of up to 2100 mg daily have been safely used for up to 48 weeks (63251,96107,101150). Another specific milk thistle extract of silymarin (Livergol, Goldaru Pharmaceutical Company) has been safely used at doses up to 420 mg daily for up to 6 months (95021,95029,102851,102852,105793,105794,105795,113979,114909,114913)(114914). Some isolated milk thistle constituents also appear to be safe. Silibinin (Siliphos, Thorne Research) has been used safely in doses up to 320 mg daily for 28 days (63218). Some combination products containing milk thistle and other ingredients also appear to be safe. A silybin-phosphatidylcholine complex (Silipide, Inverni della Beffa Research and Development Laboratories) has been safely used in doses of 480 mg daily for 7 days (7356) and 240 mg daily for 3 months (63320). Tree turmeric and milk thistle capsules (Berberol, PharmExtracta) standardized to contain 60% to 80% silybin have been safely used twice daily for up to 12 months (95019,96140,96141,96142,97624,101158).
POSSIBLY SAFE ...when used topically and appropriately, short-term. A milk thistle extract cream standardized to silymarin 0.25% (Leviaderm, Madaus GmbH) has been used safely throughout a course of radiotherapy (63239). Another milk thistle extract cream containing silymarin 1.4% has been used with apparent safety twice daily for 3 months (105791,110489). A cream containing milk thistle fruit extract 25% has been used with apparent safety twice daily for up to 12 weeks (111175). A milk thistle extract gel containing silymarin 1% has been used with apparent safety twice daily for 9 weeks (95022). There is insufficient reliable information available about the safety of intravenous formulations of milk thistle or its constituents.
PREGNANCY AND LACTATION:
While research in an animal model shows that taking milk thistle during pregnancy and lactation does not adversely impact infant development (102850), there is insufficient reliable information available about its safety during pregnancy or lactation in humans; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A milk thistle extract 140 mg three times daily has been used with apparent safety for up to 9 months (88154,98452). A specific product containing the milk thistle constituent silybin (Siliphos, Thorne Research Inc.) has been used with apparent safety in doses up to 320 mg daily for up to 4 weeks in children one year of age and older (63218).
POSSIBLY SAFE ...when used orally and appropriately. Schisandra extract up to 1 gram daily has been used for up to 12 weeks with apparent safety (12,96632,105562,105563,112887).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Some evidence suggests schisandra fruit is a uterine stimulant (11).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Senna is an FDA-approved nonprescription drug (8424,15429,15431,15442,40086,40088,74535,74545,74548,74562)(74567,74570,74583,74585,74586,74587,74593,74603,74606,74607)(74609,74613,74615,74624,74636,74639,74644,74650,74653,92711)(92712).
POSSIBLY UNSAFE ...when used orally long-term or in high doses. Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095).
CHILDREN: LIKELY SAFE
when used orally and appropriately, short-term.
Senna is an FDA-approved nonprescription drug for use in children 2 years and older. (15429,15434,15435).
CHILDREN: POSSIBLY UNSAFE
when used orally long-term or in high doses.
Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095,105956).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term (15429,24480).
POSSIBLY UNSAFE...when used orally long-term or in high doses. Long-term, frequent use, or use of high doses has been linked to serious side effects including laxative dependence and liver toxicity (13057,13095).
LACTATION: POSSIBLY SAFE
when used orally and appropriately, short term.
Although small amounts of constituents of senna cross into breast milk, senna has been taken while breast-feeding with apparent safety. Senna does not cause changes in the frequency or consistency of infants' stools. (6026,15429,15436,15437,24482,24484,24485,24486,24487,74545).
LIKELY SAFE ...when consumed in amounts commonly found in foods (5286).
POSSIBLY SAFE ...when wheatgrass juice is taken orally and appropriately in medicinal amounts. Wheatgrass juice 60-100 mL daily has been used safely for up to 18 months (11165,85601,104878,104879). ...when wheatgrass cream is used topically. Wheatgrass 10% cream has been used safely for up to 6 weeks (85602). There is insufficient reliable information available about the long-term safety of wheatgrass when used medicinally.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Herbal Cleanse Tablet. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking astragalus with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, astragalus might interfere with cyclophosphamide therapy.
|
Theoretically, astragalus might interfere with immunosuppressive therapy.
|
Theoretically, astragalus might increase levels and adverse effects of lithium.
Animal research suggests that astragalus has diuretic properties (15103). Theoretically, due to this diuretic effect, astragalus might reduce excretion and increase levels of lithium.
|
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Theoretically, taking burdock with anticoagulant or antiplatelet drugs might increase the risk of bleeding.
In vitro research shows that lignans from burdock reduce rabbit platelet aggregation by inhibiting platelet activating factor (12619). This interaction has not been reported in humans. |
Theoretically, cranberry might increase levels and adverse effects of atorvastatin.
In one case report, a patient taking atorvastatin experienced upper back pain, rhabdomyolysis, and abnormal liver function after drinking cranberry juice 16 ounces daily for 2 weeks. Theoretically, this may have been caused by inhibition of cytochrome P450 3A4 (CYP3A4) enzymes by cranberry juice, as atorvastatin is a CYP3A4 substrate. Creatinine kinase and liver enzymes normalized within 2 weeks of stopping cranberry juice (90042). Patients taking atorvastatin should avoid large quantities of cranberry juice.
|
Theoretically, cranberry might increase the levels and adverse effects of CYP2C9 substrates. However, research is conflicting.
There is contradictory evidence about the effect of cranberry on CYP2C9 enzymes. In vitro evidence suggests that flavonoids in cranberry inhibit CYP2C9 enzymes (10452,11115,90048). However, clinical research shows that cranberry juice does not significantly affect the levels, metabolism, or elimination of the CYP2C9 substrates flurbiprofen or diclofenac (11094,90048). Also, in patients stabilized on warfarin, drinking cranberry juice 250 mL daily for 7 days does not significantly increase the anticoagulant activity of warfarin, a CYP2C9 substrate (15374). Additional pharmacokinetic research shows that cranberry juice does not increase peak plasma concentrations or area under the concentration-time curve of warfarin (15393).
|
Theoretically, cranberry might increase the levels and adverse effects of CYP3A4 substrates.
A case of upper back pain, rhabdomyolysis, and abnormal liver function has been reported for a patient taking atorvastatin, a CYP3A4 substrate, in combination with cranberry juice 16 ounces daily for 2 weeks. Creatinine kinase and liver enzymes normalized within 2 weeks of stopping cranberry juice (90042). Also, animal research suggests that cranberry juice, administered intraduodenally 30 minutes prior to nifedipine, a CYP3A4 substrate, inhibits nifedipine metabolism and increases the area under the concentration-time curve by 1.6-fold compared to control (46420).
|
Theoretically, cranberry might modestly increase the levels and adverse effects of diclofenac.
|
Theoretically, cranberry might increase the levels and adverse effects of nifedipine.
Animal research suggests that cranberry juice, administered intraduodenally 30 minutes prior to nifedipine treatment, inhibits nifedipine metabolism and increases the area under the concentration-time curve by 1.6-fold compared to control (46420). This interaction has not been reported in humans.
|
Theoretically, cranberry might increase the levels and adverse effects of warfarin. However, research is conflicting.
There is contradictory evidence about the effect of cranberry juice on warfarin. Case reports have linked cranberry juice consumption to increases in the international normalized ratio (INR) in patients taking warfarin, resulting in severe spontaneous bleeding and excessive postoperative bleeding (10452,12189,12668,21187,21188,21189,46378,46396,46411)(46415,90043). Daily consumption of cranberry sauce for one week has also been linked to an increase in INR in one case report (16816). In a small study in healthy young males, taking a high dose of 3 grams of cranberry juice concentrate capsules, equivalent to 57 grams of fruit daily, for 2 weeks produced a 30% increase in the area under the INR-time curve after a single 25-mg dose of warfarin (16416). However, 3 very small clinical studies in patients stabilized on warfarin reported that cranberry juice 250 mL once or twice daily for 7 days (27% cranberry juice or pure cranberry juice) or 240 mL once daily for 14 days does not significantly increase INR or affect plasma warfarin levels (15374,17124,90045). The reasons for these discrepant findings are unclear. It is possible that the form and dose of cranberry may play a role, as cranberry extracts and juices contain different constituents. Additionally, an in vitro study evaluating 5 different cranberry juices found varying effects, with only a cranberry concentrate, and not diluted cranberry juices, inhibiting CYP2C9. However, this concentrate did not inhibit CYP2C9 activity in humans (108062).
|
Echinacea can increase plasma levels of caffeine by inhibiting its metabolism.
Echinacea seems to increase plasma concentrations of caffeine by around 30% (12155). This is likely due to inhibition of cytochrome P450 1A2 (CYP1A2) by echinacea.
|
Echinacea might inhibit the metabolism of CYP1A2 and increase plasma levels of some drugs.
Echinacea appears to inhibit CYP1A2 enzymes in humans. Additionally, echinacea seems to increase plasma concentrations of caffeine, a CYP1A2 substrate, by around 30% (12155). Theoretically, echinacea might increase levels of other drugs metabolized by CYP1A2.
|
Echinacea may induce hepatic CYP3A4 and inhibit intestinal CYP3A4. This may increase or decrease levels of drugs metabolized by CYP3A4.
Several clinical trials have shown that taking echinacea for up to one month does not significantly affect the metabolism of various CYP3A4 substrates, including midazolam, docetaxel, etravirine, lopinavir-ritonavir, and darunavir-ritonavir (13712,48618,88164,88165). However, other clinical research shows that echinacea may increase the clearance of midazolam, suggesting that echinacea might induce CYP3A4 (48618). The discrepancy is thought to be due to differing effects of echinacea on intestinal versus hepatic CYP3A4 enzymes. Echinacea appears to induce hepatic CYP3A4 but inhibit intestinal CYP3A4 (12155). In some cases, these effects might cancel each other out, but in others, drug levels may be increased or decreased depending on the level of effect at hepatic and intestinal sites. The effect of echinacea on CYP3A4 activity may differ depending on the CYP3A4 substrate (6450,11026,88162,88167).
|
Theoretically, echinacea may interfere with the metabolism of darunavir; however, a small clinical study found no effect.
Darunavir is metabolized by cytochrome P450 3A4 (CYP3A4) and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Echinacea has variable effects on CYP3A4, but administration of an E. purpurea root extract (Arkocapsulas Echinacea, Arkopharma) 500 mg four times daily for 14 days did not affect darunavir/ritonavir pharmacokinetics in 15 HIV-infected patients (88163,93578).
|
Theoretically, echinacea may interfere with the metabolism of docetaxel; however, a small clinical study found no effect.
Docetaxel is metabolized by cytochrome P450 3A4 (CYP3A4). Echinacea has variable effects on CYP3A4, but taking E. purpurea whole plant extract (Echinaforce, A. Vogel Biopharma AG) 20 drops three times daily for 2 weeks did not alter the pharmacokinetics of docetaxel in one clinical study (88164).
|
Echinacea may increase levels of etoposide.
In one report, concomitant use of etoposide and echinacea was associated with more severe thrombocytopenia than the use of etoposide alone, suggesting inhibition of etoposide metabolism (20082). Etoposide is a cytochrome P450 3A4 (CYP3A4) substrate. Echinacea has variable effects on CYP3A4, but some studies have reported inhibition of the enzyme (6450,11026,12155,88162,88167).
|
Theoretically, echinacea may interfere with the metabolism of etravirine; however, a small clinical study found no effect.
|
Echinacea has immunostimulant activity which may interfere with immunosuppressant therapy.
|
Theoretically, echinacea may interfere with the metabolism of lopinavir; however, a small clinical study found no effect.
Lopinavir is metabolized by cytochrome P450 3A4 (CYP3A4) and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Echinacea has variable effects on CYP3A4, but taking E. purpurea (Echinamide, Natural Factors Nutritional Products, Inc.) 500 mg three times daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in healthy volunteers (48618,93578).
|
Theoretically, echinacea may increase the metabolism of intravenous midazolam.
Echinacea induces hepatic CYP3A4 and might decrease plasma levels of midazolam by about 20%, reducing the effectiveness of intravenous midazolam (12155). Echinacea also appears to inhibit intestinal CYP3A4, which could theoretically increase the bioavailability of oral midazolam. This may cancel out the decrease in availability caused by induction of hepatic CYP3A4, such that overall plasma levels after oral administration of midazolam are not affected by echinacea.
|
Echinacea seems to increase the clearance of warfarin, although the effect may not be clinically significant.
Preliminary clinical research in healthy male volunteers suggests that taking echinacea increases the clearance of the active S-isomer of warfarin after a single dose of warfarin, but there was not a clinically significant effect on the INR (20083).
|
Garlic may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking garlic with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, taking garlic with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, garlic might decrease levels and effects of atazanavir.
In a case report, a patient consuming six stir-fried garlic cloves three times weekly developed suboptimal atazanavir levels and increases in HIV viral load. While the exact cause of this interaction is unclear, there is speculation that garlic might decrease the intestinal absorption of atazanavir or increase its metabolism by inducing cytochrome P450 3A4 (CYP3A4) (88388). Until more is known, advise patients not to consume large amounts of garlic while taking atazanavir.
|
Garlic might increase levels of drugs metabolized by CYP2E1.
Clinical research suggests garlic oil can inhibit the activity of CYP2E1 by 39% (10847). Use garlic oil cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, garlic products containing allicin might induce intestinal CYP3A4 and inhibit hepatic CYP3A4. This may increase or decrease levels of drugs metabolized by CYP3A4.
Some human research suggests that garlic may induce INTESTINAL CYP3A4, reducing levels of drugs metabolized by this enzyme. This is primarily based on a study showing that taking a specific allicin-containing garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces saquinavir levels by approximately 50%. It is speculated that the allicin constituent induced CYP3A4 in the gut mucosa (7027,93578). Another study shows that giving docetaxel intravenously, bypassing the CYP3A4 enzymes in the gut mucosa, along with the same specific garlic product for 12 consecutive days, does not affect docetaxel levels (17221). Conversely, there is concern that garlic may inhibit HEPATIC CYP3A4. In a single case report, increased tacrolimus levels and liver injury occurred in a liver transplant patient after taking a specific garlic supplement (Garlicin Cardio, Nature's Way) at up to three times the manufacturer recommended dose for 7 days (96010). Several other studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506).
|
Theoretically, garlic might decrease levels of isoniazid.
Animal research suggests that an aqueous extract of garlic reduces isoniazid levels by about 65%. Garlic reduced the maximum concentration (Cmax) and area under the curve (AUC), but not the half-life, of isoniazid. This suggests that garlic extract might inhibit isoniazid absorption across the intestinal mucosa (15031); however, the exact mechanism of this potential interaction is not known.
|
Theoretically, garlic products containing allicin might decrease levels of PIs.
Protease inhibitors are metabolized by cytochrome P450 3A4 (CYP3A4) isoenzymes. There is concern that garlic products containing allicin might induce intestinal CYP3A4, reducing plasma levels of protease inhibitors. This is primarily based on a study showing that taking a specific garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces levels of saquinavir, a PI, by approximately 50%. It is speculated that the allicin constituent induce CYP3A4 in the gut mucosa (7027,93578). Several studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506).
|
Theoretically, garlic containing allicin might decrease levels of saquinavir.
Saquinavir is a substrate of cytochrome P450 3A4 (CYP3A4) isoenzymes. There is concern that garlic products containing allicin might induce intestinal CYP3A4 and cause subtherapeutic levels of saquinavir. This is primarily based on a pharmacokinetic study showing that taking a specific garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces saquinavir levels by approximately 50%. It is speculated that the allicin constituent induces CYP3A4 in the gut mucosa (7027,93578). Several pharmacokinetic studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506). Until more is known about this potential interaction, use garlic containing allicin cautiously in patients taking saquinavir.
|
Theoretically, taking garlic with sofosbuvir might decrease its effectiveness.
Animal research in rats shows that giving aged garlic extract 120 mg/kg orally daily for 14 days decreases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 36%, increases the clearance by 63%, and decreases the plasma concentrations at 1 and 8 hours by 35% and 58%, respectively. This interaction is hypothesized to be due to induction of intestinal P-glycoprotein expression by garlic (109524).
|
Theoretically, garlic might increase levels of tacrolimus.
In one case report, a liver transplant patient taking tacrolimus experienced increased tacrolimus levels and liver injury after taking a specific garlic supplement (Garlicin Cardio, Nature's Way) at up to three times the manufacturer recommended dose for 7 days. It is speculated that garlic inhibited hepatic cytochrome P450 3A4 (CYP3A4), which increased plasma levels of tacrolimus (96010).
|
Theoretically, garlic might increase the risk of bleeding with warfarin.
Raw garlic and a variety of garlic extracts have antiplatelet activity and can increase prothrombin time (586,616,1874,3234,4366,4802,4803,51397). In addition, there is a report of two patients who experienced an increase in a previously stabilized international normalized ratio (INR) with concomitant garlic and warfarin use (51228,51631). However, this report has been subsequently debated due to limited clinical information. Other clinical studies have not identified an effect of garlic on INR, warfarin pharmacokinetics, or bleeding risk (15032,16416). More evidence is needed to determine the safety of using garlic with warfarin.
|
Taking milk thistle with antidiabetes drugs may increase the risk of hypoglycemia.
Clinical research shows that milk thistle extract, alone or along with tree turmeric extract, can lower blood glucose levels and glycated hemoglobin (HbA1c) in patients with type 2 diabetes, including those already taking antidiabetes drugs (15102,63190,63314,63318,95019,96140,96141,97624,97626,113987). Additionally, animal research shows that milk thistle extract increases the metformin maximum plasma concentration and area under the curve and decreases the renal clearance of metformin, due to inhibition of the multi-drug and toxin extrusion protein 1 (MATE1) renal tubular transport protein (114919).
|
Theoretically, milk thistle might inhibit CYP2B6.
An in vitro study shows that silybin, a constituent of milk thistle, binds to and noncompetitively inhibits CYP2B6. Additionally, silybin might downregulate the expression of CYP2B6 by decreasing mRNA and protein levels (112229).
|
It is unclear if milk thistle inhibits CYP2C9; research is conflicting.
In vitro research suggests that milk thistle might inhibit CYP2C9 (7089,17973,17976). Additionally, 3 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP2C9 substrates, including imatinib and capecitabine (111644). However, contradictory clinical research shows that milk thistle extract does not inhibit CYP2C9 or significantly affect levels of the CYP2C9 substrate tolbutamide (13712,95026). Differences in results could be due to differences in dosages or formulations utilized (95026).
|
It is unclear if milk thistle inhibits CYP3A4; research is conflicting.
While laboratory research shows conflicting results (7318,17973,17975,17976), pharmacokinetic research shows that taking milk thistle extract 420-1350 mg daily does not significantly affect the metabolism of the CYP3A4 substrates irinotecan, midazolam, or indinavir (8234,17974,93578,95026). However, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP3A4 substrates, including gefitinib, sorafenib, doxorubicin, and vincristine (111644).
|
Theoretically, milk thistle might interfere with estrogen therapy through competition for estrogen receptors.
|
Theoretically, milk thistle might affect the clearance of drugs that undergo glucuronidation.
Laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase levels of glucuronidated drugs. Other laboratory research suggests that a milk thistle extract of silymarin might inhibit beta-glucuronidase (7354), although the significance of this effect is unclear.
|
Theoretically, milk thistle might interfere with statin therapy by decreasing the activity of organic anion transporting polypeptide 1B1 (OATB1B1) and inhibiting breast cancer resistance protein (BCRP).
Preliminary evidence suggests that a milk thistle extract of silymarin can decrease the activity of the OATP1B1, which transports HMG-CoA reductase inhibitors into the liver to their site of action, and animal research shows this increases the maximum plasma concentration of pitavastatin and pravastatin (113975). The silibinin component also inhibits BCRP, which transports statins from the liver into the bile for excretion. However, in a preliminary study in healthy males, silymarin 140 mg three times daily had no effect on the pharmacokinetics of a single 10 mg dose of rosuvastatin (16408).
|
Theoretically, milk thistle may induce cytochrome P450 3A4 (CYP3A4) enzymes and increase the metabolism of indinavir; however, results are conflicting.
One pharmacokinetic study shows that taking milk thistle (Standardized Milk Thistle, General Nutrition Corp.) 175 mg three times daily in combination with multiple doses of indinavir 800 mg every 8 hours decreases the mean trough levels of indinavir by 25% (8234). However, results from the same pharmacokinetic study show that milk thistle does not affect the overall exposure to indinavir (8234). Furthermore, two other pharmacokinetic studies show that taking specific milk thistle extract (Legalon, Rottapharm Madaus; Thisilyn, Nature's Way) 160-450 mg every 8 hours in combination with multiple doses of indinavir 800 mg every 8 hours does not reduce levels of indinavir (93578).
|
Theoretically, milk thistle might increase the levels and clinical effects of ledipasvir.
Animal research in rats shows that milk thistle increases the area under the curve (AUC) for ledipasvir and slows its elimination (109505).
|
Theoretically, concomitant use of milk thistle with morphine might affect serum levels of morphine and either increase or decrease its effects.
Animal research shows that milk thistle reduces serum levels of morphine by up to 66% (101161). In contrast, laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase morphine levels. The effect of taking milk thistle on morphine metabolism in humans is not known.
|
Milk thistle may inhibit one form of OATP, OATP-B1, which could reduce the bioavailability and clinical effects of OATP-B1 substrates.
In vitro research shows that milk thistle inhibits OATP-B1. Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are OATP substrates, including sorafenib and methotrexate (111644). OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds into the body. Inhibition of OATP may reduce the bioavailability of oral drugs that are substrates of OATP.
|
Theoretically, milk thistle might increase the absorption of P-glycoprotein substrates. However, this effect does not seem to be clinically significant.
In vitro research shows that milk thistle can inhibit P-glycoprotein activity (95019,111644) and 1 case report from the World Health Organization (WHO) adverse drug reaction database describes increased abdominal pain in a patient taking milk thistle and the cancer medication vincristine, a P-glycoprotein substrate, though this patient was also taking methotrexate (111644). However, a small pharmacokinetic study in healthy volunteers shows that taking milk thistle (Enzymatic Therapy Inc.) 900 mg, standardized to 80% silymarin, in 3 divided doses daily for 14 days does not affect absorption of digoxin, a P-glycoprotein substrate (35825).
|
Theoretically, milk thistle might decrease the clearance and increase levels of raloxifene.
Laboratory research suggests that the milk thistle constituents silibinin and silymarin inhibit the glucuronidation of raloxifene in the intestines (93024).
|
Milk thistle might decrease the clearance of sirolimus.
Pharmacokinetic research shows that a milk thistle extract of silymarin decreases the apparent clearance of sirolimus in hepatically impaired renal transplant patients (19876). It is unclear if this interaction occurs in patients without hepatic impairment.
|
Theoretically, milk thistle might decrease the levels and clinical effects of sofosbuvir.
Animal research in rats shows that milk thistle reduces the metabolism of sofosbuvir, as well as the hepatic uptake of its active metabolite (109505).
|
Theoretically, the milk thistle constituent silibinin might increase tamoxifen levels and interfere with its conversion to an active metabolite.
Animal research suggests that the milk thistle constituent silibinin might increase plasma levels of tamoxifen and alter its conversion to an active metabolite. The mechanism appears to involve inhibition of pre-systemic metabolism of tamoxifen by cytochrome P450 (CYP) 2C9 and CYP3A4, and inhibition of P-glycoprotein-mediated efflux of tamoxifen into the intestine for excretion (17101). Whether this interaction occurs in humans is not known.
|
Theoretically, milk thistle might increase the effects of warfarin.
In one case report, a man stabilized on warfarin experienced an increase in INR from 2.64 to 4.12 after taking a combination product containing milk thistle 200 mg daily, as well as dandelion, wild yam, niacinamide, and vitamin B12. Levels returned to normal after stopping the supplement (101159). Although a direct correlation between milk thistle and the change in INR cannot be confirmed, some in vitro research suggests that milk thistle might inhibit cytochrome P450 2C9 (CYP2C9), an enzyme involved in the metabolism of various drugs, including warfarin (7089,17973,17976).
|
Theoretically, schisandra might increase the levels and clinical effects of cyclophosphamide.
In vitro research shows that schisandra increases the concentration of cyclophosphamide, likely through inhibition of cytochrome P450 3A4. After multiple doses of the schisandra constituents schisandrin A and schisantherin A, the maximum concentration of cyclophosphamide was increased by 7% and 75%, respectively, while the overall exposure to cyclophosphamide was increased by 29% and 301%, respectively (109636).
|
Schisandra can increase the levels and clinical effects of cyclosporine.
A small observational study in children with aplastic anemia found that taking schisandra with cyclosporine increased cyclosporine trough levels by 93% without increasing the risk of adverse events. However, the dose of cyclosporine was reduced in 9% of children to maintain appropriate cyclosporine blood concentrations (109637).
|
Theoretically, schisandra might increase the levels and clinical effects of CYP2C19 substrates.
In vitro research shows that schisandra inhibits CYP2C19, and animal research shows that schisandra increases the concentration of voriconazole, a CYP2C19 substrate (105566). Theoretically, schisandra may also inhibit the metabolism of other CYP2C19 substrates. This effect has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of CYP2C9 substrates.
In vitro and animal research suggests that schisandra induces CYP2C9 enzymes (14441). This effect has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of drugs metabolized by CYP3A4.
Most clinical and laboratory research shows that schisandra, administered either as a single dose or up to twice daily for 14 days, inhibits CYP3A4 and increases the concentration of CYP3A4 substrates such as cyclophosphamide, midazolam, tacrolimus, and talinolol (13220,17414,23717,91386,91388,91387,96631,105564,109636,109638,109639,109640,109641). Although one in vitro and animal study shows that schisandra may induce CYP3A4 metabolism (14441), this effect appears to be overpowered by schisandra's CYP3A4 inhibitory activity and has not been reported in humans.
|
Schisandra can increase the levels and clinical effects of midazolam.
A small pharmacokinetic study in healthy adults shows that taking schisandra extract (Hezheng Pharmaceutical Co.) containing deoxyschizandrin 33.75 mg twice daily for 8 days and a single dose of midazolam 15 mg on day 8 increases the overall exposure to midazolam by about 119%, increases the peak plasma level of midazolam by 86%, and decreases midazolam clearance by about 52%. This effect has been attributed to inhibition of CYP3A4 by schisandra (91388).
|
Schisandra might increase the levels and clinical effects of P-glycoprotein substrates.
In vitro research shows that schisandra extracts and constituents such as schisandrin B inhibit P-glycoprotein mediated efflux in intestinal cells and in P-glycoprotein over-expressing cell lines (17414,105643,105644). Additionally, a small clinical study shows that schisandra increases the peak concentration and overall exposure to talinolol, a P-glycoprotein probe substrate (91386). Theoretically, schisandra might inhibit the efflux of other P-glycoprotein substrates.
|
Schisandra can increase the levels and clinical effects of sirolimus.
A small pharmacokinetic study in healthy volunteers shows that taking 3 capsules of schisandra (Hezheng Pharmaceutical Company) containing a total of 33.75 mg deoxyschizandrin twice daily for 13 days and then taking a single dose of sirolimus 2 mg increases the overall exposure and peak level of sirolimus by two-fold. This effect is thought to be due to inhibition of cytochrome P450 3A4 by schisandra, as well as possible inhibition of the P-glycoprotein drug transporter (105643).
|
Schisandra can increase the levels and clinical effects of tacrolimus.
Clinical research in healthy children and adults, transplant patients, and patients with nephrotic syndrome and various rheumatic immunologic disorders shows that taking schisandra with tacrolimus increases tacrolimus peak levels by 183% to 268%, prolongs or delays time to peak tacrolimus concentrations, increases overall exposure to tacrolimus by 126% to 343%, and decreases tacrolimus clearance by 19% to 73% (17414,91387,15570,96631,105623,109638,109639,109640,109641,112889)(112890,112972,112973,112974). This effect is thought to be due to inhibition of P-glycoprotein drug transporter and CYP3A4 and CYP3A5 by schisandra (17414,96631,105623,105643,105644,112974). Some clinical and observational studies suggest that schisandra increases tacrolimus levels similarly in both expressors and non-expressors of CYP3A5, while other studies suggest it does so to a greater degree in CYP3A5 expressors than non-expressors (105623,109638,109639,109640,112889,112890,112973,112974). Animal research suggests that the greatest increase in tacrolimus levels occurs when schisandra is taken either concomitantly or up to 2 hours before tacrolimus (105564), and clinical and observational research in humans suggests that schisandra may increase whole blood levels of tacrolimus and decrease clearance of tacrolimus in a dose-dependent manner (109639,109640,112972).
|
Schisandra can increase the levels and clinical effects of talinolol.
A small pharmacokinetic study in healthy volunteers shows that taking schisandra extract 300 mg twice daily for 14 days with a single dose of talinolol 100 mg on day 14 increases the peak talinolol level by 51% and the overall exposure to talinolol by 47%. This effect is thought to be due to the possible inhibition of cytochrome P450 3A4 and P-glycoprotein by schisandra (91386).
tly.
|
Theoretically, schisandra might increase the levels and clinical effects of voriconazole.
Animal research shows that oral schisandra given daily for 1 or 14 days increases levels of intravenously administered voriconazole, a cytochrome P450 (CYP) 2C19 substrate. This effect is thought to be due to inhibition of CYP2C19 by schisandra (105566). However, this interaction has not been reported in humans.
|
Theoretically, schisandra might decrease the levels and clinical effects of warfarin.
Animal research suggests that oral schisandra extract, given daily for 6 days, reduces levels of intravenously administered warfarin. This effect might be due to the induction of cytochrome P450 (CYP) 2C9 metabolism by schisandra (14441). However, this interaction has not been reported in humans.
|
Theoretically, senna might increase the risk of adverse effects when taken with digoxin.
Overuse/abuse of senna increases the risk of adverse effects from cardiac glycosides, such as digoxin, due to potassium depletion (15425).
|
Theoretically, senna might increase the risk of hypokalemia when taken with diuretic drugs.
Overuse of senna might compound diuretic-induced potassium loss and increase the risk for hypokalemia (15425).
|
Theoretically, taking senna may interfere with the absorption of exogenous estrogens.
|
Theoretically, senna might increase the risk for fluid and electrolyte loss when taken with other stimulant laxatives.
|
Theoretically, excessive use of senna might increase the effects of warfarin.
Senna has stimulant laxative effects and can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. In one case report, excessive use of senna for 3 weeks resulted in diarrhea, bloody stools, and an elevated INR of 11.9 (16530).
|
Theoretically, taking wheatgrass with antidiabetes drugs might lower blood glucose levels and increase the risk of hypoglycemia.
|
Theoretically, wheatgrass might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that wheatgrass induces CYP1A2 enzymes (111404).
|
Below is general information about the adverse effects of the known ingredients contained in the product Herbal Cleanse Tablet. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and intravenously, astragalus root seems to be well tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: A case report raises concerns about liver and kidney cysts with astragalus use.
Cardiovascular ...Orally, astragalus has reportedly been associated with lacunar angina in one clinical trial. However, this may not have been caused by astragalus (17355). In addition, rapid intravenous administration of astragalus has resulted in temporary palpitations (32812).
Dermatologic ...Intravenously, astragalus may cause rash, eczema, and pruritus (33034).
Gastrointestinal ...Orally, astragalus has reportedly been associated with enterocolitis and nausea in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Genitourinary ...Orally, astragalus has reportedly been associated with vulvitis in one clinical trial. However, this effect may not have been caused by astragalus (17355).
Hepatic ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
Musculoskeletal ...Orally, astragalus has been associated with reports of musculoskeletal pain in one clinical trial. However, these effects may not have been caused by astragalus (114803).
Neurologic/CNS ...Intravenously, administration of astragalus has been associated with temporary dizziness in patients with heart failure in clinical research (32812,114804). Orally, astragalus has also been associated with dizziness in one clinical study. However, these effects may not have been caused by astragalus (114803).
Pulmonary/Respiratory ...Orally, astragalus has reportedly been associated with rhinosinusitis and pharyngitis in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Renal ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, burdock is well tolerated when consumed as a food.
Although a thorough evaluation of safety outcomes is lacking, there has been long-standing historical use of burdock with few noted adverse effects.
Serious Adverse Effects (Rare):
All ROAs: Allergic reactions, including contact dermatitis and anaphylaxis.
Dermatologic ...Contact dermatitis has been reported secondary to burdock, especially after prolonged use of the root oil (37422). There are cases of allergic dermatitis secondary to using burdock plasters. Two males and a 14 year-old female developed erythematous and vesicular, pruritic, and exudative reactions in areas corresponding to the application of burdock root plasters (12667). Reactions occurred up to 7 days after initial use. Patch testing was positive for burdock sensitivity in all three patients and was nonreactive in matched controls.
Hematologic ...In one case report, a 38-year-old female developed immune-mediated thrombocytopenia after consuming a "cleansing" tea containing unknown amounts of burdock and yellow dock. The patient presented with bruising, mild weakness, and fatigue, which started 2-3 days after consuming the tea, and was found to have a platelet count of 5,000 per mcL. Symptoms resolved after platelet transfusion and treatment with oral dexamethasone (108971). It is unclear if these effects were caused by burdock, yellow dock, the combination, or other contributing factors.
Hepatic ...A case of idiosyncratic drug-induced liver disease (DILI) is reported in a 36-year-old female who presented with abdominal pain after 1 month of taking an herbal liver detox tea containing burdock and other ingredients. Remarkable laboratory values included elevated liver enzymes, alkaline phosphatase, and total bilirubin. The patient received a loading dose of N-acetylcysteine and was hospitalized for 12 days (112178). However, it is unclear if the adverse effect was due to burdock, other ingredients, or the combination.
Immunologic ...There is one case of anaphylactic shock secondary to eating boiled burdock. One hour after eating boiled burdock the patient presented with redness over the entire body and dyspnea. He was found to have low blood pressure and was treated with subcutaneous epinephrine 1 mg and intravenous lactated ringer's solution containing hydrocortisone 100 mg and dexamethasone 8 mg. The cause of anaphylactic shock was attributed to allergenicity to burdock based on positive skin prick test results. Previously, the patient had experienced urticaria after eating boiled burdock (12660).
Neurologic/CNS ...Anticholinergic reactions including dry mouth, dizziness, blurred vision, weakness, dilated pupils, inability to urinate, and bradycardia have been reported following the consumption of burdock products (12662,37421,37431,37434,37435). However, these anticholinergic reactions are believed result from contamination of burdock with belladonna alkaloids. Burdock itself does not contain atropine or other constituents that would be responsible for these reactions.
General
...Orally, cranberry seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea and gastrointestinal discomfort.
Dermatologic ...Orally, skin redness and itching has been reported in one patient (46389).
Gastrointestinal ...In very large doses, for example 3-4 L per day of juice, cranberry can cause gastrointestinal upset and diarrhea, particularly in young children (46364). There are reports of abdominal and gastrointestinal discomfort after taking cranberry tablets, extracts, and juice in clinical trials (16720,46379,111407). Nausea, vomiting, and diarrhea have also been reported with consumption of lower doses of cranberry juice cocktail, 16 ounces per day, equivalent to about 4 ounces cranberry juice, for several weeks (16415).
Genitourinary ...Vulvovaginal candidiasis has been associated with ingestion of cranberry juice (46374). Clinical research suggests that ingestion of cranberry juice may be associated with vaginal itching and vaginal dryness (46471). One patient in clinical research stopped taking dried cranberry juice due to excessive urination (46437), and an isolated case of nocturia following ingestion of cranberry tablets has been reported (16720).
Hematologic ...Thrombocytopenia has been reported as an adverse event to cranberry juice (46459).
Other ...An isolated case of sensitive swollen nipples after taking cranberry tablets has been reported (16720).
General
...Orally, echinacea is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, heartburn, nausea and vomiting, rashes, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions and hepatitis have been reported.
Dermatologic ...Itching, urticaria, tingling, and allergic rashes have been reported with various echinacea preparations (8225,12355,17519,20059,20077,101592,111530,111540). In a study of children aged 2-11 years, rash occurred in about 7% of children treated with an extract of the above-ground parts of E. purpurea (EC31J2, Echinacin Saft, Madaus AG), compared with about 3% of those treated with placebo (4989,95652). There is concern that allergic reactions could be severe in some children. The Medicines and Healthcare Products Regulatory Agency in the United Kingdom (UK) recommends against the use of oral echinacea products in children under 12 years of age due to this risk of allergic reaction (18207). However, another study in children 4-12 years old shows that a specific E. purpurea product (Echinaforce Junior, A. Vogel) did not cause allergic or urticarial reactions more frequently than vitamin C (105719).
Gastrointestinal ...Gastrointestinal adverse effects include nausea and vomiting, abdominal pain, stomach upset, heartburn, diarrhea, and constipation (10802,11970,12355,13419,17519,20059,48680,105719,106626). An unpleasant taste, dry mouth, and burning, tingling or numbness of the tongue also occur (11970,12355,17519,20059,20070,20077).
Hematologic ...A 51-year-old female presented with leukopenia after taking echinacea 450 mg three times daily for 2 months, along with ginkgo biloba, multivitamins, and calcium. Her leukocyte count recovered upon stopping these supplements, but dropped again when she restarted echinacea alone about a year later. The problem resolved when echinacea was stopped permanently (48533). A 32-year-old male presented with severe thrombotic thrombocytopenic purpura (TTP) about 2 weeks after using an extract of E. pallida to treat a cold. He required admission to an intensive care unit and extensive plasmapheresis. The authors speculate that immunostimulant effects of echinacea induced or exacerbated the TTP (48572).
Hepatic
...Although uncommon, cases of echinacea-induced hepatitis have been reported.
One case report describes acute cholestatic autoimmune hepatitis in a 45-year-old male who had been taking an echinacea root extract 1500 mg daily for about 2 weeks. He presented with significantly elevated liver function tests (LFTs), elevated immunoglobulin G (IgG) levels, and a positive test for anti-smooth muscle antibodies, indicating an autoimmune process. Elevated LFTs and IgG levels returned to normal within one month of stopping echinacea (17518). Another case report describes acute cholestatic hepatitis in a 44-year-old male who had taken echinacea root tablets 600 mg daily for 5 days to treat flu-like symptoms. He presented with elevated LFTs, prothrombin time, and international normalized ratio (INR). His condition gradually improved after stopping echinacea, and his LFTs normalized within 3 months (91528).
Seven cases of hepatitis associated with echinacea use were reported to the Australian Adverse Drug Reactions Advisory Committee between 1979 and 2000, but specific details are lacking (8225).
One case report describes acute liver failure in a 2 year-old child who had been given about 100 mg of echinacea daily for 2 weeks. The patient presented with jaundice, diarrhea, lethargy, anorexia, and significantly elevated LFTs. A liver biopsy showed hepatocyte swelling, spotty necrosis, and inflammatory infiltrate with eosinophils. A full recovery was made over a 2-week period (88166).
Immunologic
...Allergic reactions, including urticaria, runny nose, dyspnea, bronchospasm, acute asthma, angioedema, and anaphylaxis, have been reported with various echinacea preparations (638,1358,8225).
Atopic individuals and those sensitive to other members of the Asteraceae family (ragweed, chrysanthemums, marigolds, daisies) seem to be at higher risk for these reactions (1358,8225).
A case report describes a 36-year-old female who presented with muscle weakness, electrolyte abnormalities, renal tubular acidosis, fatigue, and dry mouth and eyes after taking echinacea, kava, and St. John's Wort for 2 weeks., She also had a positive antinuclear antibody (ANA) test, with elevated anti-dsDNA antibodies SSA and SSB. Sjogren syndrome was diagnosed; the authors hypothesize that it may have been triggered by the immunostimulant effects of echinacea (10319). A 55-year-old male with a history of pemphigus vulgaris in remission for about a year experienced a flare of the disease after taking an echinacea supplement for one week. After stopping echinacea, medical treatment resulted in partial control of the disease (12171). Another case report describes a 58-year-old male who presented with marked eosinophilia and elevated immunoglobulin E (IgE) levels while taking an echinacea supplement. He required prednisone therapy until he stopped taking echinacea 3 years later, at which time his eosinophils and IgE normalized (48623). A 41-year-old male experienced four episodes of erythema nodosum, each occurring after he had taken echinacea for early symptoms of influenza. After stopping echinacea, he had no further exacerbations of erythema nodosum, suggesting that it had been triggered by the immunostimulant effects of echinacea (7057).
Musculoskeletal ...Reports of arthralgia and myalgia have been associated with echinacea (13418).
Neurologic/CNS ...Headache has been reported in people taking various echinacea preparations orally (3282,11970,17519,20059,20064). Dizziness has also been reported (3282,8225,11970). In one study using an alcoholic extract of the above-ground parts of E. purpurea (EC31J0, Echinacin, Madaus AG), somnolence and a tendency to aggressiveness were reported (3282).
General
...Orally, garlic is generally well tolerated.
Topically, garlic seems to be well tolerated. Intravenously, there is insufficient reliable information available about adverse effects.
Most Common Adverse Effects:
Orally: Abdominal pain, body odor, flatulence, malodorous breath, and nausea. Allergic reactions in sensitive individuals.
Topically: Burns and dermatitis with fresh garlic.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about increased risk of bleeding with garlic.
Dermatologic
...Orally, garlic may cause pruritus (51316,51474,107239), flushing, and acne (107239).
Oral intake of a specific garlic product containing allicin (Allimax) has been associated with a case of pruritic rash (51474). Enteric-coated garlic tablets standardized to 1.5% allicin have also been associated with a case of pruritus (51316). Garlic has also been associated with a case of superficial pemphigus in a 49-year-old male with type 2 diabetes (51564). Garlic-induced oral ulcers have also been reported (51467).
Topically, garlic may cause contact dermatitis and urticaria (4833,5004,12635,51258,51265,51375,51403,51412,51459,51483)(51511,51512,51530,51616,51617,51618,111769), as well as contact cheilitis (51384). Fresh garlic may be more likely to elicit a reaction than garlic extract. Most reactions have resolved following withdrawal of garlic therapy. In one case report, applying crushed garlic on the neck to help ease a sore throat resulted in an itchy, burning, erythematous lesion in a young female patient. The lesion healed after one week of treatment with topical antibiotics, steroids, and antihistamine ointments (88390). Cases of occupational eczema or dermatitis have been reported in cooks (51303,51210), food handlers (51292), and caterers (51304). According to one case report, dermatitis appeared in chefs exposed to garlic (15033). Treatment with acitretin 25 mg daily or topical psoralen-ultraviolet A (PUVA) for 12 weeks proved effective in mitigating the symptoms. A 34-year-old female with a history of hand dermatitis and paronychia had a worsening of these conditions after peeling raw garlic. She had a positive skin patch test to fresh, raw garlic but not to any other tested allergens, and the conditions resolved when she avoided contact with garlic (105528). Topically, garlic may also cause chemical burns, usually within 12 hours of application. Second- and third-degree chemical burns have been reported in adults, children, and infants exposed to topical garlic, often as an unintended consequence of using garlic medicinally on the skin (585,4832,51226,51230,51252,51281,51377,51418,51468,51495,51536)(51558,51576,51577,88409,96006). A case of painful blisters on the soles of the feet of a 23-year-old Chinese female has been attributed to chemical burns caused by applying crushed raw garlic for 3 hours (51440). Topically, garlic may also cause hyperpigmentation, ulcers, necrotic lesions, facial flushing, and local irritation (4832,15030,51268,51269,108606). In one case report, applying crushed raw garlic to the palatal mucosa for several minutes to relieve mouth pain resulted in a chemical burn that produced a 3 cm necrotic ulcer in an adult female with trigeminal neuralgia (108606).
Gastrointestinal
...Orally, dehydrated garlic preparations or raw garlic may cause malodorous breath (51438,51444), body odor (732,1873,4784,4793,4795,4798,9201,10787,42692,49769)(51269,51316,51467,51602), abdominal pain or fullness, anorexia, diarrhea, constipation, flatulence, belching, heartburn, nausea, unpleasant taste, reflux, and bowel obstruction (1884,6457,6897,9201,49769,51269,51343,51380,51438,51442)(51450,51457,51466,51471,51474,51520,51593,51602,51623,88398)(88405,111766,114892).
Large quantities of garlic may damage the gastrointestinal tract. In one case report, a patient taking garlic for hypertension reported odynophagia and retrosternal pain after taking garlic without any water the previous day. An esophageal lesion 3 cm in length was detected upon endoscopy. The symptoms resolved 3 days after starting a liquid diet and taking lansoprazole 30 mg twice daily and sucralfate four times daily (88389). One case of bowel obstruction was reported in a 66-year-old male who ingested an entire garlic bulb (51525). Esophageal perforation has been reported in at least 17 individuals who consumed entire garlic cloves. In one case the perforation led to mediastinitis and death (102672).
Garlic has also been associated with eosinophilic infiltration of the gastrointestinal tract. In one case report a 42-year-old female presented with symptoms of eosinophilic gastroenteritis, which included pollinosis, asthma, diarrhea, heart burn, peripheral eosinophilia, and urticaria. After stopping use of garlic and sesame, the patient improved (51441). In a case report of eosinophilic esophagitis, garlic was determined to be the causative agent in a patient with long-standing gastrointestinal symptoms. The patient had attempted to treat upper gastrointestinal symptoms as gastrointestinal reflux disease without success for many years. Skin prick testing showed a positive reaction to garlic, of which the patient noted frequent consumption. Marked symptom improvement was noted within 3 weeks of garlic avoidance (88393).
Intravenously, garlic 1 mg/kg of body weight daily diluted into 500 mL saline and administered over 4 hours has been reported to cause abdominal discomfort, vomiting, diarrhea, nausea, anorexia, flatulence, weight loss, and garlicky body odor (51462).
Clinical research suggests that patients with metabolic syndrome taking 1600 mg of powdered garlic by mouth daily for 3 months may experience improved intestinal transit time when compared with placebo, suggesting that garlic powder may reduce symptoms of constipation (110722).
Genitourinary ...Orally, garlic might cause dysuria, hematuria, or polyuria (51438,51450,51467,113618). In one case, an older male with high dietary and supplemental garlic intake at doses of 300-5400 mg daily for 3-4 years developed severe hematuria with clots after undergoing a minimally invasive prostate procedure (113618).
Hematologic
...Oral use of dietary garlic or supplements containing garlic has caused platelet dysfunction, increased fibrinolytic activity, prolonged bleeding time, retrobulbar hemorrhage (bleeding behind the eye) postoperative bleeding, and spinal epidural hematoma (586,587,4801,4802,11325,51397,51473,51491,51532,51534)(51570,51584,51593,51594,113618).
Also, a case of kidney hematoma following extracorporeal shock-wave lithotripsy (SWL) has been reported in a patient with nephrolithiasis who took aged garlic (51630). A case of increased bleeding time that complicated epistaxis management has been reported in a patient taking garlic, aspirin, and milk thistle (51426).
Intravenously, garlic has been associated with the development of thrombophlebitis at the injection site (51462).
Immunologic
...There is a case report of an immediate sensitivity reaction to oral raw garlic, resulting in wheals, in a 31-year-old female.
The patient did not react to cooked garlic, and skin prick tests showed allergy only to raw garlic (96015). Researchers note that at least some allergens in raw garlic are heat labile (88392,96012,96015). This suggests that consuming cooked rather than raw garlic may help avoid this reaction in patients allergic to raw garlic. However, different people react to different allergens in garlic. At least some of these allergens are heat stable (96012). While rare, garlic-induced anaphylaxis has been reported (88392,96012).
Topically, allergic contact dermatitis has been reported in case reports (51406,51498,51510,51519,51560).
Musculoskeletal ...Orally, garlic has been associated with individual cases of gout and low back pain (51474,51467), but it is not clear if these adverse events can be attributed to garlic.
Neurologic/CNS ...Orally, dizziness, insomnia, headaches, diaphoresis, fever, chills, somnolence, increased appetite, euphoria, and weight loss have been reported with garlic (15032,42692,51316,51467,51471,51520). In one case, the smell of garlic was identified as a trigger for migraines in a 32-year-old female. The subject reported fortification spectra along with visual spots for a few seconds followed by instantaneous biparietal, crushing level (10/10) headaches upon exposure to the scent of garlic or onion (88404).
Pulmonary/Respiratory ...Garlic exposure, most notably in occupational settings, may cause asthma and other symptoms such as sneezing, nasal obstruction, rhinorrhea, and sinusitis (40661,51218). A case of minor hemoptysis has been reported for one patient with cystic fibrosis following intake of garlic capsules orally once daily for 8 weeks (51438). A 77-year-old female developed pneumonia related to the intake of one whole black garlic clove daily. The cloves were prepared by heating a whole garlic bulb in a pot for one month. Symptoms included dyspnea and coughing, and test results were positive for lymphocyte-induced stimulation by black garlic and raw garlic. The patient required treatment with oral steroids and was told to avoid garlic (96011).
General
...Orally, milk thistle is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal bloating, diarrhea, dyspepsia, flatulence, and nausea. However, these adverse effects do not typically occur at a greater frequency than with placebo.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis, have been reported.
Dermatologic ...Orally, milk thistle may cause allergic reactions including urticaria, eczema, skin rash, and anaphylaxis in some people (6879,7355,8956,63210,63212,63238,63251,63315,63325,95029). Allergic reactions may be more likely to occur in patients sensitive to the Asteraceae/Compositae family (6879,8956). A case report describes a 49-year-old female who developed clinical, serologic, and immunopathologic features of bullous pemphigoid after taking milk thistle orally for 6 weeks. Symptoms resolved after treatment with prednisone and methotrexate (107376). Topically, milk thistle can cause erythema (110489).
Gastrointestinal ...Mild gastrointestinal symptoms have been reported, including nausea, vomiting, bloating, diarrhea, epigastric pain, abdominal colic or discomfort, dyspepsia, dysgeusia, flatulence, constipation, and loss of appetite (2616,6879,8956,13170,63140,63146,63160,63210,63218,63219)(63221,63244,63247,63250,63251,63320,63321,63323,63324,63325)(63327,63328,95024,95029,107374,114914). There is one report of a 57-year-old female with sweating, nausea, colicky abdominal pain, diarrhea, vomiting, weakness, and collapse after ingesting milk thistle; symptoms subsided after 24-48 hours without medical treatment and recurred with re-challenge (63329).
Musculoskeletal ...In one clinical study three patients taking milk thistle 200 mg orally three times daily experienced tremor; the incidence of this adverse effect was similar for patients treated with fluoxetine 10 mg three times daily (63219).
Neurologic/CNS ...With oral milk thistle use, CNS symptoms have been reported, including headache, dizziness, and sleep disturbances (114913,114914).
General
...Orally, schisandra seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Decreased appetite, heartburn, stomach upset, and urticaria.
Dermatologic ...Orally, schisandra can cause urticaria in some patients (11).
Gastrointestinal ...Orally, schisandra can cause heartburn, decreased appetite, and stomach upset (11).
General
...Orally, senna is generally well-tolerated when used short-term in appropriate doses.
Most Common Adverse Effects:
Orally: Abdominal pain and discomfort, cramps, diarrhea, flatulence, nausea, fecal urgency, and urine discoloration.
Serious Adverse Effects (Rare):
Orally: Skin eruptions.
Cardiovascular ...Excessive use can cause potassium depletion and other electrolyte abnormalities (15425). In theory, this could cause potentially dangerous changes in heart rhythm. A small decrease in heart rate was seen in one clinical study (74587).
Dermatologic ...In adults, there are rare case reports of skin eruptions associated with senna, including erythema multiforme, fixed drug eruption, lichenoid reaction, toxic epidermal necrolysis, urticaria, photosensitivity, and contact dermatitis (96558). Infants and young children given senna products have experienced contact reactions on the buttocks due to prolonged exposure to stool while wearing a diaper overnight. These reactions range from erythema with small blisters, to large fluid-filled blisters with skin sloughing, as occurs with second degree burns (96559). In a case series of children treated with senna for chronic constipation, burn-like reactions occurred in 2.2%, typically with higher doses (mean 60 mg/day, range 35.2 to 150 mg/day) (96558,96559). These reactions can be avoided by giving senna early in the day, so that bowel movements occur at a time when diapers can be changed quickly (96559).
Gastrointestinal ...Orally, senna can cause abdominal pain and discomfort, cramps, bloating, flatulence, nausea, fecal urgency, and diarrhea (15427,15434,15435,15436,15439,15440,15441,105955). Chronic use has also been associated with "cathartic colon," radiographically diagnosed anatomical changes to the colon such as benign narrowing, colonic dilation, and loss of colonic folds (15428). The clinical relevance of these findings is unclear. Chronic use can also cause pseudomelanosis coli (pigment spots in intestinal mucosa) which is harmless, usually reverses with discontinuation, and is not associated with an increased risk of developing colorectal adenoma or carcinoma (6138). The cathartic properties of senna leaf are greater than the fruit (15430). Thus, the American Herbal Products Association only warns against long-term use of senna leaf (12).
Hepatic ...Chronic liver damage, portal vein thrombosis, and hepatitis have been reported following oral use of senna alkaloids, such as in tea made from senna leaves (13057,13095,41431,74560,74564,74584,105956). There is a case report of hepatitis in a female who consumed moderate amounts of senna tea. The patient was a poor metabolizer of cytochrome P450 2D6 (CYP2D6). It's thought that moderate doses of senna in this patient led to toxic hepatitis due to the patient's reduced ability to metabolize and eliminate the rhein anthrone metabolites of senna, which are thought to cause systemic toxicity (13057). There is also a case of liver failure, encephalopathy, and renal insufficiency in a female who consumed 1 liter/day of senna tea, prepared from 70 grams of dried senna fruit, over 3 years (13095). In another case report, a 3-year-old female presented with hepatitis that led to pancytopenia after drinking tea made from 2-3 grams dry senna leaves three times or more weekly for over one year (105956).
Immunologic ...In one case report, a 19-year-old male developed anaphylaxis with dyspnea, facial edema, and hives. This reaction was determined to be caused by the senna content in a specific combination product (Delgaxan Plus, Pompadour Ibérica) that the patient ingested (105957).
Musculoskeletal ...Hypertrophic osteoarthropathy, finger clubbing, cachexia, and tetany have been reported from excessive oral senna use in humans (15426,74580,74582,74620,74625).
Renal ...Nephrocalcinosis has been reported as a result of oral senna overuse (74582).
General
...Orally, wheatgrass is generally well tolerated.
Most Common Adverse Effects:
Orally: Allergic reactions, anorexia, constipation, nausea.
Gastrointestinal ...Orally, wheatgrass may cause nausea, anorexia, and constipation (11165).
Immunologic ...Wheat can cause allergic reactions in sensitive individuals. Due to the prevalence of this allergy in the general population, wheat and wheat products, such as wheatgrass, are classified as major food allergens in the United States (105410).