Ingredients | Ingredients: |
---|---|
Water
|
|
Glyceryl Stearate
|
|
Cetearyl Olivate
|
|
Sorbitan Olivate
|
|
Limnanthes alba (Meadowfoam) seed oil
(Limnanthes alba )
(seed)
|
|
(Calendula officinalis )
(flower)
|
|
(Calendula officinalis )
|
|
Squalane
|
|
Caprylic/Capric Triglyceride
|
|
(Hypericum perforatum )
(flower/leaf/stem)
|
|
Dioscorea villosa (Wild Yam) root extract
(Dioscorea villosa )
(root)
|
|
Glycereth-2 Cocoate
|
|
Benzoic Acid
|
|
Sodium PCA
|
|
Tocopheryl Acetate
|
|
Allantoin
|
Below is general information about the effectiveness of the known ingredients contained in the product Isogen Forte Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Isogen Forte Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when the flower preparations are used orally or topically and appropriately (4,19779,36931,39503,93552,93557,96647,105088).
PREGNANCY: LIKELY UNSAFE
when used orally; contraindicated due to spermatocide, antiblastocyst, and abortifacient effects.
There is insufficient reliable information available about the safety of calendula when used topically during pregnancy (4).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used rectally and appropriately. Glycerol rectal suppositories and enemas are approved by the US Food and Drug Administration (FDA) for over-the-counter use to treat occasional constipation (15,272). ...when used topically and appropriately as a lotion, emulsion, or humectant (15,272,93754,93758,93759,99164).
POSSIBLY SAFE ...when used orally, short-term. Glycerol has been used with apparent safety in clinical trials at doses of up to 1.5 grams/kg (2474,2475,99162).
POSSIBLY UNSAFE ...when used intravenously. While some research suggests that intravenous glycerol can be safely administered for two consecutive days twice monthly for up to 6 months (106649), in another study, hemolysis was reported in 98% of patients treated with intravenous glycerol for acute ischemic stroke (2482).
CHILDREN: LIKELY SAFE
when used rectally and appropriately.
Glycerol rectal suppositories and enemas are approved by the US FDA for over-the-counter use to treat occasional constipation in children 2 years of age and older (15,272). ...when used topically and appropriately as an emulsion or humectant in children 1 month of age and older (15,272,93756).
CHILDREN: POSSIBLY SAFE
when used orally, short-term.
Glycerol has been used with apparent safety in clinical trials in children 2 months to 16 years of age at doses of 1.5 gram/kg, up to a maximum dose of 25 grams, taken every 6 hours (93762,93763).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when soy protein is used orally and appropriately. Soy protein products in doses up to 60 grams, providing up to 185 mg isoflavones, daily have been safely used in studies lasting up to 16 weeks (842,2293,2294,2296,3025,3402,3977,4755,6412,8530)(10372,11805).
POSSIBLY SAFE ...when soy extracts are used orally and appropriately, short-term. Soy extracts containing concentrated isoflavones in doses of 35-120 mg daily have been used with apparent safety for up to 6 months (4751,6455,7802,12040,12048,13209,95994,95999).
CHILDREN: LIKELY SAFE
when consumed in amounts commonly found in foods or as a component of infant formula (3400,4912,7331).
Soy milk that's not designed for infants should not be used as a substitute for infant formula. Regular soy milk can lead to nutrient deficiencies (12045). Most evidence shows that exposure to soy formula or other soy products in infancy does not cause early onset of puberty or health or reproductive problems later in life (7331,11080,108245). However, some small cohort studies have suggested that higher soy intake during childhood may be associated with an increased risk of precocious puberty (108240) and may be weakly correlated with the development of breasts in children less than 2 years of age (75520). This is in contrast to an observational study in Chinese children ages 7-9 years which suggests that higher soy intake is associated with delayed puberty (108252). One small cohort study has also found that use of soy infant formula may be associated with an increased risk of endometriosis in adulthood, although endometriosis was also correlated with prematurity, which may have confounded the findings (101803).
CHILDREN: POSSIBLY UNSAFE
when used orally as an alternative to cow's milk in children with severe milk allergy (75359).
Although soy protein-based infant formulas are often promoted for children with milk allergy, children with a severe allergy to cow's milk are also frequently sensitive to soy protein (9883). There is insufficient reliable information available about the safety of soy products when used in amounts higher than typical food quantities for children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Soy contains mildly estrogenic constituents (3373,3988,3989,3990,3994,6029,75303). Theoretically, therapeutic use of soy might adversely affect fetal development; avoid using.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
A single 20-gram dose of roasted soybeans, containing 37 mg isoflavones, produces four to six times less isoflavones in breast milk than provided in a soy-based infant formula (2290). There is insufficient reliable information available about the safety of long-term use of therapeutic amounts of soy during lactation.
LIKELY SAFE ...when used orally and appropriately. St. John's wort extracts in doses up to 900 mg daily seem to be safe when used for up to 12 weeks (3547,3550,4835,5096,6400,6434,7047,13021,13156,13157)(14417,76143,76144,89666,89669,95510). Some evidence also shows that St. John's wort can be safely used for over one year (13156,13157,76140), and may have better tolerability than selective serotonin reuptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs) (4897,76153,76143,104036).
POSSIBLY SAFE ...when used topically and appropriately. St. John's wort 0.5% extract seems to be safe when used once weekly for 4 weeks (110327). St. John's wort oil has been used with apparent safely twice daily for 6 weeks (110326). However, topical use of St. John's wort can cause photodermatitis with sun exposure (110318).
POSSIBLY UNSAFE ...when used orally in large doses. St. John's wort extract can be unsafe due to the risk of severe phototoxic skin reactions. Taking 2-4 grams of St. John's wort extract (containing hypericin 5-10 mg) daily appears to increase the risk of photosensitivity (758,4631,7808).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Preliminary population research has found that taking St. John's wort while pregnant is associated with offspring that develop neural tube, urinary, and cardiovascular malformations. Subgroup analyses suggest that these risks may be higher when taking St. John's wort during the first trimester when compared with the second or third trimester. However, more research is needed to confirm these findings (106052). Animal-model research also shows that constituents of St. John's wort might have teratogenic effects (9687,15122). Until more is known, St. John's wort should not be taken during pregnancy.
LACTATION: POSSIBLY UNSAFE
when used orally.
Nursing infants of mothers who take St. John's wort have a greater chance of experiencing colic, drowsiness, and lethargy (1377,15122,22418); avoid using.
CHILDREN: POSSIBLY SAFE
when used orally, and appropriately, short-term.
St. John's wort extracts in doses up to 300 mg three times daily seem to be safe when used for up to 8 weeks in children aged 6-17 years (4538,17986,76110).
LIKELY SAFE ...when consumed in amounts found in foods, up to 10 mg/kg per day (4914). It has Generally Recognized as Safe (GRAS) status in the US (4912). ...when used orally for medicinal use in amounts up to 15 grams per day (4914,4916,4917,4918). ...when used topically and appropriately (4914,89591,95794).
PREGNANCY AND LACTATION:
Insufficient reliable information is available; avoid using in amounts greater than those found in foods.
Below is general information about the interactions of the known ingredients contained in the product Isogen Forte Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, calendula might have additive effects when used with CNS depressants, although this appears to be unlikely.
|
Theoretically, antibiotics may decrease the activity of soy isoflavones.
Intestinal bacteria are responsible in part for converting soy isoflavones into their active forms. Antibiotics may decrease the amount of intestinal bacteria and decrease its ability to convert isoflavones (7657).
|
Soy can lower blood glucose and have additive effects with antidiabetes drugs.
Clinical research shows that whole soy diets and soy-based meals reduce fasting glucose levels in diabetic and non-diabetic individuals (75268,75296,75378,75493,96001). Also, individuals following a soy-based meal replacement plan seem to require lower doses of sulfonylureas and metformin to manage blood glucose levels when compared with individuals following a diet plan recommended by the American Diabetes Association (75268).
|
Theoretically soy protein may have additive effects with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, soy might reduce the clearance of caffeine.
Soy contains genistein. Taking genistein 1 gram daily for 14 days seems to inhibit caffeine clearance and metabolism in healthy females (23582). This effect has been attributed to inhibition of the cytochrome P450 1A2 (CYP1A2) enzyme, which is involved in caffeine metabolism. It is unclear if this effect occurs with the lower amounts of genistein found in soy.
|
Soy might modestly induce CYP2C9 enzymes. However, this effect does not seem to be clinically significant.
In vitro research suggests that an unhydrolyzed soy extract might induce CYP2C9. However, the significance of this interaction is likely minimal. In healthy females taking a specific extract of soy (Genistein Soy Complex, Source Naturals), blood levels of losartan, a CYP2C9 substrate, were not significantly affected (16825).
|
Theoretically, soy might have additive effects when used with diuretic drugs.
Animal research suggests that genistein, a soy isoflavone, increases diuresis within 6 hours of subcutaneous administration in rats. The effects seem to be similar to those of furosemide (75604). This effect has not been reported in humans.
|
Theoretically, soy might competitively inhibit the effects of estrogen replacement therapy.
Soy contains phytoestrogens and has been shown to have estrogenic activity in some patients (3860). Although this has not been demonstrated in humans, theoretically, concomitant use of soy with estrogen replacement therapy might reduce the effects of the estrogen replacement therapy.
|
Soy products might reduce the absorption of levothyroxine in some patients.
Preliminary clinical research and a case report suggest that soy-based formulas inhibit the absorption of levothyroxine in infants with congenital hypothyroidism (20636,20637,75548,90959). A levothyroxine dosage increase may be needed for infants with congenital hypothyroidism while using soy-based formulas, and the dose may need to be reduced when soy-based formulas are no longer administered. However, in postmenopausal adults, clinical research shows that taking a single dose of soy extract containing isoflavones 60 mg along with levothyroxine does not affect the oral bioavailability of levothyroxine (95996).
|
Taking soy products containing high amounts of tyramine along with MAOIs can increase the risk of hypertensive crisis.
Fermented soy products such as tofu and soy sauce contain tyramine, a naturally occurring chemical that affects blood pressure regulation. The metabolism of tyramine is decreased by MAOIs. Consuming more than 6 mg of tyramine while taking an MAOI can increase the risk of hypertensive crisis (15649). The amount of tyramine in fermented soy products is usually less than 0.6 mg per serving; however, there can be significant variation depending on the specific product used, storage conditions, and length of storage. Storing one brand of tofu for a week can increase tyramine content from 0.23 mg to 4.8 mg per serving (15649,15701,15702). Advise patients taking MAOIs to avoid fermented soy products that contain high amounts of tyramine.
|
Theoretically, combining soy isoflavones with transdermal progesterone may worsen bone density.
Clinical research suggests that significant bone loss may occur in females with osteoporosis who receive a combination of transdermal progesterone with soy milk containing isoflavones when compared with placebo, soy milk alone, or progesterone alone (69859).
|
Theoretically, estrogenic soy isoflavones might alter the effects of tamoxifen.
Laboratory research suggests that genistein and daidzen, isoflavones from soy, can antagonize the antitumor effects of tamoxifen under some circumstances (7072,14362,8966); however, soy isoflavones might have different effects when used at different doses. A relatively low in vitro concentration of soy isoflavones such as 1 microM/L seems to interfere with tamoxifen, whereas high in vitro concentrations such as those >10 microM/L might actually enhance tamoxifen effects. People on a high-soy diet have soy isoflavones levels ranging from 0.1-6 microM/L. Until more is known, advise patients taking tamoxifen to avoid therapeutic use of soy products.
|
Theoretically, soy might interfere with the effects of warfarin.
Soy milk has been reported to decrease the international normalized ratio (INR) in a patient taking warfarin. The mechanism of this interaction is not known (9672). However, animal and in vitro research suggests that soy may also inhibit platelet aggregation (3992). Dosing adjustments for warfarin may be necessary.
|
St. John's wort increases the clearance of alprazolam and decreases its effects.
Alprazolam, which is used as a probe for cytochrome P450 3A4 (CYP3A4) activity, has a two-fold increase in clearance when given with St. John's wort. St. John's wort reduces the half-life of alprazolam from 12.4 hours to 6 hours (10830).
|
St. John's wort may increase the clearance of ambristentan and decrease its effects.
Clinical research in healthy volunteers shows that taking St. John's wort 900 mg daily decreases the area under the concentration-time curve of ambrisentan 5 mg by 17% to 26%. Ambrisentan clearance was increased by 20% to 35% depending on CYP2C19 genotype. However, these small changes are unlikely to be clinically significant (99511).
|
St. John's wort might have additive phototoxic effects with aminolevulinic acid.
Concomitant use with St. John's wort extract may cause synergistic phototoxicity. Delta-aminolevulinic acid can cause a burning erythematous rash and severe swelling of the face, neck, and hands when taken with St. John's wort (9474).
|
St. John's wort might decrease the levels and clinical effects of boceprevir.
Boceprevir increases the maximum concentration and concentration at 8 hours of the St. John's wort constituent, hypericin, by approximately 30%. However, St. John's wort does not significantly change the area under the concentration-time curve or maximum plasma concentration of boceprevir 800 mg three times daily in healthy adults (95507,96552).
|
St. John's wort might reduce the levels and effects of bupropion.
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20%. This effect is attributed to the induction of cytochrome P450 2B6 (CYP2B6) by St. John's wort (89662).
|
St. John's wort might increase the levels and effects of clopidogrel.
Taking St. John's wort with clopidogrel seems to increase the activity of clopidogrel. In clopidogrel non-responders, taking St. John's wort seems to induce metabolism of clopidogrel to its active metabolite by cytochrome P450 enzymes 3A4 and 2C19. This leads to increased antiplatelet activity (13038,89671,96552). Theoretically, this might lead to an increased risk of bleeding in clopidogrel responders.
|
St. John's wort might decrease the levels and clinical effects of clozapine.
A case report describes a female with schizophrenia controlled on clozapine who had a return of symptoms when she started taking St. John's wort. The plasma concentration of clozapine was reduced, likely because its clearance was increased due to induction of the cytochrome P450 enzymes 3A4, 1A2, 2C9, and 2C19 by St. John's wort (96552).
|
St. John's wort increases the clearance of contraceptive drugs and reduces their clinical effects.
Females taking St. John's wort and oral contraceptives concurrently should use an additional or alternative form of birth control. St. John's wort can decrease norethindrone and ethinyl estradiol levels by 13% to 15%, resulting in breakthrough bleeding, irregular menstrual bleeding, or unplanned pregnancy (11886,11887,13099). Bleeding irregularities usually occur within a week of starting St. John's wort and regular cycles usually return when St. John's wort is discontinued. Unplanned pregnancy has occurred with concurrent use of oral contraceptives and St. John's wort extract (9880). St. John's wort is thought to induce the cytochrome P450 1A2 (CYP1A2), 2C9 (CYP2C9), and 3A4 (CYP3A4) enzymes, which are responsible for metabolism of progestins and estrogens in contraceptives (1292,7809,9204).
|
St. John's wort reduces the levels and clinical effects of cyclosporine.
Concomitant use can decrease plasma cyclosporine levels by 30% to 70% (1234,4826,4831,4834,7808,9596,10628,96552). Using St. John's wort with cyclosporine in patients with heart, kidney, or liver transplants can cause subtherapeutic cyclosporine levels and acute transplant rejection (1234,1293,1301,6112,6435,7808,9596). This interaction has occurred with a St. John's wort extract standardized to 0.3% hypericin and dosed at 300-600 mg per day (6435,10628). Withdrawal of St. John's wort can result in a 64% increase in cyclosporine levels (1234,4513,4826,4831,4834). St. John's wort induces cytochrome P450 3A4 (CYP3A4) and the multi-drug transporter, P-glycoprotein/MDR-1, which increases cyclosporine clearance (1293,1340,9204,9596).
|
St. John's wort may increase the metabolism and reduce the levels of CYP1A2 substrates.
|
St. John's wort may increase the metabolism and reduce the levels of CYP2B6 substrates.
Clinical research shows that taking St. John's wort 325 mg three times daily for 14 days along with bupropion, a CYP2B6 substrate, reduces the area under the concentration-time curve by approximately 14% and increases the clearance of bupropion by approximately 20% (89662).
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C19 substrates.
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces CYP2C19 and increases metabolism of mephenytoin (Mesantoin). In patients with wild-type 2C19 (2C19*1/*1) metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405). Theoretically, St. John's wort might increase metabolism of other CYP2C19 substrates.
|
St. John's wort may increase the metabolism and reduce the levels of CYP2C9 substrates.
There is contradictory research about the effect of St. John's wort on CYP2C9. Some in vitro research shows that St. John's wort induces CYP2C9, but to a lesser extent than CYP3A4 (9204,10848,11889). St. John's wort also induces metabolism of the S-warfarin isomer, which is a CYP2C9 substrate (11890). Other research shows that St. John's wort 300 mg three times daily for 21 days does not significantly affect the pharmacokinetics of a single 400 mg dose of ibuprofen, which is also a CYP2C9 substrate (15546). Until more is known, use St. John's wort cautiously in patients who are taking CYP2C9 substrates.
|
St. John's wort increases the metabolism and reduces the levels of CYP3A4 substrates.
|
St. John's wort reduces the levels and clinical effects of digoxin.
St. John's wort can reduce the bioavailability, serum levels, and therapeutic effects of digoxin. Taking an extract of St. John's wort 900 mg, containing hyperforin 7.5 mg or more, daily for 10-14 days, can reduce serum digoxin levels by 25% in healthy people. St. John's wort is thought to affect the multidrug transporter, P-glycoprotein, which mediates the absorption and elimination of digoxin and other drugs (382,6473,7808,7810,9204,96552,97171). St. John's wort products providing less than 7.5 mg of hyperforin daily do not appear to affect digoxin levels (97171).
|
St. John's wort reduces the levels and clinical effects of docetaxel.
Clinical research shows that taking a specific St. John's wort product (Hyperiplant, VSM) 300 mg three times daily for 14 days increases docetaxel clearance by about 14%, resulting in decreased plasma concentrations of docetaxel in cancer patients. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89661).
|
Theoretically, St. John's wort may reduce the levels and clinical effects of fentanyl.
Given that St. John's wort induces cytochrome P450 3A4 (CYP3A4) and P-glycoprotein, it is possible that concomitant use of St. John's wort with fentanyl will reduce plasma levels and analgesic activity of fentanyl (96552). However, some clinical research in healthy adults shows that taking St. John's wort (LI-160, Lichtwer Pharma) 300 mg daily for 21 days does not alter the pharmacokinetics or clinical effects of intravenous fentanyl (102868). It is unclear if these findings can be generalized to oral, intranasal, or transdermal fentanyl.
|
St. John's wort may increase the levels and clinical effects of fexofenadine.
A single dose of St. John's wort decreases the clearance of fexofenadine and increases its plasma levels. However, the effect of St. John's wort on plasma levels of fexofenadine seems to be lost if dosing is continued for more than 2 weeks (9685). Patients taking fexofenadine and St. John's wort concurrently should be monitored for possible fexofenadine toxicity.
|
St. John's wort may reduce the levels and clinical effects of finasteride.
St. John's wort reduces plasma levels of finasteride in healthy male volunteers due to induction of finasteride metabolism via cytochrome P450 3A4 (CYP3A4). The clinical significance of this interaction is not known (96552).
|
St. John's wort may reduce the levels and clinical effects of gliclazide.
Taking St. John's wort decreases the half-life and increases clearance of gliclazide in healthy people (22431).
|
St. John's wort may increase the metabolism and reduce the effectiveness of atorvastatin, lovastatin, and rosuvastatin. However, it does not seem to affect pravastatin, pitavastatin, or fluvastatin.
Concomitant use of St. John's wort can reduce plasma concentrations of the active simvastatin metabolite, simvastatin hydroxy acid, by 28%. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter. This increases simvastatin clearance. It also increases the clearance of atorvastatin (Lipitor), lovastatin (Mevacor), and rosuvastatin (Crestor). St. John's wort does not seem to affect the plasma concentrations of pravastatin (Pravachol), pitavastatin (Livalo) or fluvastatin (Lescol), which are not substrates of CYP3A4 or P-glycoprotein (10627,96552,97171).
|
St. John's wort reduces the levels and clinical effects of imatinib.
Taking St. John's wort 900 mg daily for 2 weeks reduces the bioavailability and half-life of a single dose of imatinib and decreases its serum levels by 30% in healthy volunteers. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, which increases clearance of imatinib (11888,96552).
|
St. John's wort may reduce the levels and clinical effects of indinavir.
In healthy volunteers, taking St. John's wort concurrently with indinavir reduces plasma concentrations of indinavir by inducing metabolism via cytochrome P450 3A4 (CYP3A4) (96552). Theoretically, this could result in treatment failure and viral resistance.
|
St. John's wort reduces the levels and clinical effects of irinotecan.
St. John's wort 900 mg daily for 18 days decreases serum levels of irinotecan by at least 50%. Clearance of the active metabolite of irinotecan, SN-38, is also increased, resulting in a 42% decrease in the area under the concentration-time curve (9206,97171). This is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (7092,96552).
|
St. John's wort might reduce the levels and clinical effects of ivabradine.
Taking St. John's wort 900 mg containing 7.5 mg of hyperforin daily for 14 days with a single dose of ivabradine causes a 62% reduction in plasma levels of ivabradine. This interaction is thought to be due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort, increasing the metabolism of ivabradine (96552,97171).
|
St. John's wort reduces the levels and clinical effects of ketamine.
Taking St. John's wort 300 mg three times daily for 14 days can decrease maximum serum levels of ketamine by around 66% and area under the concentration-time curve of ketamine by 58%. This is most likely due to induction of cytochrome P450 3A4 (CYP3A4) by St. John's wort (89663).
|
St. John's wort reduces the levels and clinical effects of mephenytoin.
Preliminary clinical research in healthy males shows that taking St. John's wort for 14 days induces cytochrome P450 2C19 (CYP2C19) and significantly increases metabolism of mephenytoin (Mesantoin). In people with wild-type 2C19, metabolism was almost 4-fold greater in subjects who received St. John's wort compared to placebo. In contrast, patients with 2C19*2/*2 and *2/*3 genotypes did not demonstrate a similar increase in metabolism (17405).
|
St. John's wort might reduce the levels and clinical effects of methadone.
St. John's wort might decrease the effectiveness of methadone by reducing its blood concentrations. In one report, two out of four patients on methadone maintenance therapy for addiction experienced methadone withdrawal symptoms after taking St. John's wort 900 mg daily for a median of 31 days. There was a median decrease in blood methadone concentration of 47% (range: 19% to 60%) when compared to baseline (22419).
|
St. John's wort might reduce the levels and clinical effects of methylphenidate.
St. John's wort might decrease the effectiveness of methylphenidate. In one report, an adult male, stabilized on methylphenidate for attention deficit-hyperactivity disorder (ADHD), experienced increased attention problems and ADHD symptoms after taking St. John's wort 600 mg daily for 4 months. ADHD symptoms improved when St. John's wort was discontinued (15544). The mechanism of this interaction is unknown.
|
St. John's wort decreases the levels and clinical effects of NNRTIs.
St. John's wort increases the oral clearance of nevirapine (Viramune) by 35%. Subtherapeutic concentrations are associated with therapeutic failure, development of viral resistance, and development of drug class resistance. St. John's wort induces intestinal and hepatic cytochrome P450 3A4 (CYP3A4) and intestinal P-glycoprotein/MDR-1, a drug transporter (1290,1340,4837,96552).
|
St. John's wort decreases the levels and clinical effects of omeprazole.
Taking St. John's wort, 300 mg orally three times daily for 14 days, reduces serum concentrations of omeprazole by inducing its metabolism via cytochrome P450 (CYP) 2C19 and 3A4. The reduction of omeprazole serum levels is dependent on CYP2C19 genotype, with reductions up to 50% in extensive metabolizers and 38% in poor metabolizers (22440,96552).
|
St. John's wort decreases the levels and clinical effects of oxycodone.
St. John's wort can increase oxycodone metabolism by inducing cytochrome P450 3A4 (CYP3A4), reducing plasma levels and analgesic activity (96552).
|
St. John's wort decreases the levels and clinical effects of P-glycoprotein substrates.
St. John's wort induces P-glycoprotein. P-glycoprotein is a carrier mechanism responsible for transporting drugs and other substances across cell membranes. When P-glycoprotein is induced in the gastrointestinal (GI) tract, it can prevent the absorption of some medications. In addition, induction of p-glycoprotein can decrease entry of drugs into the central nervous system (CNS) and decrease access to other sites of action (382,1340,7810,11722).
|
St. John's wort decreases the levels and clinical effects of phenobarbital.
St. John's wort may increase the metabolism of phenobarbital. Plasma concentrations of phenobarbital should be monitored carefully. The dose of phenobarbital may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
St. John's wort decreases the levels and clinical effects of phenprocoumon.
St. John's wort appears to increase the metabolism of phenprocoumon (an anticoagulant that is not available in the US) by increasing the activity of the cytochrome P450 2C9 (CYP2C9) enzyme. This may result in decreases in the anticoagulant effect and international normalized ratio (INR) (9204).
|
St. John's wort decreases the levels and clinical effects of phenytoin.
St. John's wort may increase the metabolism of phenytoin. Plasma concentrations of phenytoin should be monitored closely. The dose of phenytoin may need to be increased when St. John's wort is started and decreased when it is stopped (9204).
|
Theoretically, St. John's wort might increase the likelihood for photosensitivity reactions when used in combination with photosensitizing drugs.
|
Theoretically, St. John's wort might decrease the levels and clinical effects of procainamide.
Animal research shows that taking St. John's wort extract increases the bioavailability of procainamide, but does not increase its metabolism (14865). Whether this interaction is clinically significant in humans is not known.
|
St. John's wort reduces the levels and clinical effects of PIs.
In healthy volunteers, St. John's wort can reduce the plasma concentrations of indinavir (Crixivan) by inducing cytochrome P450 3A4 (CYP3A4). This might result in treatment failure and viral resistance (1290,7808,96552). St. John's wort also induces P-glycoprotein, which can result in decreased intracellular protease inhibitor concentrations and increased elimination (9204).
|
Theoretically, St. John's wort might decrease the effectiveness of reserpine.
Animal research shows that St. John's wort can antagonize the effects of reserpine (758).
|
St. John's wort decreases the levels and clinical effects of rivaroxaban.
A small pharmacokinetic study in healthy volunteers shows that taking a single dose of rivaroxaban 20 mg after using a specific St. John's wort extract (Jarsin, Vifor SA) 450 mg orally twice daily for 14 days reduces the bioavailability of rivaroxaban by 24% and reduces rivaroxaban's therapeutic inhibition of factor Xa by 20% (104038).
|
Theoretically, St. John's wort might inhibit reuptake and increase levels of serotonin, resulting in additive effects with serotonergic drugs.
|
St. John's wort decreases the levels and clinical effects of tacrolimus.
Taking a St. John's wort extract (Jarsin) 600 mg daily significantly decreases tacrolimus serum levels. Dose increases of 60% may be required to maintain therapeutic tacrolimus levels in patients taking St. John's wort. St. John's wort is thought to lower tacrolimus levels by inducing cytochrome P450 3A4 (CYP3A4) enzymes (7095,10329). A small clinical study in healthy adults also shows that taking St. John's wort 300 mg three times daily for 10 days decreases the total systemic exposure to tacrolimus by 27% and 33% after taking a single 5 mg dose of immediate-release or prolonged-release tacrolimus, respectively (113094).
|
St. John's wort might decrease the levels of theophylline, although this effect might not be clinically relevant.
St. John's wort does not seem to significantly affect theophylline pharmacokinetics (11802). There is a single case report of a possible interaction with theophylline. A patient who smoked and was taking 11 other drugs experienced an increase in theophylline levels after discontinuation of St. John's wort. This increase has been attributed to a rebounding of theophylline serum levels after St. John's wort was no longer present to induce metabolism via cytochrome P450 1A2 (CYP1A2) (3556,7808,9204). However, studies in healthy volunteers show that St. John's wort is unlikely to affect theophylline to any clinically significant degree (11802).
|
St. John's wort might decrease the levels and clinical effects of tramadol.
|
St. John's wort might decrease the levels and clinical effects of voriconazole.
Clinical research shows that taking St. John's wort with voriconazole reduces voriconazole exposure and increases voriconazole metabolism by approximately 107%. Voriconazole is primarily metabolized by cytochrome P450 (CYP) 2C19, with CYP3A4 and CYP2C9 also involved (89660). St. John's wort induces CYP2C19, CYP3A4, and CYP2C9 (9204,10830,10847,10848,11889,11890,17405,22423,22424,22425)(22427,48603).
|
St. John's wort decreases the levels and clinical effects of warfarin.
Taking St. John's wort significantly increases clearance of warfarin, including both its R- and S-isomers (11890,15176). This is likely due to induction of cytochrome P450 (CYP) 1A2 and CYP3A4 (11890). St. John's wort can also significantly decrease International Normalized Ratio (INR) in people taking warfarin (1292). In addition, taking warfarin at the same time as St. John's wort might reduce warfarin bioavailability. When a dried extract is mixed with warfarin in an aqueous medium, up to 30% of warfarin is bound to particles, reducing its absorption (10448).
|
St. John's wort might decrease the levels and clinical effects of zolpidem.
|
Theoretically, xanthan gum can alter the absorption of oral drugs due to its fiber qualities. Xanthan gum slows gastric emptying and has been used to control the release of drugs in tablet formulations (4916,104058). To avoid any alterations in drug absorption, xanthan gum should be taken 30-60 minutes after oral medications.
|
Below is general information about the adverse effects of the known ingredients contained in the product Isogen Forte Cream. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and topically, calendula is generally well tolerated.
Serious Adverse Effects (Rare):
All ROAs: Allergic reactions.
Dermatologic ...Topically, a preparation containing calendula powder 0. 1% resulted in inflammation around the wound to which it was applied (96647). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of calendula, licorice, and snail secretion filtrate to the face. The specific role of calendula is unclear (110322).
Immunologic ...Orally, calendula can cause allergic reactions. Topically, calendula can cause eczematous allergic reactions. Calendula-specific patch testing is recommended prior to usage to determine allergenic potential. Testing is particularly necessary in individuals sensitive to the Asteraceae/Compositae family (10691,11458,96647). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs. A preparation containing calendula powder 0.1% resulted in hives in a patient with a ragweed allergy (96647). Despite the widespread use of calendula and the occurrence of allergies to other family members, there has been only one report of anaphylaxis (11152).
General
...Orally, rectally, and topically, glycerol seems to be well tolerated.
Intravenously, glycerol may be unsafe.
Most Common Adverse Effects:
Orally: Bloating, diarrhea, nausea, vomiting, dizziness, and headache.
Topically: Burning, irritation, and pruritus.
Intravenously: Hemolysis in patients with acute ischemic stroke.
Dermatologic ...Topically, glycerol has been reported to cause burning, irritation, and pruritus (93754,93756). Rectally, the regular administration of glycerol 50% enemas has been reported to cause generalized urticaria in at least two patients; in both patients, symptoms resolved after discontinuation (110019,110025).
Gastrointestinal ...Orally, glycerol can cause bloating, nausea, vomiting, thirst, and diarrhea (15,2475).
Hematologic ...Intravenously, glycerol has been reported to caused hemolysis in people treated for acute ischemic stroke (2480,2482).
Neurologic/CNS ...Orally, glycerol can cause mild headache and dizziness (15,2475).
General
...Orally, soy is well tolerated.
Most Common Adverse Effects:
Orally: Bloating, constipation, diarrhea, and nausea.
All ROAs: Allergic reactions.
Endocrine
...In the 1950s and 1960s, cases of altered thyroid function, particularly goiter, were reported in children taking soy formula.
However, adding iodine to soy formula or replacing soy flour in formula with soy protein isolate has nearly eliminated the risk of altered thyroid function in most infants (75353,75651).
In adults, there is some evidence that soy intake can alter thyroid function. Results from one clinical trial suggests that consuming soybeans 30 grams daily for as little as one month can increase thyroid-stimulating hormone (TSH) and decrease thyroxine, causing diffuse goiters, constipation, fatigue, and lethargy in some Japanese men. Recovery was achieved by discontinuing soybean intake (75206,75353). There is also some evidence that soy inhibits thyroid hormone synthesis resulting in increased secretion of TSH in some postmenopausal patients (7806). However, this seems to only occur in people with iodine deficiency (6466,75311). In postmenopausal patients with normal levels of iodine, taking a soy extract for 6 months does not seem to significantly affect thyroid hormone levels (13010).
Evidence from a single case-control study suggests that consumption of soy-based formulas may be associated with an observed three-fold increase in the risk of breast development in Puerto Rican children less than 2 years-old (75520). The correlation has been attributed to the estrogenic activity of soy. However, other risk factors, including a maternal history of ovarian cysts and consumption of meat products were also associated with the increased risk of breast development prior to 2 years of age. Also, the investigators noted that in over half of the cases, the child had not been exposed to soy or any of the other risk factors. Therefore, factors other than soy consumption may be more strongly associated with the increased risk of breast development prior to 2 years of age.
Gastrointestinal ...Gastrointestinal upset, such as constipation, diarrhea, bloating, and nausea are the most common side effects of soy (2297,11033,11082,15851,75491,95999). Reports of "bad taste" and taste intolerance have also been documented in clinical research (15851,39007,75491). Firmer stools, diarrhea, colitis, and intestinal mucosal damage has been reported in infants fed soy protein formula (75161,75448,75516,75525).
Genitourinary
...Orally, soy might increase discomfort during menstrual periods.
Evidence from a small, retrospective cohort study has found that consuming soy formula as an infant may slightly increase the duration and discomfort of menstrual periods later in life. However, the investigators noted that these differences may not be clinically significant (7331).
Orally, frequent soy consumption might be a risk factor for uterine leiomyoma, an estrogen-dependent benign tumor located on the uterus. Observational research found that consumption of soy milk or soybean at least four times weekly is associated with a 7-fold increased odds of uterine leiomyoma (98869).
There is some concern that use of soy-based formulas in infants might result in long-term health complications. However, results from a retrospective cohort study has found that intake of soy-based formula as an infant does not affect height, weight, body mass index, pubertal maturation, menstrual history, or pregnancy history, nor does it increase the risk of reproductive organ disorders, hormonal disorders, libido dysfunction, or birth defects in the offspring of adults who received soy formula as infants (7331,11080). Additionally, research in adults shows that urinary phytoestrogens are not associated with endometriosis risk (101804). However, some population research has found that regular exposure to soy-based formulas during infancy is associated with an increased risk for endometriosis (101803).
Immunologic
...Orally, soy can cause allergic reactions such as skin rash and itching in some people (6412).
In an 11-year-old female, allergy to soy protein resulting in a delayed itching papular rash was thought to be responsible for the reaction to injected benzathine benzylpenicillin containing possible soy protein-contaminated soy lecithin (96422).
Topically, soy-based ingredients were responsible for the development of hand atopic dermatitis in a young female using cosmetic lotions in the workplace. Percutaneous sensitization resulted in the development of anaphylaxis to oral soy (96000).
Neurologic/CNS ...Orally, one clinical study showed that insomnia was more common in postmenopausal adults taking soy isoflavone supplements when compared with those receiving placebo (9917). Some research suggests that dietary consumption of tofu during midlife might decrease cognitive function in later years. Evidence from one retrospective cohort study suggests that males who consume at least two servings of tofu weekly during midlife have increased risk of cognitive impairment in late life (19% vs. 4%) compared to those who consume tofu less frequently. Although the effect of tofu was considered to be marginal compared to other factors such as age, education, or history of stroke, results from the study suggest that the effect of significant midlife consumption of tofu is comparable to the effect of an age difference of 4 years or an education difference of 3 years. However, numerous other factors, such as lifestyle and health, could be involved (6415,6416). Therefore, these findings are too preliminary to be used as a basis for clinical recommendations.
Oncologic
...There is controversy about the role of soy in breast cancer.
Population studies suggest that soy is protective against breast cancer. Asian females who eat a traditional diet high in soy seem to have a lower risk of developing breast cancer (4590,5939,9674). Early exploratory studies have suggested that soy stimulates proliferation of normal human breast tissue (3980,3981). However, taking a soy tablet containing 50 mg soy isoflavones daily for 12 months does not alter mammographic or breast MRI tissue density in adults at high risk of breast cancer, with non-endocrine treated breast cancer, or previously treated for breast cancer and without evidence of recurrence (95999).
There is some concern that soy supplements, but not soy foods, might increase the risk of endometrial hyperplasia due to its estrogenic effects. Population and clinical research suggests that soy foods do not have a proliferative effect on endometrial cells (7358,2429,7654,9676,9917), and increased dietary soy and phytoestrogens are associated with reduced endometrial cancer risk (7338,10372). However, the effects seem to be different with concentrated soy isoflavone extract. While taking products providing isoflavones 120 mg daily for 6 months does not increase endometrial thickening (13209), taking higher doses such as isoflavones 150 mg daily for 5 years might increase the risk of simple endometrial hyperplasia (12105). However, there is no evidence that soy isoflavones increase the risk of atypical hyperplasia which has a much higher risk of developing into endometrial cancer than simple endometrial hyperplasia (12105,90973).
There is also concern that increased soy intake increases the risk for other types of cancer. Some observational research has found that higher dietary intake of soy is associated with a higher risk for bladder cancer and pancreatic cancer (9677,105609).
A meta-analysis of results from cohort and case-control studies evaluating the risk of stomach cancer related to consumption of fermented soy products is unclear and inconclusive. The highest quality data from cohort studies suggests that these products have no significant effect on stomach cancer (7340,7341). More research is required to determine if soy products have any correlation with stomach cancer.
Pulmonary/Respiratory ...Inhaled soy dust and soy hull aeroallergen can trigger symptoms of asthma and allergic rhinitis (5084,5085,5086).
General
...Orally, St.
John's wort is generally well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, dizziness, dry mouth, gastrointestinal discomfort (mild), fatigue, headache, insomnia, restlessness, and sedation.
Topically: Skin rash and photodermatitis.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of suicidal ideation and psychosis after taking St. John's wort.
Cardiovascular
...In clinical research, palpitations have been reported for patients taking St.
John's wort orally, although the number of these events was higher for the patients taking sertraline (76070). In one case report, an adult female developed recurrent palpitations and supraventricular tachycardia (SVT) within 3 weeks of initiating St. John's wort 300 mg daily. SVT and related symptoms responded to Valsalva maneuvers and did not recur after discontinuing therapy (106051).
Edema has also been reported in clinical research for some patients treated with St. John's wort 900-1500 mg daily for 8 weeks (10843). Cardiovascular collapse following induction of anesthesia has been reported in an otherwise healthy patient who had been taking St. John's wort for 6 months (8931). A case of St. John's wort-induced hypertension has been reported for a 56-year-old patient who used St. John's wort extract 250 mg twice daily for 5 weeks. Blood pressure normalized after discontinuation of treatment (76073). A case of new-onset orthostatic hypotension and light-headedness has been reported for a 70 year-old homebound patient who was taking multiple prescription medications and herbal products, including St. John's wort (76128). When all herbal products were discontinued, these symptoms improved, and the patient experienced improvement in pain control.
Dermatologic
...Both topical and chronic oral use of St.
John's wort can cause photodermatitis (206,620,758,4628,4631,6477,13156,17986,76072,76148)(95506,110318). The average threshold dose range for an increased risk of photosensitivity appears to be 1.8-4 grams St. John's wort extract or 5-10 mg hypericin, daily. Lower doses might not cause this effect (4542,7808). For example, a single dose of St. John's wort extract 1800 mg (5.4 mg hypericin) followed by 900 mg (2.7 mg hypericin) daily does not seem to produce skin hypericin concentrations thought to be high enough to cause phototoxicity (3900,4542,76266). Females appear to have a higher risk of dose-related photosensitivity. In a dose-ranging, small clinical trial, almost all of the female participants experienced mild to moderate photosensitivity with paresthesia in sun-exposed skin areas after administration of St. John's wort (Jarsin, Casella Med) 1800 mg daily for 3-6 days. Symptoms resolved about 12-16 days after discontinuation (95506). Male participants reported no adverse effects at this dose, and both genders reported no adverse effects at lower doses. Light or fair-skinned people should employ protective measures against direct sunlight when using St. John's wort either topically or orally (628).
Total body erythroderma without exposure to sunlight, accompanied by burning sensation of the skin, has also been reported (8930). Orally, St. John's wort may cause pruritus or skin rash, although these events seem to occur infrequently (76140,76148,76245). A case of persistent scalp and eyebrow hair loss has been reported for a 24-year-old schizophrenic female who was taking olanzapine plus St. John's wort 900 mg/day orally (7811). Also, a case of surgical site irritation has been reported for a patient who applied ointment containing St. John's wort (17225).
Endocrine ...A case of syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in a 67-year-old male with depression has been reported. During a 3-month period, the patient was taking St. John's wort 300 mg daily then increased to 600-900 mg daily with no adverse effects despite a low serum sodium level of 122mEq/L, elevated levels of urine sodium, and urine osmolality suggestive of SIADH. St. John's wort appeared to be the only contributing factor. The patient's sodium level normalized 3 weeks after discontinuation of St. John's wort (95508).
Gastrointestinal ...Orally, St. John's wort may cause dyspepsia, anorexia, diarrhea, nausea, vomiting, and constipation, although these events seems to occur infrequently (4897,13021,17986,76070,76071,76113,76146,76150,76271).
Genitourinary
...Orally, St.
John's wort can cause intermenstrual or abnormal menstrual bleeding (1292,76056). However, this effect has occurred in patients who were also taking an oral contraceptive. Changes in menstrual bleeding might be the result of a drug interaction (1292,76056). Also, St. John's wort has been associated with anorgasmia and frequent urination when used orally (10843,76070).
Sexual dysfunction can occur with St. John's wort, but less frequently than with SSRIs (10843). A case of erectile dysfunction and orgasmic delay has been reported for a 49-year-old male after taking St. John's wort orally for one week. Co-administration of sildenafil 25-50 mg prior to sexual activity reversed the sexual dysfunction. Previously, the patient had experienced orgasmic delay, erectile dysfunction, and inhibited sexual desire when taking a selective serotonin reuptake inhibitor (sertraline) (4836).
Hepatic ...A case of acute hepatitis with prolonged cholestasis and features of vanishing bile duct syndrome has been reported for a patient who used tibolone and St. John's wort orally for 10 weeks (76135). A case of jaundice with transaminitis and hyperbilirubinemia has been reported for a 79 year-old female who used St. John's wort and copaiba (95505). Laboratory values normalized 7 weeks after discontinuation of both products.
Musculoskeletal ...Orally, St. John's wort may cause muscle or joint stiffness, tremor, muscle spasms, or pain, although these events appear to occur rarely (76070).
Neurologic/CNS ...St. John's wort may cause headache, dizziness, fatigue, lethargy, or insomnia (5096,13021,76070,76071,76113,76132,76133,76150,89666). Isolated cases of paresthesia have been reported for patients taking St. John's wort (5073). A case of subacute toxic neuropathy has been reported for a 35-year-old female who took St. John's wort 500 mg daily orally for 4 weeks (621).
Ocular/Otic ...There is concern that taking St. John's wort might increase the risk of cataracts. The hypericin constituent of St. John's wort is photoactive and, in the presence of light, may damage lens proteins, leading to cataracts (1296,17088). In population research, people with cataracts were significantly more likely to have used St. John's wort compared to people without cataracts (17088). Ear and labyrinth disorders have been possibly attributed to use of St. John's wort in clinical research, although these events rarely occur (76120).
Psychiatric
...St.
John's wort can induce hypomania in depressed patients and mania in depressed patients with occult bipolar disorder (325,3524,3555,3568,10845,76047,76064,76137,110318). Cases of first-episode psychosis have been reported for females who used St. John's wort orally. In both cases, symptoms resolved following discontinuation of St. John's wort and treatment with antipsychotics for several weeks (13015,89664). Also, psychosis and delirium have been reported for a 76-year-old female patient who used St. John's wort for 3 weeks. The patient may have been predisposed to this effect due to undiagnosed dementia (76270). Restlessness, insomnia, panic, and anxiety have been noted for some patients taking St. John's wort orally (5073,13156,76070,76132,76268,76269,89665).
In isolated cases, St. John's wort has been associated with a syndrome consisting of extreme anxiety, confusion, nausea, hypertension, and tachycardia. These symptoms may occur within 2-3 weeks after it is started, in patients with no other predisposing factors. This syndrome has been diagnosed as the serotonin syndrome (6201,7811,110318). In one case, the symptoms began after consuming tyramine-containing foods, including aged cheese and red wine (7812). In an isolated case, a 51-year-old female reported having had suicidal and homicidal thoughts for 9 months while taking vitamin C and a St. John's wort extract. Symptoms disappeared within 3 weeks of discontinuing treatment (76111). A case of decreased libido has been reported for a 42-year-old male with mood and anxiety disorders who had taken St. John's wort orally for 9 months (7312).
St. John's wort has been associated with withdrawal effects similar to those found with conventional antidepressants. Headache, nausea, anorexia, dry mouth, thirst, cold chills, weight loss, dizziness, insomnia, paresthesia, confusion, and fatigue have been reported. Withdrawal effects are most likely to occur within two days after discontinuation but can occur one week or more after stopping treatment in some people. Occurrence of withdrawal symptoms may not be related to dose or duration of use (3569,11801).
Pulmonary/Respiratory ...Orally, St. John's wort may cause sore throat, swollen glands, laryngitis, sinus ache, sweating, and hot flashes, although the frequency of these events appears to be similar to placebo (76150).
Renal ...Orally, St. John's wort has been associated with a case report of acute kidney failure in a 46-year-old female after one dose of homemade St. John's wort tea. Three sessions of hemodialysis were required before there was full recovery (106741). However, causality is unclear since the patient had also been taking diclofenac intermittently for a month prior to developing kidney failure.
Other ...Sjogren's syndrome has been reported in a patient taking herbal supplements including St. John's wort, echinacea, and kava. Echinacea may have been the primary cause, because Sjogren's syndrome is an autoimmune disorder. The role of St. John's wort in causing this syndrome is unclear (10319).
General ...Orally, xanthan gum can cause flatulence and abdominal distention (4916,4918). Topically, it has been reported to cause allergic reactions (100914).
Immunologic ...An itchy, burning dermatitis was reported in a 9-year old girl after application of a sunscreen product containing xanthan gum. Patch testing with the separate ingredients of the sunscreen identified xanthan gum as the reacting agent, and demonstrated a dose-dependent effect with 1% and 10% solutions (100914).
Pulmonary/Respiratory ...Occupational exposure in workers handling xanthan gum powder can cause flu-like symptoms and nose and throat irritation without acute or chronic loss of pulmonary function (4913).