Ingredients | Amount Per Serving |
---|---|
STIMUL8 Thermogenic Ripping Matrix
|
2.6 Gram(s) |
Xtreme Shredding Matrix
|
|
(Beta-Alanine)
|
|
(Caffeine)
|
|
Beta-Phenethylamine HCl
|
|
IRISINXD
(Green Tea extract)
|
|
(Theobroma cacao )
(seed)
(standardized for 95% N-Coumaroyldopamine)
(Theobroma cacao seed extract (Form: standardized for 95% N-Coumaroyldopamine) PlantPart: seed Genus: Theobroma Species: cacao )
|
|
(Citrus aurantium )
(Citrus aurantium extract powder)
(50%)
(Advantra Z (Alt. Name: Citrus aurantium extract powder) Genus: Citrus Species: aurantium Note: 50% )
|
|
(Rauwolfia vomitoria )
(root bark)
(standardized for 90% Rauwolscine)
(Rauwolfia vomitoria (Form: standardized for 90% Rauwolscine) PlantPart: root bark Genus: Rauwolfia Species: vomitoria )
|
Gelatin, Silica, Magnesium Stearate, Titanium Dioxide, FD&C Blue #1, FD&C Red #3, FD&C Yellow #6, FD&C Red #40
Below is general information about the effectiveness of the known ingredients contained in the product Stimul8. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of hordenine.
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Stimul8. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Oral beta-alanine, including a specific commercial product (CarnoSyn, Natural Alternatives International), has been used with apparent safety in doses up to 6.4 grams daily for 12 weeks in younger adults (14611,16025,16439,16441,18227,94357,97972,101028,101029,104144,106717), and up to 3.2 grams daily for 12 weeks in adults aged 55 years and older (16442,97955,97961,97965).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in medicinal amounts.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912,35751).
POSSIBLY SAFE ...when bitter orange essential oil is used topically or by inhalation as aromatherapy (6972,7107,98331,104186,104187,108642).
POSSIBLY UNSAFE ...when used orally for medicinal purposes. Although single doses of synephrine, or low daily doses used short-term, may be safe in healthy adults (2040,11269,15381,35757,35759,91681,97256,98332), laboratory analyses raise concerns that many marketed bitter orange products contain higher amounts of synephrine and other natural and synthetic amines than on the label, increasing the risk for serious stimulant-related adverse effects (104185). Additionally, there is a lack of agreement regarding a safe daily dose of synephrine. Health Canada has approved 50 mg of p-synephrine daily when used alone, or 40 mg of p-synephrine in combination with up to 320 mg of caffeine daily in healthy adults (91684). The Federal Institute for Risk Assessment in Germany recommends that supplements should provide no more than 6.7 mg of synephrine daily. This recommendation is meant to ensure that patients who frequently consume synephrine in conventional foods will receive no more than 25.7 mg daily (91290). These limits are intended to reduce the risk for serious adverse effects. There have been several case reports of ischemic stroke and cardiotoxicity including tachyarrhythmia, cardiac arrest, syncope, angina, myocardial infarction, ventricular arrhythmia, and death in otherwise healthy patients who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts found in foods.
Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally for medicinal purposes.
There are case reports of cardiotoxicity including tachyarrhythmia, syncope, and myocardial infarction in otherwise healthy adults who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680). The effects of bitter orange during lactation are unknown; avoid use.
LIKELY SAFE ...when used orally, parenterally, or rectally and appropriately. Caffeine has Generally Recognized As Safe (GRAS) status in the US (4912,98806). Caffeine is also an FDA-approved product and a component of several over-the-counter and prescription products (4912,11832). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of caffeine up to 400 mg daily are not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). This amount of caffeine is similar to the amount of caffeine found in approximately 4 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
POSSIBLY UNSAFE ...when used orally, long-term or in high doses (91063). Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other adverse effects (3719). Acute use of high doses, typically above 400 mg daily, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg/kg). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, or prior caffeine use (11832,95700,97454,104573). Caffeine products sold to consumers in highly concentrated or pure formulations are considered to a serious health concern because these products have a risk of being used in very high doses. Concentrated liquid caffeine can contain about 2 grams of caffeine in a half cup. Powdered pure caffeine can contain about 3.2 grams of caffeine in one teaspoon. Powdered pure caffeine can be fatal in adults when used in doses of 2 tablespoons or less. As of 2018, these products are considered by the FDA to be unlawful when sold to consumers in bulk quantities (95700).
CHILDREN: POSSIBLY SAFE
when used orally or intravenously and appropriately in neonates under the guidance of a healthcare professional (6371,38340,38344,91084,91087,97452).
...when used orally in amounts commonly found in foods and beverages in children and adolescents (4912,11833,36555). Daily intake of caffeine in doses of less than 2.5 mg/kg daily are not associated with significant adverse effects in children and adolescents (11733,98806). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Intakes of caffeine should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen (38048,38252,91032). Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,16014,16015,98806,108814). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014,37960). This increased risk seems to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, up to 300 mg daily can be consumed during pregnancy without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). However, observational research in a Norwegian cohort found that caffeine consumption is associated with a 16% increased odds of the baby being born small for gestational age when compared with no consumption (100369,103707). The same Norwegian cohort found that low to moderate caffeine consumption during pregnancy is not associated with changes in neurodevelopment in children up to 8 years of age (103699). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea.
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts over 300 mg daily.
Caffeine crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260,98806). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea. Additionally, high doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,91033,91048,95949). In a cohort of mother/infant pairs with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg respectively. In another cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
LACTATION: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Caffeine intake should be closely monitored while breast-feeding. During lactation, breast milk concentrations of caffeine are thought to be approximately 50% of serum concentrations and caffeine peaks in breastmilk approximately 1-2 hours after consumption (23590).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine is excreted slowly in infants and may accumulate. Caffeine can cause sleep disturbances, irritability, and increased bowel activity in breast-fed infants exposed to caffeine (2708,6026).
LIKELY SAFE ...when used orally and appropriately (13161,14306,14307,14308,15655,15752,17187,92271,92274,103247)(103250,108898). However, cocoa naturally contains caffeine, and caffeine may be unsafe when used orally in doses of more than 400 mg daily (11733,98806). While most cocoa products contain only small amounts of caffeine (about 2-35 mg per serving) (2708,3900), one cup of unsweetened, dry cocoa powder can contain up to 198 mg of caffeine (100515). To be on the safe side, cocoa should be used in amounts that provide less than 400 mg of caffeine daily. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine naturally found in ingredients such as cocoa does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. Cocoa and dark chocolate products worldwide also contain heavy metals such as lead and cadmium. In the US, one ounce (approximately 28 grams) of most commercially available dark chocolate products tested contained levels of lead and/or cadmium above the maximum allowable dose level for California, with cadmium levels generally increasing with the percentage of cocoa (109847,109848,109849). Advise patients to consume cocoa in moderation. ...when used topically. Cocoa butter is used extensively as a base for ointments and suppositories and is generally considered safe (11).
CHILDREN: POSSIBLY UNSAFE
when dark chocolate is used orally.
Cocoa and dark chocolate products worldwide contain heavy metals such as lead and cadmium. In the US, one ounce (approximately 28 grams) of most commercially available dark chocolate products tested contained levels of lead and/or cadmium above the maximum allowable dose level for California, with cadmium levels generally increasing with the percentage of cocoa (109847,109848,109849). Children are at increased risk of adverse effects from intake of lead and/or cadmium. There is insufficient reliable information available about the safety of other chocolate-based products that typically contain smaller quantities of cocoa.
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
However, due to the caffeine content of cocoa preparations, intake should be closely monitored during pregnancy to ensure moderate consumption. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). Some research has found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). While many cocoa products contain only small amounts of caffeine (about 2-35 mg per serving) (2708,3900), unsweetened, dry cocoa powder can contain up to 198 mg of caffeine per cup (100515). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of up to 300 mg daily can be consumed during pregnancy without an increased risk of spontaneous abortion, still birth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). To be on the safe side, cocoa should be used in amounts that provide less than 300 mg of caffeine daily. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as cocoa, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine found in cocoa crosses the placenta producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Additionally, high intake of caffeine during pregnancy have been associated with premature delivery, low birth weight, and loss of the fetus (6). While many cocoa products contain only small amounts of caffeine (about 2-35 mg per serving) (2708,3900), unsweetened, dry cocoa powder can contain up to 198 mg of caffeine per cup (100515). To be on the safe side, cocoa should be used in amounts that provide less than 300 mg of caffeine daily (2708). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as cocoa, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. Cocoa and dark chocolate products worldwide also contain heavy metals such as lead and cadmium. In the US, one ounce (approximately 28 grams) of most commercially available dark chocolate products tested contained levels of lead and/or cadmium above the maximum allowable dose level for California, with cadmium levels generally increasing with the percentage of cocoa (109847,109848,109849). Large doses or excessive intake of cocoa should be avoided during pregnancy.
LACTATION: POSSIBLY SAFE
when used in moderate amounts or in amounts commonly found in foods.
Due to the caffeine content of cocoa preparations, intake should be closely monitored while breastfeeding. During lactation, breast milk concentrations of caffeine are thought to be approximately 50% of serum concentrations. Moderate consumption of cocoa would likely result in very small amounts of caffeine exposure to a nursing infant (6). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as cocoa, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of excess chocolate (16 oz per day) may cause irritability and increased bowel activity in the infant (6026). Cocoa and dark chocolate products worldwide also contain heavy metals such as lead and cadmium. In the US, one ounce (approximately 28 grams) of most commercially available dark chocolate products tested contained levels of lead and/or cadmium above the maximum allowable dose level for California, with cadmium levels generally increasing with the percentage of cocoa (109847,109848,109849). Large doses or excessive intake of cocoa should be avoided during lactation.
POSSIBLY UNSAFE ...when used orally. In one clinical study, 4 out of 10 patients taking Rauvolfia vomitoria dried root powder 300-800 mg daily for 6 weeks developed extrapyramidal symptoms including tremor, akathisia, hypokinesia, and dystonia. Two cases were severe enough to warrant treatment with antiparkinsonian medications (95991). Rauvolfia vomitoria also contains small amounts of the drugs reserpine and yohimbine. These constituents may cause serious adverse effects including bradycardia, hypertension or hypotension, irregular heartbeat, myocardial infarction, seizures, and depression (94328). There is insufficient reliable information available about the safety of Rauvolfia vomitoria when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Animal research suggests that Rauvolfia vomitoria has teratogenic effects (93434,93435,93436).
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Stimul8. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, bitter orange might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Some clinical research shows that drinking a tea containing bitter orange and Indian snakeroot reduces fasting and postprandial glucose levels in patients with type 2 diabetes who are using antidiabetes drugs (35751). However, it is unclear if these effects are due to bitter orange, Indian snakeroot, or the combination. An animal study also shows that p-synephrine in combination with gliclazide , a sulfonylurea, causes an additional 20% to 44% decrease in glucose levels when compared with gliclazide alone (95658).
|
Bitter orange might increase blood pressure and heart rate when taken with caffeine.
Details
|
Bitter orange might affect colchicine levels.
Details
Colchicine is a substrate of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Bitter orange has been reported to inhibit CYP3A4 and increase levels of CYP3A4 substrates (7029,11362,93470). However, one small clinical study in healthy adults shows that drinking bitter orange juice 240 mL twice daily for 4 days and taking a single dose of colchicine 0.6 mg on the 4th day decreases colchicine peak serum levels by 24%, time to peak serum level by 1 hour, and overall exposure to colchicine by 20% (35762). The clinical significance of this finding is unclear.
|
Theoretically, bitter orange might increase levels of drug metabolized by CYP2D6.
Details
In vitro research shows that octopamine, a constituent of bitter orange, weakly inhibits CYP2D6 enzymes (91878). This effect has not been reported in humans.
|
Bitter orange might increase levels of drugs metabolized by CYP3A4.
Details
Small clinical studies suggest that single or multiple doses of freshly squeezed bitter orange juice 200-240 mL can inhibit CYP3A4 metabolism of drugs (7029,11362,93470), causing increased drug levels and potentially increasing the risk of adverse effects. However, the extent of the effect of bitter orange on CYP3A4-mediated drug interactions is unknown. Some evidence suggests that bitter orange selectively inhibits intestinal CYP3A4, but not hepatic CYP3A4. Its effect on P-glycoprotein, which strongly overlaps with CYP3A4 interactions, is unclear (7029,11269,11270,11362). One small clinical study shows that drinking 8 ounces of freshly squeezed bitter orange juice has no effect on cyclosporine, which seems to be more dependent on hepatic CYP3A4 and P-glycoprotein than intestinal CYP3A4 (11270).
|
Bitter orange might increase blood levels of dextromethorphan.
Details
One small clinical study shows that bitter orange juice increases dextromethorphan levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (11362). Theoretically, bitter orange might increase the risk for dextromethorphan-related adverse effects.
|
Bitter orange might increase blood levels of felodipine.
Details
One small clinical study shows that bitter orange juice increases felodipine levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (7029). Theoretically, bitter orange might increase the risk for felodipine-related adverse effects.
|
Bitter orange might increase blood levels of indinavir.
Details
One small clinical study shows that bitter orange juice slightly increases indinavir levels, but this effect is likely to be clinically insignificant. Bitter orange selectively inhibits intestinal cytochrome P450 3A4 (CYP3A4); however, the metabolism of indinavir seems to be more dependent on hepatic CYP3A4 (11269). The effect of bitter orange on other protease inhibitors has not been studied.
|
Bitter orange might increase blood levels of midazolam.
Details
One small clinical study shows that bitter orange juice can increase midazolam levels, likely through inhibition of cytochrome P450 3A4 (CYP3A4) (7029). Theoretically, bitter orange might increase the risk of midazolam-related adverse effects.
|
Theoretically, taking MAOIs with synephrine-containing bitter orange preparations might increase the hypertensive effects of synephrine, potentially leading to hypertensive crisis.
Details
|
Theoretically, bitter orange might have an additive effect when combined with drugs that prolong the QT interval, potentially increasing the risk of ventricular arrhythmias.
Details
One case report suggests that taking bitter orange in combination with other stimulants such as caffeine might prolong the QT interval in some patients (13039).
|
Bitter orange juice might increase blood levels of sildenafil.
Details
A small clinical study in healthy adult males shows that drinking freshly squeezed bitter orange juice 250 mL daily for 3 days and taking a single dose of sildenafil 50 mg on the 3rd day increases the peak plasma concentration of sildenafil by 18% and the overall exposure to sildenafil by 44%. Theoretically, this may be due to inhibition of cytochrome P450 3A4 by bitter orange (93470).
|
Theoretically, bitter orange might increase the risk of hypertension and adverse cardiovascular effects when taken with stimulant drugs.
Details
|
Theoretically, caffeine might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Details
Some evidence shows that caffeine is a competitive inhibitor of adenosine and can reduce the vasodilatory effects of adenosine in humans (38172). However, other research shows that caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use might increase levels and adverse effects of caffeine.
Details
Alcohol reduces caffeine metabolism. Concomitant use of alcohol can increase caffeine serum concentrations and the risk of caffeine adverse effects (6370).
|
Theoretically, caffeine may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking caffeine with antidiabetes drugs might interfere with blood glucose control.
Details
|
Theoretically, large amounts of caffeine might increase the cardiac inotropic effects of beta-agonists (15).
|
Theoretically, caffeine might reduce the effects of carbamazepine and increase the risk for convulsions.
Details
Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the levels and adverse effects of caffeine.
Details
Cimetidine decreases the rate of caffeine clearance by 31% to 42% (11736).
|
Caffeine might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Details
Caffeine might increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Although researchers speculate that caffeine might inhibit CYP1A2, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741). In one case report, severe, life-threatening clozapine toxicity and multiorgan system failure occurred in a patient with schizophrenia stabilized on clozapine who consumed caffeine 600 mg daily (108817).
|
Theoretically, contraceptive drugs might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Details
Caffeine inhibits dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram use might increase the levels and adverse effects of caffeine.
Details
Disulfiram decreases the rate of caffeine clearance (11840).
|
Theoretically, using caffeine with diuretic drugs might increase the risk of hypokalemia.
Details
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Details
Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might reduce the effects of ethosuximide and increase the risk for convulsions.
Details
Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of felbamate and increase the risk for convulsions.
Details
Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Details
Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, caffeine might increase the levels and adverse effects of flutamide.
Details
In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Details
Fluvoxamine reduces caffeine metabolism (6370).
|
Abrupt caffeine withdrawal might increase the levels and adverse effects of lithium.
Details
Caffeine has diuretic activity. When abruptly discontinued, caffeine may alter the clearance of lithium (609). There are two case reports of lithium tremor that worsened upon abrupt coffee withdrawal (610) and 6 case reports of elevated serum lithium levels after reducing or eliminating caffeine intake (114665). In one case, a male with schizoaffective disorder stabilized on lithium had an elevated lithium level after reducing his caffeine intake by 87%. At a later date, he increased his caffeine intake by 6-fold, resulting in a subtherapeutic lithium level and a recurrence of psychiatric symptoms (114665).
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Details
Animal research suggests that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Details
Methoxsalen reduces caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Details
Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Details
Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, caffeine might decrease the effects of pentobarbital.
Details
Caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, caffeine might reduce the effects of phenobarbital and increase the risk for convulsions.
Details
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
Details
|
Theoretically, caffeine might reduce the effects of phenytoin and increase the risk for convulsions.
Details
|
Theoretically, caffeine might increase the levels and clinical effects of pioglitazone.
Details
Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Details
Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Details
Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Details
Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, caffeine might increase the levels and adverse effects of theophylline.
Details
Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, caffeine might increase the levels and adverse effects of tiagabine.
Details
Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Details
In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of valproate and increase the risk for convulsions.
Details
|
Theoretically, verapamil might increase the levels and adverse effects of caffeine.
Details
Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, taking cocoa with ACEIs might increase the risk of adverse effects.
Details
|
Theoretically, cocoa might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Details
Cocoa contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine. It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests. However, methylxanthines appear more likely to interfere with dipyridamole than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use might increase levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Alcohol reduces caffeine metabolism. Concomitant use of alcohol can increase caffeine serum concentrations and the risk of caffeine adverse effects (6370).
|
Theoretically, cocoa may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
Clinical research shows that intake of cocoa can inhibit platelet adhesion, aggregation, and activity (6085,17076,41928,41948,41957,41958,41995,42014,42070,42145)(111526) and increase aspirin-induced bleeding time (23800). For patients on dual antiplatelet therapy, cocoa may enhance the inhibitory effect of clopidogrel, but not aspirin, on platelet aggregation (111526).
|
Theoretically, taking cocoa with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, large amounts of cocoa might increase the cardiac inotropic effects of beta-agonists.
Details
Cocoa contains caffeine. Theoretically, large amounts of caffeine might increase cardiac inotropic effects of beta-agonists (15). A case of atrial fibrillation associated with consumption of large quantities of chocolate in a patient with chronic albuterol inhalation abuse has also been reported (42075).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in cocoa.
Details
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in cocoa.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Caffeine is metabolized by cytochrome P450 1A2 (CYP1A2) (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from cocoa and increase caffeine levels.
|
Theoretically, cocoa might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Details
Cocoa contains caffeine. Caffeine may inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
Details
Cocoa contains caffeine. In human research, disulfiram decreases the rate of caffeine clearance (11840).
|
Theoretically, using cocoa with diuretic drugs might increase the risk of hypokalemia.
Details
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Details
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, cocoa might increase the levels and adverse effects of flutamide.
Details
Cocoa contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553).
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, abrupt cocoa withdrawal might increase the levels and adverse effects of lithium.
Details
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Methoxsalen can reduce caffeine metabolism (23572).
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Details
Cocoa contains caffeine. Large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15).
|
Theoretically, concomitant use might increase the risk of hypertension.
Details
Cocoa contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, cocoa might decrease the effects of pentobarbital.
Details
Cocoa contains caffeine. Caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, cocoa might reduce the effects of phenobarbital and increase the risk for convulsions.
Details
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
Details
|
Theoretically, cocoa might reduce the effects of phenytoin and increase the risk for convulsions.
Details
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Details
Cocoa contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2, and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Details
Cocoa contains caffeine. Concomitant use might increase the risk of stimulant adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Terbinafine decreases the rate of caffeine clearance (11740).
|
Theoretically, cocoa might increase the levels and adverse effects of theophylline.
Details
|
Theoretically, cocoa tea might increase the levels and adverse effects of tiagabine.
Details
Cocoa contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, cocoa might reduce the effects of valproate and increase the risk for convulsions.
Details
|
Theoretically, verapamil might increase the levels and adverse effects of caffeine.
Details
Cocoa contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Hordenine weakly inhibits cytochrome P450 2D6 (CYP2D6) enzymes in vitro (91878). Theoretically, hordenine might increase the levels of CYP2D6 substrates.
Details
Some of drugs that are CYP2D6 substrates include amitriptyline (Elavil), clozapine (Clozaril), codeine, desipramine (Norpramin), donepezil (Aricept), fentanyl (Duragesic), flecainide (Tambocor), fluoxetine (Prozac), meperidine (Demerol), methadone (Dolophine), metoprolol (Lopressor, Toprol XL), olanzapine (Zyprexa), ondansetron (Zofran), tramadol (Ultram), trazodone (Desyrel), and others.
|
Hordenine is structurally similar to tyramine (29888) In vitro research shows that hordenine is a selective substrate for monoamine oxidase-B in the liver (27943). Theoretically, concomitant use of hordenine with MAOIs might increase blood pressure, potentially leading to a hypertensive crisis.
Details
Some MAOIs include isocarboxazid (Marplan), phenelzine (Nardil), selegiline (Eldepryl, Emsam, Zelapar), and tranylcypromine (Parnate).
|
Hordenine is structurally similar to N-methyltyramine and synephrine, constituents in bitter orange known to have stimulant properties (29888). Theoretically, taking hordenine with drugs with stimulant properties might increase the risk of hypertension and other adverse cardiovascular effects.
Details
Some of these drugs include amphetamine, caffeine, methylphenidate, pseudoephedrine, and many others.
|
Theoretically, combining Rauvolfia vomitoria with antiplatelet or anticoagulant drugs might have additive effects.
Details
Rauvolfia vomitoria contains small amounts of yohimbine. Research in healthy adults shows that taking yohimbine in doses of 8 mg or more seems to inhibit platelet aggregation in vitro by binding to the alpha-2 adrenoceptor (86773,86806,86835,86853). The effects of Rauvolfia vomitoria itself are unclear.
|
Theoretically, taking Rauvolfia vomitoria with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, Rauvolfia vomitoria might increase the risk of hypotension.
Details
|
Theoretically, concomitant use might increase the risk of adverse effects.
Details
|
Theoretically, taking Rauvolfia vomitoria might cause additive sedative effects.
Details
|
Theoretically, Rauvolfia vomitoria might increase the levels and clinical effects of CYP2D6 substrates.
Details
Rauvolfia vomitoria contains small amounts of the drug yohimbine. In vitro research shows that yohimbine inhibits CYP2D6 enzyme activity (23117).
|
Theoretically, Rauvolfia vomitoria might alter the effects and side effects of ephedrine.
Details
Rauvolfia vomitoria contains resperine, which might reduce indirect-sympathomimetic drug activity. However, another constituent of Rauvolfia vomitoria, yohimbine, has stimulant activity and may increase the risk of adverse effects with ephedrine (15).
|
Theoretically, Rauvolfia vomitoria might reduce the effects of levodopa.
Details
|
Theoretically, concomitant use might cause additive effects.
Details
|
Theoretically, concomitant use might cause additive effects.
Details
|
Theoretically, concomitant use might alter the effects of Rauvolfia vomitoria and increase the risk for adverse effects.
Details
A small clinical study in patients taking TCAs for at least 4 weeks shows that receiving doses of intravenous yohimbine, a constituent of Rauvolfia vomitoria, 2.5-20 mg daily for up to 7 days precipitates severe anxiety, agitation, and tremor (105881). Also, concomitant use of TCAs with Rauvolfia vomitoria may decrease the effects of rauwolfia alkaloids (15).
|
Below is general information about the adverse effects of the known ingredients contained in the product Stimul8. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, beta-alanine seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Flushing, paresthesia.
Gastrointestinal ...While rare, digestion problems have been reported with oral beta-alanine use (94341).
Neurologic/CNS ...Orally, beta-alanine can cause a dose-dependent feeling of pins and needles (paresthesias) along with skin flushing (16438,94333,94335,94338,94341,94342,94349,101028,101029,106711). This generally starts on the scalp within 20 minutes of the dose, spreading to most of the body, and lasting for about an hour. This was described as severe at a dose of 40 mg/kg, tolerable at a dose of 20 mg/kg, and very mild at a dose of 10 mg/kg. At the lowest dose it only occurred in 25% of subjects (16438). In some studies, beta-alanine has been given as frequently as 8 times per day so that each dose can be kept below 10 mg/kg (16438,16439). Other clinical research shows that taking beta-alanine in a tablet formulation eliminates the presence of parasthesias at a dose of 1.6 grams when compared with a solution made from powdered beta-alanine. This effect may be due to delayed absorption (97974,97975). Although paresthesias still occur with sustained-release formulations, their presence is less frequent when compared with immediate-release formulations (101029).
General
...Orally, bitter orange might be unsafe when used in medicinal amounts.
Topically and when inhaled as aromatherapy, bitter orange seems to be well tolerated.
Most Common Adverse Effects:
Orally: Hypertension and tachycardia, particularly when used in combination with caffeine and/or other stimulant ingredients.
Topically: Skin irritation.
Serious Adverse Effects (Rare):
Orally: Myocardial infarction, QT prolongation, seizures, stroke, syncope, tachyarrhythmia, and ventricular fibrillation have been reported in patients taking bitter orange in combination with other ingredients. It is unclear if these effects are due to bitter orange, other ingredients, or the combination.
Cardiovascular
...Bitter orange, which contains adrenergic agonists synephrine and octopamine, may cause hypertension and cardiovascular toxicity when taken orally (2040,6969,6979).
Studies evaluating the effect of bitter orange on cardiovascular parameters have been mixed. Several studies show that taking bitter orange alone or in combination with caffeine increases blood pressure and heart rate. In one clinical study, bitter orange in combination with caffeine increased systolic and diastolic blood pressure and heart rate in otherwise healthy normotensive adults (13657). In another study, a single dose of bitter orange 900 mg, standardized to 6% synephrine (54 mg), also increased systolic and diastolic blood pressure and heart rate for up to 5 hours in young, healthy adults (13774). Using half that dose of bitter orange and providing half as much synephrine, did not seem to significantly increase blood pressure or QT interval in healthy adults (14311). Increased diastolic, but not systolic, blood pressure or heart rate also occurred in a clinical trial involving a specific supplement containing synephrine 21 mg and caffeine 304 mg (Ripped Fuel Extreme Cut, Twinlab) (35743). Synephrine given intravenously to males increased systolic blood pressure, but lacked an effect on diastolic blood pressure or heart rate (12193).
In clinical research and case reports, tachycardia, tachyarrhythmia, QT prolongation, ischemic stroke, variant angina, and myocardial infarction have occurred with use of bitter orange or synephrine-containing multi-ingredient products (12030,13039,13067,13091,13657,14326,35749,91680). In one case report, a combination product containing bitter orange may have masked bradycardia and hypotension while exacerbating weight loss in a 16 year-old female with an eating disorder taking the product for weight loss (35740). From 1998 to 2004, Health Canada received 16 reports of serious adverse cardiovascular reactions such as tachycardia, cardiac arrest, ventricular fibrillation, blackout, and collapse. In two of these cases, the patient died. In almost all of these cases, bitter orange was combined with another stimulant such as caffeine, ephedrine, or both (14342).
Other research has found no significant effect of bitter orange on blood pressure or heart rate. Several clinical studies have reported that, when taken as a single dose or in divided doses ranging from 20-100 mg for one day, p-synephrine had no significant effect on blood pressure, heart rate, electrocardiogram results or adverse cardiovascular events in healthy adults (35772,91681,91681,95659,101708) Similarly, no difference in blood pressure, heart rate or electrocardiogram results were reported when p-synephrine from bitter orange (Advantra Z/Kinetic; Nutratech/Novel Ingredients Inc.) was taken for 6 weeks in healthy patients (11268). Another clinical study showed no significant effect of bitter orange (Nutratech Inc.), standardized to synephrine 20 mg, on blood pressure or heart rate when taken daily for 8 weeks in healthy males (95656). In other research, changes in blood pressure, heart rate, or QTc interval were lacking when bitter orange was given alone or in combination with caffeine and green tea (14311,35753,35755,35764,35769,35770). In one study of healthy adults, taking a single dose of p-synephrine 103 mg actually reduced mean diastolic blood pressure by 0.4-4 mmHg at 1 and 2 hours after administration when compared with placebo (95659).
A meta-analysis of clinical trials in adults with or without obesity suggests that taking p-synephrine 6-214 mg orally daily does not affect blood pressure or heart rate when used short-term, but modestly increases blood pressure and heart rate when taken for 56-60 days (109950).
The effect of bitter orange on blood pressure, heart rate, and electrocardiogram results in patients with underlying conditions, particularly cardiovascular disease, is unknown and requires further study.
Dermatologic ...Photosensitivity may occur, particularly in fair-skinned people (11909). In a clinical trial, topical application with bitter orange essential oil resulted in irritation (6972).
Endocrine ...Some clinical research shows that taking a specific supplement containing 21 mg of synephrine and 304 mg of caffeine (Ripped Fuel Extreme Cut, Twinlab) increases levels of postprandial glucose (35743). Other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.) 30 minutes once before exercise causes a significant 12% increase in glucose (95657); however, there is no difference in blood glucose when compared with placebo when this combination is taken daily for 8 weeks (95656). The effect of bitter orange itself is unclear.
Gastrointestinal ...Bitter orange has been linked to a report of ischemic colitis. In one case, a 52-year-old female developed ischemic colitis after taking a bitter orange-containing supplement (NaturalMax Skinny Fast, Nutraceutical Corporation) for a week. Symptoms resolved within 48 hours after discontinuing the supplement (15186). As this product contains various ingredients, the effect of bitter orange itself is unclear.
Musculoskeletal ...Unsteady gait has been noted in one case report of a patient taking bitter orange (13091). In another case, an otherwise healthy, Black male with sickle cell trait, developed severe rhabdomyolysis following ingestion of a specific weight loss product (Lipo 6, Nutrex Research Inc.), which contained synephrine and caffeine (16054). However, other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.), taken 30 minutes once before exercise (95657) or daily for 8 weeks, does not affect creatine kinase or serum creatinine levels when compared with placebo (95656). As these products contain various ingredients, the effect of bitter orange itself is unclear.
Neurologic/CNS ...Dizziness, difficulty in concentrating, memory loss, syncope, seizure, and stroke have been noted in case reports following bitter orange administration (13091,13039). Theoretically, bitter orange may trigger a migraine or cluster headache due to its synephrine and octopamine content (35768). When used as aromatherapy, bitter orange essential oil has also been reported to cause headache in some patients (104187). Sprint athletes taking the bitter orange constituent p-synephrine 3 mg/kg (Synephrine HCL 99%, Nutrition Power) 60 minutes before exercises and sprinting reported more nervousness (mean difference 0.9) when compared with placebo on a Likert scale. Although statistically significant, this difference is not considered clinically significant (95655).
General
...Caffeine in moderate doses is typically well tolerated.
Most Common Adverse Effects:
Orally: Anxiety, dependence with chronic use, diarrhea, diuresis, gastric irritation, headache, insomnia, muscular tremors, nausea, and restlessness.
Serious Adverse Effects (Rare):
Orally: Stroke has been reported rarely.
Cardiovascular
...Caffeine can temporarily increase blood pressure.
Usually, blood pressure increases 30 minutes after ingestion, peaks in 1-2 hours, and remains elevated for over 4 hours (36539,37732,37989,38000,38300).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722,38335). However, the form of caffeine may play a role in blood pressure increase after a more sustained caffeine use. In a pooled analysis of clinical trials, coffee intake was not associated with an increase in blood pressure, while ingesting caffeine 410 mg daily for at least 7 days modestly increased blood pressure by an average of 4.16/2.41 mmHg (37657). Another meta-analysis of clinical research shows that taking caffeine increases systolic and diastolic blood pressure by approximately 2 mmHg when compared with control. Preliminary subgroup analyses suggest that caffeine may increase blood pressure more in males or at doses over 400 mg (112738).
When used prior to intensive exercise, caffeine can increase systolic blood pressure by 7-8 mmHg (38308). The blood pressure-raising effects of caffeine are greater during stress (36479,38334) and after caffeine-abstinence of at least 24 hours (38241).
Epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension (38190). Habitual coffee consumption also doesn't seem to be related to hypertension, but habitual consumption of sugared or diet cola is associated with development of hypertension (13739).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily is not associated with increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,103708), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806). One clinical trial shows that in adults with diagnosed heart failure, consumption of 500 mg of coffee does not result in an increased risk for arrhythmia during exercise (95950). However, caffeine intake may pose a greater cardiovascular risk to subjects that are not regular users of caffeine. For example, in one population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects that don't regularly drink coffee (38102). In a population study in Japanese subjects, caffeine-containing medication use was modestly associated with hemorrhagic stroke in adults that do not consume caffeine regularly (91059).
The most common side effect of caffeine in neonates receiving caffeine for apnea is tachycardia (98807,114658).
Dermatologic ...There are several case reports of urticaria after caffeine ingestion (36546,36448,36475).
Endocrine
...Some evidence shows caffeine is associated with fibrocystic breast disease or breast cancer in females; however, this is controversial since findings are conflicting (8043,108806).
Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Clinical research in healthy adults shows that an increase consumption of caffeine results in increased insulin resistance (91023).
Gastrointestinal ...Gastrointestinal upset, nausea, diarrhea, abdominal pain, and fecal incontinence may occur with caffeine intake (36466,37755,37806,37789,37830,38138,38136,38223,95956,95963). Also, caffeine may cause feeding intolerance and gastrointestinal irritation in infants (6023). Perioperative caffeine during cardiopulmonary bypass surgery seems to increase the rate of postoperative nausea and vomiting (97451). Caffeine and coffee consumption have been associated with an increase in the incidence of heartburn (37545,37575,38251,38259,38267) and gastrointestinal esophageal reflux disease (GERD) (38329,37633,37631,37603).
Genitourinary ...Caffeine, a known diuretic, may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In men with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily was associated with increased severity of premenstrual syndrome (38177). Finally, population research shows that exposure to caffeine was not associated with an increased risk of endometriosis (91035).
Immunologic ...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Caffeine can induce or exacerbate muscular tremors (38136,37673,38161).
There has also been a report of severe rhabdomyolysis in a healthy 40-year-old patient who consumed an energy drink containing 400 mg of caffeine (4 mg/kg) and then participated in strenuous weightlifting exercise (108818).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can release calcium from storage sites and increase its urinary excretion (2669,10202,11317,111489). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg daily, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317). Premature infants treated with intravenous caffeine for apnea of prematurity, have a lower bone mineral content compared with infants who are not treated with caffeine, especially when treatment extends beyond 14 days (111489).
Neurologic/CNS ...Caffeine can cause headaches, anxiety, jitteriness, restlessness, and nervousness (36466,37694,37755,37806,37865,37830,37889,38223,95952). In adolescents, there is an inverse correlation between the consumption of caffeine and various measurements of cognitive function (104579). Insomnia is a frequent adverse effect in children (10755). Caffeine may result in insomnia and sleep disturbances in adults as well (36445,36483,36512,36531,37598,37795,37819,37862,37864,37890)(37968,37971,38091,38242,91022,92952). Additionally, caffeine may exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204). Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729). Finally, epidemiological research suggests that consuming more than 190 mg of caffeine daily is associated with an earlier onset of Huntington disease by 3.6 years (91078).
Ocular/Otic
...In individuals with glaucoma, coffee consumption and caffeine intake has been found to increase intraocular pressure (8540,36464,36465,37670).
The magnitude of this effect seems to depend on individual tolerance to caffeine. Some research in healthy young adults shows that caffeine increases intraocular pressure to a greater degree in low-consumers of caffeine (i.e., 1 cup of coffee or less daily) when compared to high-consumers (i.e., those consuming 2 cups of coffee or more daily) (100371). The peak increase of intraocular pressure seems to occur at about 1.5 hours after caffeine ingestion, and there is no notable effect 4 hours after ingestion (36462,100371).
Oncologic ...Most human studies which have examined caffeine or methylxanthine intake have found that they do not play a role in the development of various cancers, including breast, ovarian, brain, colon, rectal, or bladder cancer (37641,37737,37775,37900,38050,38169,38220,91054,91076,108806).
Psychiatric
...Caffeine may lead to habituation and physical dependence (36355,36453,36512,36599), with amounts as low as 100 mg daily (36355,36453).
An estimated 9% to 30% of caffeine consumers could be considered addicted to caffeine (36355). Higher doses of caffeine have caused nervousness, agitation, anxiety, irritability, delirium, depression, sleep disturbances, impaired attention, manic behavior, psychosis and panic attacks (36505,37717,37818,37839,37857,37982,38004,38017,38028,38072)(38079,38138,38306,38325,38331,38332,97464). Similar symptoms have been reported in a caffeine-naïve individual experiencing fatigue and dehydration after a dose of only 200 mg, with resolution of symptoms occurring within 2 hours (95952).
Withdrawal: The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Headache is the most common symptom, due to cerebral vasodilation and increased blood flow (37769,37991,37998). Other researchers suggest symptoms such as tiredness and fatigue, decreased energy, alertness and attentiveness, drowsiness, decreased contentedness, depressed mood, difficulty concentration, irritability, and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms typically occur 12-24 hours after the last dose of caffeine and peak around 48 hours (37769,36600). Symptoms may persist for 2-9 days. Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839). In a case report, caffeine consumption of 560 mg daily was associated with increased suicidality (91082).
Renal ...Data on the relationship between caffeine intake and kidney stones are conflicting. Some clinical research shows that caffeine consumption may increase the risk of stone formation (37634,111498), while other research shows a reduced risk with increasing caffeine intakes (111498). A meta-analysis of 7 studies found that overall, there is an inverse relationship, with a 32% decrease in the risk of kidney stones between the lowest and highest daily intakes of caffeine (111498).
Other ...People with voice disorders, singers, and other voice professionals are often advised against the use of caffeine; however, this recommendation has been based on anecdotal evidence. One small exploratory study suggests that caffeine ingestion may adversely affect subjective voice quality, although there appears to be significant intra-individual variability. Further study is necessary to confirm these preliminary findings (2724).
General
...Orally and topically, cocoa is generally well tolerated.
Most Common Adverse Effects:
Orally: Borborygmi, constipation, diuresis, gastrointestinal discomfort, headaches, and nausea.
Serious Adverse Effects (Rare):
Orally: Tachycardia.
Cardiovascular ...Some cases of increased heart rate have been reported with oral cocoa use (13161,42132).
Dermatologic ...In some cases, when taken orally, cocoa can cause allergic skin reactions (13161). Topically, cocoa butter has occasionally caused a rash. In animals, it has been shown to block pores and cause acne; however, this has not been found in humans (11).
Gastrointestinal ...In human trials, chocolate consumption was associated with a higher incidence of flatulence, irritable bowel syndrome, upset stomach, gastric upset, borborygmi (a gurgling noise made by fluid or gas in the intestines), bloating, nausea, vomiting, and constipation or obstipation (41986,42221,41921,1374,42220,1373,42099,42097,42156,42123,18229,42169,42111). Chocolate consumption has been implicated as a provoking factor in gastroesophageal reflux disease (GERD) (41974,42005,41946,1374). Unpalatability has been reported (42079,42169). Consumption of chocolate and other sweet foods may lead to increased dental caries (42129,42030).
Genitourinary ...In some cases, when taken orally, cocoa can cause increased urination (13161).
Neurologic/CNS ...In some cases, when taken orally, cocoa can cause shakiness and might trigger migraine and other headaches (13161,42169,92271).
Other ...Due to the high sugar and caloric content of chocolate, there is concern about weight gain in people who consume large amounts of chocolate (17187).
General ...No clinical studies have evaluated the safety of hordenine in humans. However, hordenine is structurally similar to the stimulants N-methyltyramine and synephrine, which are found in bitter orange (29888). Theoretically, hordenine may cause stimulant-related side effects similar to these compounds, including tachycardia and hypertension.
Cardiovascular ...Hordenine is structurally similar to the stimulants N-methyltyramine and synephrine, which are found in bitter orange (29888). Theoretically, hordenine may cause stimulant-related side effects similar to these compounds, including tachycardia and hypertension. However, this has not been assessed or reported in humans.
General
...Orally, Rauvolfia vomitoria is possibly unsafe due to the potential for serious adverse effects from its reserpine and yohimbine constituents.
Serious Adverse Effects (Rare):
Orally: Akathisia, dystonia, hypokinesia, and tremor.
Cardiovascular
...Orally, drinking a beverage made by boiling Rauvolfia vomitoria foliage with bitter orange fruit can reduce levels of high-density lipoprotein (HDL) cholesterol in patients with diabetes.
The effect of Rauvolfia vomitoria alone is unclear (35751).
Since Rauvolfia vomitoria contains small amounts of reserpine and yohimbine, theoretically it might also cause some of the adverse effects associated with these constituents. Adverse reactions to reserpine have included angina-like symptoms (94328). At high doses, adverse effects related to yohimbine have included hypertension (17645,86801,91521), tachycardia or palpitations (3312,17465), and myocardial infarction or atrial fibrillation (17465).
Dermatologic ...Since Rauvolfia vomitoria contains small amounts of reserpine and yohimbine, theoretically it might also cause some of the adverse effects associated with these constituents. Orally, low amounts of reserpine may cause adverse reactions including facial flushing, skin rash, and itching (94328). Yohimbine may cause rash, erythrodermic skin eruption, and exanthema (3312,3971,86878,86896).
Endocrine ...Since Rauvolfia vomitoria contains small amounts of reserpine, theoretically it might cause some of the adverse effects associated with this constituent. Orally, low amounts of reserpine may cause adverse reactions including galactorrhea or breast enlargement (94328).
Gastrointestinal ...Since Rauvolfia vomitoria contains small amounts of yohimbine, theoretically it might cause some of the adverse effects associated with this constituent. Yohimbine has been reported to cause nausea, vomiting, increased salivation, diarrhea, and gastrointestinal distress (3970,17465,86780,86786,86804,86827,86896).
Genitourinary ...Since Rauvolfia vomitoria contains small amounts of yohimbine, theoretically it might cause some of the adverse effects associated with this constituent. Orally, yohimbine may cause dartos contraction or decreased libido in some patients (86786,86882).
Hematologic ...Since Rauvolfia vomitoria contains small amounts of yohimbine, theoretically it might cause some of the adverse effects associated with this constituent. A case of drug-induced agranulocytosis has been reported following prolonged use of oral yohimbine (86877).
Immunologic ...Since Rauvolfia vomitoria contains small amounts of yohimbine, theoretically it might cause some of the adverse effects associated with this constituent. There is one report of a hypersensitivity reaction including fever; chills; malaise; itchy, scaly skin; progressive renal failure; and lupus-like syndrome associated with ingestion of a one-day dose of yohimbine (6169).
Musculoskeletal ...Since Rauvolfia vomitoria contains small amounts of reserpine and yohimbine, theoretically it might cause some of the adverse effects associated with these constituents. Orally, low amounts of reserpine may cause edema (94328). Orally, yohimbine may cause muscle aches (86850).
Neurologic/CNS
...Orally, Rauvolfia vomitoria has been associated with the development of extrapyramidal symptoms in some patients.
In one clinical study, 4 out of 10 patients who were taking Rauvolfia vomitoria dried root 300-800 mg daily developed extrapyramidal symptoms, including tremor, akathisia, hypokinesia, and dystonia. Two cases were severe enough to warrant treatment with antiparkinsonian medications (95991).
Since Rauvolfia vomitoria contains small amounts of reserpine and yohimbine, theoretically it might also increase the risk of adverse effects associated with these constituents. Doses of reserpine of greater than 0.5 mg daily appear to increase the risk of side effects. In extremely large amounts, Parkinson-like symptoms, extrapyramidal reactions, and convulsions may occur (15,94328,94332). Orally, yohimbine has been associated with reports of tremulousness, head twitching, seizures, loss of consciousness, enhanced brain norepinephrine release, decreased energy, dizziness, vertigo, headache, feeling cold, flushing, diaphoresis, and paralysis (11,18,3312,3971,17465,86786,86801,86804,86827,86896).
Oncologic ...Since Rauvolfia vomitoria contains small amounts of reserpine, theoretically it might increase the risk of adverse effects associated with this constituent. Some preliminary research suggested a possible relationship between reserpine products and an increased risk of breast cancer; however, further analysis found that use of reserpine products is not associated with an increased risk of breast cancer (94328).
Psychiatric ...In one clinical study, Rauvolfia vomitoria dried root 300-800 mg orally daily for 6 weeks was not associated with reports of depression or thoughts of suicide in patients with psychosis (95991). However, since Rauvolfia vomitoria contains small amounts of reserpine and yohimbine, theoretically it might cause some of the adverse effects associated with these constituents. Orally, low amounts of reserpine may cause nightmares, drowsiness, fatigue, lethargy, and slowed reflexes. In larger amounts, depression may develop. After discontinuation of reserpine, mental depression may persist for several months. Doses of reserpine of greater than 0.5 mg daily appear to increase the risk of these side effects. Orally, yohimbine may increase malaise, fatigue, insomnia, restlessness, agitation, and anxiety (3312,3970,3971,17465,86786,86801,86804,86822,86827,86834) (86868,86878,86882,86896).
Pulmonary/Respiratory ...Since Rauvolfia vomitoria contains small amounts of reserpine and yohimbine, theoretically it might cause some of the adverse effects associated with these constituents. Orally, reserpine may cause nasal congestion or bronchospasm (15,94328). Allergic reactions may also occur; while these events are rare, they may precipitate asthma (15,94328). Orally, yohimbine may cause bronchospasm, tachypnea, cough, sinusitis, and rhinorrhea (17465,86825,86850,94112). Excessive doses of yohimbine can cause respiratory depression (1118).
Renal ...Since Rauvolfia vomitoria contains small amounts of yohimbine, theoretically it might cause some of the adverse effects associated with this constituent. A case of acute kidney failure related to yohimbine-induced systemic lupus erythematosus has been reported (6169).