Ingredients | Amount Per Serving |
---|---|
500 mg | |
(root)
(min 2.5% Withanolides)
(Ashwagandha extract (Form: min 2.5% Withanolides) PlantPart: root )
|
250 mg |
( ginseng )
|
200 mg |
(95% L-Dopa)
(Mucuna Pruriens (Form: 95% L-Dopa) )
|
200 mg |
100 mg |
Calcium Carbonate (Alt. Name: Ca Carbonate, CaCO3), Vegetable capsule (Form: Cellulose, purified Water)
Below is general information about the effectiveness of the known ingredients contained in the product Climaxia. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Climaxia. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Ashwagandha has been used with apparent safety in doses of up to 1250 mg daily for up to 6 months (3710,11301,19271,90649,90652,90653,97292,101816,102682,102683) (102684,102685,102687,103476,105824,109586,109588,109589,109590). ...when used topically. Ashwagandha lotion has been used with apparent safety in concentrations up to 8% for up to 2 months (111538).
PREGNANCY: LIKELY UNSAFE
when used orally.
Ashwagandha has abortifacient effects (12).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Powdered formulations of cowhage seed that are standardized to provide levodopa 75-400 mg daily have been used with apparent safety for up to 20 weeks (7020,7203,97266).
POSSIBLY UNSAFE ...when the hair of the cowhage bean pod is used orally or topically. The bean pod hairs are strong irritants and can cause severe itching, burning, and inflammation (18).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Eurycoma longifolia has been safely used in doses of 400 mg daily for up to 3 months and in doses of 200 mg daily for up to 9 months (17924,18138,93490,97312).
POSSIBLY UNSAFE ...when used orally in excessive amounts, long-term. There are some concerns about the safety of Eurycoma longifolia due to contamination with mercury and lead or adulteration with sildenafil (17925,17926,17927,18137,49087,93494). Some research shows that 36% and 17% of Eurycoma longifolia preparations from Malaysia contain high levels of mercury and lead, respectively (17925,17926,17927,49087). While safety issues related to these contaminants have not been reported in humans, taking high doses of Eurycoma longifolia long-term might cause symptoms of heavy metal poisoning or sildenafil-related adverse effects.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Animal research suggests that there are no negative effects of Eurycoma longifolia on the offspring (93493). However, research in humans is lacking.
LIKELY SAFE ...when used orally and appropriately, short-term. Panax ginseng seems to be safe when used for up to 6 months (8813,8814,17736,89741,89743,89745,89746,89747,89748,103044,103477).
POSSIBLY UNSAFE ...when used orally, long-term. There is some concern about the long-term safety due to potential hormone-like effects, which might cause adverse effects with prolonged use (12537). Tell patients to limit continuous use to less than 6 months. There is insufficient reliable information available about the safety of Panax ginseng when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in infants.
Use of Panax ginseng in newborns is associated with intoxication that can lead to death (12). There is limited reliable information available about use in older children (24109,103049); avoid using.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Ginsenoside Rb1, an active constituent of Panax ginseng, has teratogenic effects in animal models (10447,24106,24107); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY UNSAFE ...when the spine-covered fruit is used orally. There have been reports of bilateral pneumothorax and bronchial polyp after oral consumption of the spine-covered fruit (818).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Animal research suggests that tribulus might adversely affect fetal development (12674); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Climaxia. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking ashwagandha with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ashwagandha with antihypertensive drugs might increase the risk of hypotension.
Details
Animal research suggests that ashwagandha might lower systolic and diastolic blood pressure (19279). Theoretically, ashwagandha might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking ashwagandha might increase the sedative effects of benzodiazepines.
Details
There is preliminary evidence that ashwagandha might have an additive effect with diazepam (Valium) and clonazepam (Klonopin) (3710). This may also occur with other benzodiazepines.
|
Theoretically, taking ashwagandha might increase the sedative effects of CNS depressants.
Details
Ashwagandha seems to have sedative effects. Theoretically, this may potentiate the effects of barbiturates, other sedatives, and anxiolytics (3710).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP1A2 enzymes (111404).
|
Theoretically, ashwagandha might decrease the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that ashwagandha extract induces CYP3A4 enzymes (111404).
|
Theoretically, taking ashwagandha with hepatotoxic drugs might increase the risk of liver damage.
Details
|
Theoretically, taking ashwagandha might decrease the effects of immunosuppressants.
Details
|
Ashwagandha might increase the effects and adverse effects of thyroid hormone.
Details
Concomitant use of ashwagandha with thyroid hormones may cause additive therapeutic and adverse effects. Preliminary clinical research and animal studies suggest that ashwagandha boosts thyroid hormone synthesis and secretion (19281,19282,97292). In one clinical study, ashwagandha increased triiodothyronine (T3) and thyroxine (T4) levels by 41.5% and 19.6%, respectively, and reduced serum TSH levels by 17.4% from baseline in adults with subclinical hypothyroidism (97292).
|
Theoretically, concomitant use of cowhage and anesthesia might increase the risk of arrhythmias.
Details
Cowhage contains levodopa (7020,7205,46334,46336,94723,94724). Use of levodopa with cyclopropane or halogenated hydrocarbon anesthesia has led to arrhythmias. Other anesthetics have not been implicated (15). Use other anesthetics in patients taking cowhage or tell patients to stop taking cowhage at least 2 weeks before surgery.
|
Theoretically, concomitant use of cowhage and antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research shows that cowhage might have hypoglycemic effects (7221).
|
Theoretically, use of cowhage might decrease the clinical effects of antipsychotic drugs.
Details
|
Theoretically, concomitant use of cowhage and guanethidine might increase the risk of hypotension.
Details
|
Concomitant use can increase the risk of levodopa-related adverse effects.
Details
|
Theoretically, concomitant use of cowhage and methyldopa might increase the risk of hypotension.
Details
|
Theoretically, concomitant use of cowhage and non-selective MAOIs might increase the risk of hypertensive crisis.
Details
|
Theoretically, use of TCAs might reduce the levels and clinical effects of cowhage.
Details
|
Theoretically, Eurycoma longifolia might increase levels CYP1A2 substrates.
Details
In vitro research suggests that methanolic Eurycoma longifolia root extract weakly inhibits CYP1A2 enzymes (93489). This effect has not been reported in humans.
|
Theoretically, Eurycoma longifolia might increase levels of CYP2A6 substrates.
Details
In vitro research suggests that methanolic Eurycoma longifolia root extract weakly inhibits CYP2A6 enzymes (93489). This effect has not been reported in humans.
|
Theoretically, Eurycoma longifolia might increase levels of CYP2C19 substrates.
Details
In vitro research suggests that methanolic Eurycoma longifolia root extract weakly inhibits CYP2C19 enzymes (93489). This effect has not been reported in humans.
|
Eurycoma longifolia can reduce the levels and clinical effects of propranolol.
Details
A small clinical study in healthy persons shows that taking a single dose of a water-based Eurycoma longifolia extract 200 mg, in combination with a single dose of propranolol 80 mg, reduces the propranolol area under the curve (AUC) by 29%, reduces the peak concentration by 42%, and increases time to peak concentration by 86% when compared with control. Since the elimination half-life of propranolol did not change, it seems that Eurycoma longifolia alters the kinetics of propranolol by decreasing its absorption in the gut, and not by altering its metabolism (17923). It is not known if separating administration will prevent this interaction.
|
Theoretically, Eurycoma longifolia may further increase levels of testosterone.
Details
A clinical study in aging males with testosterone levels below 300 ng/dL shows that taking a specific water extract of Eurycoma longifolia roots (Physta; Biotropics Malaysia) 100-200 mg daily with breakfast for 12 weeks increases total testosterone levels by 8% to 11% when compared with placebo (108451). It is unclear whether this increase would occur in individuals with normal testosterone levels.
|
Although Panax ginseng has shown antiplatelet effects in the laboratory, it is unlikely to increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro evidence suggests that ginsenoside constituents in Panax ginseng might decrease platelet aggregation (1522,11891). However, research in humans suggests that ginseng does not affect platelet aggregation (11890). Animal research indicates low oral bioavailability of Rb1 and rapid elimination of Rg1, which might explain the discrepancy between in vitro and human research (11153). Until more is known, use with caution in patients concurrently taking anticoagulant or antiplatelet drugs.
|
Theoretically, taking Panax ginseng with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Monitor blood glucose levels closely.
|
Theoretically, taking Panax ginseng with caffeine might increase the risk of adverse stimulant effects.
Details
|
Theoretically, Panax ginseng might decrease levels of drugs metabolized by CYP1A1.
Details
In vitro research shows that Panax ginseng can induce the CYP1A1 enzyme (24104).
|
Theoretically, Panax ginseng might increase levels of drugs metabolized by CYP2D6. However, research is conflicting.
Details
There is some evidence that Panax ginseng can inhibit the CYP2D6 enzyme by approximately 6% (1303,51331). In addition, in animal research, Panax ginseng inhibits the metabolism of dextromethorphan, a drug metabolized by CYP2D6, by a small amount (103478). However, contradictory research suggests Panax ginseng might not inhibit CYP2D6 (10847). Until more is known, use Panax ginseng cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, Panax ginseng might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Panax ginseng may affect the clearance of drugs metabolized by CYP3A4. One such drug is imatinib. Inhibition of CYP3A4 was believed to be responsible for a case of imatinib-induced hepatotoxicity (89764). In contrast, Panax ginseng has been shown to increase the clearance of midazolam, another drug metabolized by CYP3A4 (89734,103478). Clinical research shows that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478). Until more is known, use Panax ginseng cautiously in combination with CYP3A4 substrates.
|
Theoretically, concomitant use of large amounts of Panax ginseng might interfere with hormone replacement therapy.
Details
|
Theoretically, Panax ginseng might decrease blood levels of oral or intravenous fexofenadine.
Details
Animal research suggests that taking Panax ginseng in combination with oral or intravenous fexofenadine may reduce the bioavailability of fexofenadine. Some scientists have attributed this effect to the ability of Panax ginseng to increase the expression of P-glycoprotein (24101).
|
Theoretically, Panax ginseng might reduce the effects of furosemide.
Details
There is some concern that Panax ginseng might contribute to furosemide resistance. There is one case of resistance to furosemide diuresis in a patient taking a germanium-containing ginseng product (770).
|
Theoretically, Panax ginseng might increase the effects and adverse effects of imatinib.
Details
A case of imatinib-induced hepatotoxicity has been reported for a 26-year-old male with chronic myelogenous leukemia stabilized on imatinib for 7 years. The patient took imatinib 400 mg along with a Panax ginseng-containing energy drink daily for 3 months. Since imatinib-associated hepatotoxicity typically occurs within 2 years of initiating therapy, it is believed that Panax ginseng affected imatinib toxicity though inhibition of cytochrome P450 3A4. CYP3A4 is the primary enzyme involved in imatinib metabolism (89764).
|
Theoretically, Panax ginseng use might interfere with immunosuppressive therapy.
Details
Panax ginseng might have immune system stimulating properties (3122).
|
Theoretically, taking Panax ginseng with insulin might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Insulin dose adjustments might be necessary in patients taking Panax ginseng; use with caution.
|
Although Panax ginseng has demonstrated variable effects on cytochrome P450 3A4 (CYP3A4), which metabolizes lopinavir, Panax ginseng is unlikely to alter levels of lopinavir/ritonavir.
Details
Lopinavir is metabolized by CYP3A4 and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Panax ginseng has shown variable effects on CYP3A4 activity in humans (89734,89764). However, taking Panax ginseng (Vitamer Laboratories) 500 mg twice daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in 12 healthy volunteers (93578).
|
Theoretically, Panax ginseng may increase the clearance of midazolam.
Details
Midazolam is metabolized by cytochrome P450 3A4 (CYP3A4). Clinical research suggests that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478).
|
Theoretically, Panax ginseng can interfere with MAOI therapy.
Details
|
Theoretically, taking Panax ginseng with nifedipine might increase serum levels of nifedipine and the risk of hypotension.
Details
Preliminary clinical research shows that concomitant use can increase serum levels of nifedipine in healthy volunteers (22423). This might cause the blood pressure lowering effects of nifedipine to be increased when taken concomitantly with Panax ginseng.
|
Theoretically, Panax ginseng has an additive effect with drugs that prolong the QT interval and potentially increase the risk of ventricular arrhythmias. However, research is conflicting.
Details
|
Theoretically, taking Panax ginseng with raltegravir might increase the risk of liver toxicity.
Details
A case report suggests that concomitant use of Panax ginseng with raltegravir can increase serum levels of raltegravir, resulting in elevated liver enzymes levels (23621).
|
Theoretically, Panax ginseng might increase or decrease levels of selegiline, possibly altering the effects and side effects of selegiline.
Details
Animal research shows that taking selegiline with a low dose of Panax ginseng extract (1 gram/kg) reduces selegiline bioavailability, while taking a high dose of Panax ginseng extract (3 grams/kg) increases selegiline bioavailability (103053). More research is needed to confirm these effects.
|
Theoretically, taking Panax ginseng with stimulant drugs might increase the risk of adverse stimulant effects.
Details
|
Panax ginseng might affect the clearance of warfarin. However, this interaction appears to be unlikely.
Details
There has been a single case report of decreased effectiveness of warfarin in a patient who also took Panax ginseng (619). However, it is questionable whether Panax ginseng was the cause of this decrease in warfarin effectiveness. Some research in humans and animals suggests that Panax ginseng does not affect the pharmacokinetics of warfarin (2531,11890,17204,24105). However, other research in humans suggests that Panax ginseng might modestly increase the clearance of the S-warfarin isomer (15176). More evidence is needed to determine whether Panax ginseng causes a significant interaction with warfarin.
|
Taking tribulus with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research shows that Tribulus can lower blood glucose levels in adults with type 2 diabetes who are taking antidiabetes medications (97327).
|
Theoretically, taking tribulus with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, tribulus might increase the levels and clinical effects of lithium.
Details
Tribulus is thought to have diuretic properties (12681). Due to these potential diuretic effects, tribulus might reduce excretion and increase levels of lithium. The dose of lithium might need to be decreased.
|
Below is general information about the adverse effects of the known ingredients contained in the product Climaxia. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, ashwagandha seems to be well-tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, nausea, and vomiting. However, these adverse effects do not commonly occur with typical doses.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about acute hepatitis, acute liver failure, hepatic encephalopathy, the need for liver transplantation, and death due to liver failure with ashwagandha treatment.
Dermatologic ...Orally, dermatitis has been reported in three of 42 patients in a clinical trial (19276).
Endocrine ...A case report describes a 73-year-old female who had taken an ashwagandha root extract (unspecified dose) for 2 years to treat hypothyroidism which had been previously managed with levothyroxine. The patient was diagnosed with hyperthyroidism after presenting with supraventricular tachycardia, chest pain, tremor, dizziness, fatigue, irritability, hair thinning, and low thyroid stimulating hormone (TSH) levels. Hyperthyroidism resolved after discontinuing ashwagandha (108745). Additionally, an otherwise healthy adult who was taking ashwagandha extract orally for 2 months experienced clinical and laboratory-confirmed thyrotoxicosis. Thyrotoxicosis resolved 50 days after discontinuing ashwagandha, without other treatment (114111).
Gastrointestinal ...Orally, large doses may cause gastrointestinal upset, diarrhea, and vomiting secondary to irritation of the mucous and serous membranes (3710). When taken orally, nausea and abdominal pain (19276,110490,113609) and gastritis and flatulence (90651) have been reported.
Genitourinary ...In one case report, a 28-year-old male with a decrease in libido who was taking ashwagandha 5 grams daily over 10 days subsequently experienced burning, itching, and skin and mucous membrane discoloration of the penis, as well as an oval, dusky, eroded plaque (3 cm) with erythema on the glans penis and prepuce (32537).
Hepatic ...Orally, ashwagandha in doses of 154 mg to 20 grams daily has played a role in several case reports of cholestatic, hepatocellular, and mixed liver injuries. In most of these cases, other causes of liver injury were excluded, and liver failure did not occur. Symptoms included jaundice, pruritus, malaise, fatigue, lethargy, weight loss, nausea, diarrhea, abdominal pain and distension, stool discoloration, and dark urine. Symptom onset was typically 5-180 days from first intake, although in some cases onset occurred after more than 12 months of use (102686,107372,110490,110491,111533,111535,112111,113610,114113). Laboratory findings include elevated aspartate transaminase (AST), alanine transaminase (ALT), alkaline phosphatase, serum bilirubin, and international normalized ratio (INR) (112111,113610,114113). In most cases, liver enzymes normalized within 1-5 months after discontinuation of ashwagandha (102686,107372,110491,111535,112111,114113). However, treatment with corticosteroids, lactulose, ornithine, ursodeoxycholic acid, and plasmapheresis, among other interventions, was required in one case (111533). Rarely, use of oral ashwagandha has been reported to cause hepatic encephalopathy, liver failure requiring liver transplantation, and acute-on-chronic liver failure resulting in death (110490,113610).
Neurologic/CNS ...Orally, ashwagandha has been reported to cause drowsiness (110492,113609). Headache, neck pain, and blurry vision have been reported in a 47-year-old female taking ashwagandha, cannabis, and venlafaxine. Imaging over the course of multiple years and hospital admissions indicated numerous instances of intracranial hemorrhage and multifocal stenosis of intracranial arteries, likely secondary to reversible cerebral vasoconstriction syndrome (RCVS) (112113). It is unclear whether the RCVS and subsequent intracranial hemorrhages were precipitated by ashwagandha, cannabis, or venlafaxine.
General
...Orally, adverse effects to cowhage seem to be rare; however, a thorough safety evaluation has not been conducted.
Topically, cowhage bean pod or seed may be unsafe.
Most Common Adverse Effects:
Orally: Diarrhea, flatulence, mucosal irritation.
Topically: Erythema, pruritus, rash.
Cardiovascular ...Orally, cowhage has been reported to cause palpitations (7021,7203)
Dermatologic
...Orally, ingestion of hairs from the bean pod or seed can result in significant mucosal irritation and should be avoided.
Topically, hairs on cowhage bean pod or seed can cause severe pruritus (6898). Symptoms include severe itching, burning, inflammation, and erythematous macular rashes (18,6898). Symptoms resolve spontaneously within several hours, but may also be relieved with antihistamines (6898). The hairs can be removed from the skin by washing, but the hairs can also be retained, and transferred to other people, in fabrics and carpets. Clothing and other materials that come in contact with cowhage hairs should also be thoroughly washed (6898).
Gastrointestinal ...Orally, cowhage has been reported to cause flatulence, diarrhea, and dry mouth (7021,7203). Orally, a specific powdered cowhage seed extract (Zandopa, formerly HP-200; Zandu Pharmaceuticals) has been reported to cause nausea, abdominal distention, and vomiting in clinical research when taken in amounts of 22.5-67.5 grams divided into 2-5 doses per day (7020).
Musculoskeletal ...Orally, dyskinesia has been reported in clinical research in about 3% of patients taking a specific powdered cowhage seed extract (Zandopa, formerly HP-200; Zandu Pharmaceuticals) 22. 5-67.5 grams divided into 2-5 doses daily (7020).
Neurologic/CNS ...Orally, cowhage has been reported to cause headaches (7021,7203). Orally, insomnia has been reported in clinical research in about 3% of patients taking a specific powdered cowhage seed extract (Zandopa, formerly HP-200; Zandu Pharmaceuticals) 22.5 grams to 67.5 grams divided into 2-5 doses daily (7020).
Psychiatric ...In a case report, cowhage caused an outbreak of acute toxic psychosis. Symptoms of psychosis included confusion, giddiness, agitation, hallucinations, and paranoid delusions. The cowhage-induced psychosis was successfully treated with intravenous chlorpromazine (7021).
Other ...Orally, cowhage has been reported to cause sweating and changes in urine color, (7021,7203). Theoretically, due to the levodopa constituent, cowhage is likely to cause the same adverse effects that have been attributed to purified, prescription levodopa. Some of these side effects include elevated liver enzymes, respiratory disturbances, urinary retention, muscle cramps, and priapism (15). However, these effects have not yet been reported for cowhage.
General
...Orally, Eurycoma longifolia seems to be well tolerated.
Most Common Adverse Effects:
Orally: None reported.
Endocrine ...Some research in both humans and animals suggests that Eurycoma longifolia might increase testosterone levels (17924). If testosterone levels are increased beyond the normal range, there is risk of testosterone-related side effects which could include acne, insulin resistance, hepatotoxicity, and others.
General
...Orally, Panax ginseng is generally well tolerated when used for up to 6 months.
There is some concern about the long-term safety due to potential hormone-like effects.
Topically, no adverse effects have been reported when ginseng is used as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Insomnia.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, arrhythmia, ischemia, Stevens-Johnson syndrome.
Cardiovascular ...Panax ginseng may cause hypertension, hypotension, and edema when used orally in high doses, long-term (3353). However, single doses of Panax ginseng up to 800 mg are not associated with changes in electrocardiogram (ECG) parameters or increases in heart rate or blood pressure (96218). There is a case report of menometrorrhagia and tachyarrhythmia in a 39-year-old female who took Panax ginseng 1000-1500 mg/day orally and also applied a facial cream topically that contained Panax ginseng. Upon evaluation for menometrorrhagia, the patient also reported a history of palpitations. It was discovered that she had sinus tachycardia on ECG. However, the patient was a habitual consumer of coffee 4-6 cups/day and at the time of evaluation was also mildly anemic. The patient was advised to discontinue taking Panax ginseng. During the 6 month period following discontinuation the patient did not have any more episodes of menometrorrhagia or tachyarrhythmia (13030). Also, a case of transient ischemic attack secondary to a hypertensive crisis has been reportedly related to oral use of Panax ginseng (89402).
Dermatologic
...Orally, Panax ginseng may cause itching or an allergic response consisting of systemic rash and pruritus (89743,89760,104953).
Skin eruptions have also been reported with use of Panax ginseng at high dosage, long-term (3353). Uncommon side effects with oral Panax ginseng include Stevens-Johnson syndrome (596).
In one case report, a 6-year-old male with a previous diagnosis of generalized pustular psoriasis, which had been in remission for 18 months, presented with recurrent pustular lesions after consuming an unspecified dose of Panax ginseng. The patient was diagnosed with pityriasis amiantacea caused by subcorneal pustular dermatosis. Treatment with oral dapsone 25 mg daily was initiated, and symptoms resolved after 4 weeks (107748).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, mild pain, local irritation, and burning have occurred (2537).
Endocrine
...The estrogenic effects of ginseng are controversial.
Some clinical evidence suggests it doesn't have estrogen-mediated effects (10981). However, case reports of ginseng side effects such as postmenopausal vaginal bleeding suggest estrogenic activity (590,591,592,10982,10983).
In a 12-year-old Korean-Japanese male, enlargement of both breasts with tenderness in the right breast (gynecomastia) occurred after taking red ginseng extract 500 mg daily orally for one month. Following cessation of the product, there was no further growth or pain (89733). Swollen and tender breasts also occurred in a 70-year-old female using Panax ginseng orally (590).
Gastrointestinal ...Orally, Panax ginseng can cause decreased appetite (3353), diarrhea (3353,89734,103477,112841), abdominal pain (89734,87984,112841), and nausea (589,87984). However, these effects are typically associated with long-term, high-dose usage (3353). Some evidence suggests that fermented Panax ginseng is more likely to cause abdominal pain and diarrhea when compared with unfermented Panax ginseng (112841).
Genitourinary
...Amenorrhea has been reported with oral use of Panax ginseng (3353).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, sporadic erectile dysfunction and excessively delayed ejaculation have occurred (2537). Less commonly, patients can experience vaginal bleeding (591,592,3354,23630).
Hepatic ...It is unclear if Panax ginseng is associated with adverse hepatic effects. Cholestatic hepatitis has been reported in a 65-year old male following oral use of a combination product containing Panax ginseng and other ingredients (Prostata). However, it is unclear if this adverse effect was due to Panax ginseng, other ingredients, or the combination (598).
Immunologic ...A case of anaphylaxis, with symptoms of hypotension and rash, has been reported following ingestion of a small amount of Panax ginseng syrup (11971).
Neurologic/CNS ...Orally, one of the most common side effects to Panax ginseng is insomnia (589,89734,111336). Headache (594,23638,112840), vertigo, euphoria, and mania (594) have also been reported. Migraine and somnolence occurred in single subjects in a clinical trial (87984). In a case report of a 46-year-old female, orobuccolingual dyskinesia occurred following oral use of a preparation containing black cohosh 20 mg and Panax ginseng 50 mg twice daily for menopausal symptoms. The patient's condition improved once the product was stopped and treatment with baclofen 40 mg and clonazepam 20 mg daily was started (89735).
General
...Orally, tribulus seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Cases of liver and kidney injury, seizures, and chronic painful erection with impaired sexual function have been reported. Pneumothorax and bronchial polyp after consuming the spine-covered tribulus fruit have been reported.
Gastrointestinal ...Orally, tribulus can cause abdominal pain, cramping, nausea, vomiting, diarrhea, and constipation (92022,92027). However, in one study, the rates of these gastrointestinal complaints were similar for patients taking tribulus and those receiving placebo (92022).
Genitourinary ...In one case report, a patient taking two tribulus tablets (unknown dose) daily for 15 days presented to the local emergency department with a painful erection lasting 72 hours. The priapism was resolved with medical management; however, post-episode sexual function was impaired (92023).
Hepatic ...In one case report, a patient drinking tribulus water 2 liters daily for two days presented with lower limb weakness, seizures, hepatitis, and acute kidney injury. The patient's condition improved after hemodialysis and discontinuation of tribulus water (92069).
Neurologic/CNS ...Orally, tribulus has been reported to cause general excitation and insomnia. These symptoms were reversed upon discontinuation of the drug or decreasing the dose (78867). In one case report, a patient drinking tribulus water 2 liters daily for two days presented with lower limb weakness, seizures, hepatitis, and acute kidney injury. The patient's condition improved after hemodialysis and discontinuation of tribulus water (92069).
Pulmonary/Respiratory ...In one case report, a patient developed a bilateral pneumothorax after consuming the spine-covered fruit of tribulus (818). In another case report, a patient developed a polyp in the lobar bronchus of the right interior lobe due to the presence of a tribulus fruit spine (78852).
Renal ...In one case report, a patient drinking tribulus water 2 liters daily for two days presented with lower limb weakness, seizures, hepatitis, and acute kidney injury. The patient's condition improved after hemodialysis and discontinuation of the tribulus water (92069). In another case report, a healthy male taking one tribulus tablet (unknown dose) daily for a few months for bodybuilding purposes developed hyperbilirubinemia followed by acute kidney failure 2-3 weeks later. The patient was managed with intravenous fluids and a low-salt, low-protein diet (92025).
Other ...In one case report, gynecomastia was observed in a male weightlifter taking an herbal combination product containing tribulus. However, it is not clear if this adverse effect can be attributed to tribulus alone (78859).