Ingredients | Amount Per Serving |
---|---|
Total Carbohydrates
|
<1 Gram(s) |
Dietary Fiber
|
<1 Gram(s) |
(Fructooligosaccharides)
|
270 mg |
(N-Acetyl D-Glucosamine)
|
105 mg |
Mucosal Factors Proprietary Blend
|
53 mg |
(Lactobacillus acidophilus )
|
|
(Bifidobacterium lactis )
|
|
(B. infantis )
|
|
(B. longum )
|
|
(B. bifidum )
|
|
(L. plantarum )
|
|
(L. casei )
|
|
(L. salivarius )
|
|
Streptococcus thermophilus (St-21)
(Streptococcus thermophilus )
|
|
(Curcuma longa )
(root)
|
1.5 mg |
Cellulose, Hydroxypropyl Methylcellulose Note: vegetable capsule
Below is general information about the effectiveness of the known ingredients contained in the product Mucosal Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Mucosal Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium lactis has been safely used alone or in combination with other probiotics in clinical trials lasting up to 12 weeks (92255,98502,105158,107572,107581,107586,110979,110985,110986,110992)(110993,110998,110999).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium lactis has been safely used alone or in combination with other probiotics in infants and children for up to 15 months (3169,3458,92265,95381,95382,98736,105149,107582,107583,107585)(107587,107590,110984,110987,110988,110991,110994,110995). A combination probiotic containing B. lactis and Lactobacillus acidophilus (HOWARU Protect, Danisco) has been used safely for up to 6 months in children aged 3-5 years (16847). A specific combination of B. lactis, Bifidobacterium bifidum, and L. acidophilus (Complete Probiotic Platinum) has also been used safely for up to 18 months in children aged 4 months to 5 years (103436). In addition, in children ages 4-17 years, 1 billion CFUs of a 1:1:1 combination of B. lactis CECT 8145, Lacticasebacillus casei CECT 9104, and Bifidobacterium longum CECT 7347 has been used safely for 12 weeks (107531). There is insufficient reliable information available about the safety of B. lactis in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available.
A meta-analysis of four clinical trials shows that taking probiotics during pregnancy increases the relative risk of pre-eclampsia by 85% when compared with placebo. Although the specific effects of Bifidobacterium lactis are unclear from this analysis, three of the included studies used B. lactis in combination with Lacticaseibacillus rhamnosus (105185). More information is needed to determine if certain patients are at increased risk.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium bifidum has been safely used alone or in combination with other probiotics in clinical trials lasting up to one year (1731,12775,14338,92255,107580,110972,110974,110978). There is insufficient reliable information available about the safety of non-viable, heat-killed B. bifidum formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium bifidum has been safely used alone or in combination with other probiotics in clinical trials in infants and children for up to 18 months (161,90286,90602,98736,103436,110971,110976,110924). There is insufficient reliable information available about the safety of B. bifidum in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when Bifidobacterium bifidum is used orally and appropriately, short-term.
A combination of B. bifidum, Lactobacillus acidophilus, and Lacticaseibacillus casei has been used with apparent safety for 6 weeks starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Bifidobacterium bifidum during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium longum has been safely used alone or in combination with other probiotics in clinical trials lasting up to one year (1233,12108,13054,14334,35382,35403,35424,103440,103446,105129)(107593,110968,110972,111773,111776,111847,111851,111854,111857,111858).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium longum has been safely used alone or in combination with other probiotics in infants and children for up to 4 months (3162,35377,35383,35393,35406,35407,92266,98736,107531,110924)(110976,111001,111015,111825,111833,111848). There is insufficient reliable information available about the safety of B. longum in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given these and other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when used orally and appropriately, short-term.
A combination of Bifidobacterium longum and Lacticaseibacillus rhamnosus has been used with apparent safety throughout pregnancy (105128,105144). A combination of B. longum BB536 and Bifidobacterium breve M-16V has been used with apparent safety from about 4 weeks before the expected due date until delivery (111015). Also, a combination of B. longum and Lacticaseibacillus paracasei has been used with apparent safety from 2 months prior to delivery until 2 months after delivery during lactation (90285).
POSSIBLY SAFE ...when used orally and appropriately, alone or in combination with probiotics, in doses up to 30 grams daily for up to 4 weeks (741,745,8505,90266,107729,107931). ...when a specific FOS product (NutraFlora, Ingredion Inc.) is used orally in combination with calcium at doses up to 3.2 grams daily for up to 24 months (94931).
CHILDREN: POSSIBLY SAFE
when short-chain FOS are included in approved infant formulas for healthy term infants at a level of up to 4 grams/L or 1 gram/kg daily (94929,94930,98651).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when glucosamine sulfate is used orally and appropriately. Glucosamine sulfate has been used safely in multiple clinical trials at a dose of 1000-1500 mg daily for 4 weeks to 3 years (2604,7026,8942,11340,12461)(14305,16717,89558,89567,94380,94382,95785).
POSSIBLY SAFE ...when glucosamine hydrochloride is used orally and appropriately. Glucosamine hydrochloride has been used with apparent safety at a dose of 1400-1600 mg daily for up to 2 years (4237,13579,14809,18344,42477,89516,89519,95784). Glucosamine hydrochloride 2 grams daily has also been used with apparent safety for up to 3 weeks (103281). ...when N-acetyl glucosamine is used orally and appropriately. N-acetyl glucosamine 100 mg daily has been used with apparent safety for up to 24 weeks (95795). ...when N-acetyl glucosamine is applied topically and appropriately. A 2% N-acetyl glucosamine cream has been safely used for up to 10 weeks (92721). ...when N-acetyl glucosamine is used rectally and appropriately. N-acetyl glucosamine 3-4 grams daily in 2 divided doses has been safely used (10234). ...when glucosamine sulfate is used intramuscularly and appropriately, short-term. Intramuscular glucosamine sulfate seems to be well tolerated when given twice weekly for up to 6 weeks (2605).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Lacticaseibacillus casei has been safely used alone or in combination with other ingredients in studies lasting up to 8 weeks (90230,112517).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lacticaseibacillus casei has been safely used alone in studies lasting up to 4 months (14373,107544). Also, a specific mixture (Latopic, Biomed S.A.) providing 1 billion CFUs of L. casei ŁOCK 0919 50%, Lacticaseibacillus rhamnosus ŁOCK 0900 25%, and L. rhamnosus ŁOCK 0908 25% has been used with apparent safety for 3 months in children under 2 years of age (107510). In addition, in children ages 4-17 years, a 1:1:1 combination of L. casei CECT 9104, Bifidobacterium animalis subsp. lactis CECT 8145, and Bifidobacterium longum CECT 7347 providing 1 billion CFUs has been used with apparent safety for 12 weeks (107531). There is insufficient reliable information available about the safety of L. casei in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lacticaseibacillus casei, Lactobacillus acidophilus, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lacticaseibacillus casei during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally and appropriately. Lactobacillus acidophilus has been safely used as part of multi-ingredient probiotic products in studies lasting up to nine months (1731,6087,14370,14371,90231,90296,92255,103438,12775,107581)(110950,110970,110979,110998,111785,111793). ...when used intravaginally and appropriately. L. acidophilus has been used safely in studies lasting up to 12 weeks (12108,13176,13177,90265). There is insufficient reliable information available about the safety of non-viable, heat-killed L. acidophilus formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lactobacillus acidophilus has been safely used for up to 5 days (96887). Also, combination probiotics containing L. acidophilus have been used with apparent safety in various doses and durations. L. acidophilus has been combined with Bifidobacterium animalis (HOWARU Protect, Danisco) for up to 6 months in children 3-5 years old (16847), with Bifidobacterium bifidum for 6 weeks (90602,96890), with Bifidobacterium bifidum and Bifidobacterium animalis subsp. lactis (Complete Probiotic Platinum) for 18 months in children 4 months to 5 years of age (103436), and in a specific product (Visbiome, ExeGi Pharma) containing a total of 8 species for 3 months in children 2-12 years old (107497). There is insufficient reliable information available about the safety of L. acidophilus in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lactobacillus acidophilus during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283). Turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product Mucosal Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking Bifidobacterium lactis with antibiotic drugs might decrease the effectiveness of B. lactis.
Details
|
Theoretically, taking Bifidobacterium. bifidum with antibiotic drugs might decrease the effectiveness of B. bifidum.
Details
|
Theoretically, taking Bifidobacterium longum with antibiotic drugs might decrease the effectiveness of B. longum.
Details
|
Acetaminophen might interfere with the activity of glucosamine sulfate by interacting with the sulfate portion.
Details
Anecdotal reports suggest that adding glucosamine to an acetaminophen regimen might decrease pain control in patients with osteoarthritis (14806). Some research suggests that the sulfate portion of glucosamine sulfate might contribute to its effect in osteoarthritis. Since acetaminophen metabolism requires sulfur and reduces serum sulfate concentrations, acetaminophen could theoretically interfere with the action of glucosamine sulfate. Conversely, the administration of sulfate could theoretically decrease the effectiveness of acetaminophen in sulfate-deficient people by increasing its clearance (10313).
|
Despite initial concerns, it is unlikely that glucosamine will interfere with the effects of antidiabetes drugs.
Details
In vitro and animal research has suggested that glucosamine might increase insulin resistance or decrease insulin production (371,372,3406,18342,18343). This has raised concerns that taking glucosamine might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that glucosamine does not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, or type 2 diabetes patients (7026,7075,8942,10311,10317,15111).
|
Theoretically glucosamine may induce resistance to topoisomerase II inhibitors.
Details
In vitro research suggests that glucosamine might induce resistance to etoposide (VP16, VePesid) and doxorubicin (Adriamycin) by reducing inhibition of topoisomerase II, an enzyme required for DNA replication in tumor cells (7639). This effect has not been reported in humans.
|
Glucosamine might increase the anticoagulant effects of warfarin and increase the risk of bruising and bleeding.
Details
In two individual case reports, glucosamine/chondroitin combinations were associated with a significant increase in international normalized ratio (INR) in patients previously stabilized on warfarin (11389,16130). In one case, the increase in INR occurred only after tripling the dose of a glucosamine/chondroitin supplement from 500 mg/400 mg daily to 1500/1200 mg daily (16130). Additionally, 20 voluntary case reports to the U.S. Food & Drug Administration (FDA) have linked glucosamine plus chondroitin with increased INR, bruising, and bleeding in patients who were also taking warfarin (16130). There have also been 20 additional case reports to the World Health Organization (WHO) that link glucosamine alone to increased INR in patients taking warfarin (16131). The mechanism of this interaction is unclear. Glucosamine is a small component of heparin, but is not thought to have anticoagulant activity; however, animal research suggests that it might have antiplatelet activity (16131).
|
Theoretically, taking Lacticaseibacillus casei with antibiotic drugs might decrease the effectiveness of L. casei.
Details
L. casei preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. casei preparations by at least two hours.
|
Theoretically, taking Lactobacillus acidophilus with antibiotic drugs might decrease the effectiveness of L. acidophilus.
Details
L. acidophilus preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. acidophilus preparations by at least two hours.
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Details
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Another clinical study in patients with diabetes on hemodialysis shows that taking curcumin 80 mg daily for 12 weeks can reduce blood glucose levels when compared with placebo (104149).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
Details
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
Details
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
Details
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Details
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Details
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, turmeric might increase the effects of losartan.
Details
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
Details
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Details
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
Details
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
Details
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Details
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Details
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
Details
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Details
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
Details
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
Details
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Mucosal Factors. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, Bifidobacterium lactis seems to be well tolerated by most patients.
Most Common Adverse Effects:
Orally: Diarrhea.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Dermatologic ...In clinical research, two cases of rash, one with itching, were reported by patients taking a combination of Bifidobacterium lactis BB-12, Lacticaseibacillus paracasei F19, and Lactobacillus acidophilus La5. However, it is not clear if these adverse effects were due to B. lactis, other probiotics, or the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Bloating and flatulence have been reported with probiotic use; however, these adverse effects have not been reported from ingestion of Bifidobacterium lactis in particular. When taken orally, B. lactis can cause diarrhea and other gastrointestinal complaints in children (3169,95381,105149). Gastrointestinal complaints including worsening diarrhea, abdominal pain, constipation, stomach burn, and flatulence have been reported rarely (110986,110999).
Immunologic
...There have been cases of Bifidobacterium bacteremia in critically ill patients (102416,107599).
These cases are rare and none seem to be due to Bifidobacterium lactis alone.
A specific preparation (NBL probiotic ATP, Nobel) containing B. lactis, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, fructo-oligosaccharides, galacto-oligosaccharides, colostrum, and lactoferrin was found to be a significant risk factor for vancomycin-resistant Enterococcus colonization in premature infants. Although there was no direct link to determine causation, it was hypothesized that the probiotic mixture helped to mediate the acquisition and transfer of antibiotic resistance genes (96890).
General
...Orally, Bifidobacterium bifidum seems to be well tolerated by most patients.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Gastrointestinal ...Bloating and flatulence have been reported with probiotic use; however, these adverse effects have not been reported from ingestion of Bifidobacterium bifidum in particular. One case of vomiting and fever has been reported in a clinical study for a single child taking B. bifidum and Lactobacillus acidophilus. It is unclear if the probiotics were the causal agent (90286).
Immunologic ...There have been cases of Bifidobacterium sepsis in critically ill patients (102416,107599). However, these cases are rare and none seem to be due to Bifidobacterium bifidum.
General
...Orally, Bifidobacterium longum seems to be well tolerated by most patients.
Serious Adverse Effects (Rare):
Orally: There is concern that B. longum may cause bacteremia in certain patients.
Gastrointestinal ...When taken orally, abdominal discomfort, pain, and distension have been reported rarely (111773,111847,111856). Flatulence has been reported rarely with Bifidobacterium longum when used alone or in combination with other species of probiotics (107520,111773). Other rare gastrointestinal side effects have included constipation and gastrointestinal motor disorder (111773).
Immunologic ...There have been rare cases of Bifidobacterium bacteremia in critically ill infant and adult patients (102416,107599). Various cases of Bifidobacterium longum bacteremia, sometimes presenting as sepsis, have occurred in preterm infants using probiotics (102416,111610,111612,111850,111852,111853). In one case report, a 15-month-old female infant with congenital heart defects and recent surgery to replace a mechanical heart valve developed Bifidobacterium sepsis after being treated with IV antibiotics, extracorporeal membrane oxygenation (ECMO), and oral probiotics containing B. longum. It was thought that ECMO contributed to translocation of bifidobacteria from the gut and into the blood (102416). In 5 cases, very-low birthweight preterm infants developed B. longum bacteremia following the use of a specific probiotic product providing B. longum and Lactobacillus acidophilus (Infloran) for the prevention of necrotizing enterocolitis; antibiotic treatment was required in at least some of the cases (111850,111852,111853). Cases of sepsis related to B. longum have also occurred in adults; however, association with supplementation is unlikely. In one case, sepsis with B. longum occurred following acupuncture. This was likely due to needle contamination and not to supplementation (1236). In another case, a 71-year-old male with liver cirrhosis and prostate cancer developed B. longum lumbar vertebrodiscitis. The source was thought to be translocation from the intestine (111859). A 42-year-old male developed B. longum peritonitis secondary to intestinal perforation (111855).
Pulmonary/Respiratory ...When taken orally, a dry cough has been reported by a single patient in a clinical trial (111851).
Other ...When taken orally, weight gain has been reported by a single patient in a clinical trial (111773).
General
...Orally, FOS are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, flatulence.
Gastrointestinal ...Orally, FOS may cause flatulence, belching, abdominal pain, intestinal sounds, constipation, and bloating. These symptoms can occur commonly in some patients, but are generally mild at doses under 10 grams per day (745,750,8509,98651,107931). However, a meta-analysis of 8 small clinical studies shows that taking FOS at doses ranging from 2.5 grams to 15 grams daily for up to 8 weeks does not increase the rate of abdominal pain, bloating, flatulence, or intestinal sounds when compared with control groups (110710).
General
...Orally, all forms of glucosamine seem to be well tolerated.
Topically and rectally, N-acetyl glucosamine also seems to be well tolerated. Intramuscularly, glucosamine sulfate seems to be well tolerated. However, a thorough evaluation of safety outcomes has not been conducted for non-oral routes of administration.
Most Common Adverse Effects:
Orally: Bloating, constipation, cramps, diarrhea, heartburn, nausea.
Serious Adverse Effects (Rare):
Orally: There have been rare reports of severe allergic reactions and hepatotoxicity.
Cardiovascular
...One case of mesenteric occlusion in a clinical trial was considered possibly related to use of oral glucosamine hydrochloride and chondroitin sulfate (89520).
Some observational research has found that glucosamine use in patients with osteoarthritis is associated with a higher risk of cardiovascular disease (CVD) events when compared with non-use (109642). However, glucosamine users tended to be older, have multiple comorbidities, and be on antihyperlipidemic or antiplatelet therapy. Furthermore, other observational research in healthy adults has found that glucosamine use is associated with a reduced risk of fatal and non-fatal CVD events (99682). Higher quality, prospective research is needed to clarify the relationship, if any, between glucosamine and CVD risk.
Dermatologic ...Orally, glucosamine might cause skin reactions, including itching, rash, and erythema (2608,20084,89567,110628,113636). Also, fingernail and toenail toughening, with an increased rate of growth, has been reported (89572). Topically, N-acetyl glucosamine 2% with niacinamide 4% cream might cause rare skin reactions (92721). Photosensitization that was reproducible with re-challenge was reported in a case report of an individual using glucosamine (form unknown) and chondroitin (10408).
Endocrine ...Orally, glucosamine does not seem to impact blood glucose. Preliminary research and anecdotal reports have found that various forms of glucosamine might increase insulin resistance or decrease insulin production, increasing fasting plasma glucose levels (22,371,372,1203,3406,5059,7637,14810). This has raised concerns that taking glucosamine sulfate might worsen diabetes and decrease the effectiveness of diabetes drugs. However, clinical research suggests that various forms of glucosamine do not have adverse effects on blood glucose or glycated hemoglobin (HbA1C) in healthy, obese, patients with type 2 diabetes or impaired glucose tolerance (7026,7075,7638,8942,10311,10317,12107,14808,15111,89563).
Gastrointestinal ...Orally, glucosamine has been associated with gastrointestinal problems, including epigastric and abdominal pain, cramps, heartburn, diarrhea, nausea, dyspepsia, vomiting, constipation, and flatulence (1520,2608,16717,20084,20104,20105,89561,89562,89567,89568)(108897,110628,111647,113636). In older persons, use of glucosamine sulfate is associated with oral dryness (89564). In a clinical trial, a case of Helicobacter pylori gastritis was considered probably related to the use of glucosamine hydrochloride (89516).
Hepatic ...Although relatively uncommon, combinations of glucosamine and chondroitin sulfate have been associated with acute liver injury that mimics autoimmune hepatitis. Of 151 patients at an outpatient clinic for liver diseases, 23 acknowledged use of products containing glucosamine (form unspecified) and/or chondroitin. However, only 2 cases had an apparent relationship between transaminase elevation and the use of recommended doses of glucosamine and chondroitin sulfate. Aminotransferase levels, which were increased by four- to seven-fold, returned to normal following discontinuation of treatment (89515). In another case, a 65-year-old male presented to the hospital with signs and symptoms of drug-induced autoimmune hepatitis. The patient had used Condrosulf, containing chondroitin sulfate, for two years, followed by Vita Mobility Complex, containing chondroitin sulfate and glucosamine sulfate, for 8 weeks. The patient required maintenance treatment with azathioprine to remain in remission (89518). A case of acute cholestatic hepatitis due to Glucosamine Forte, which contains glucosamine hydrochloride, chondroitin sulfate, Devil's claw, and shark cartilage, has been reported (89522). It is unclear whether these adverse events were related to glucosamine, other ingredients, or the combination.
Immunologic ...There is some concern that glucosamine products might cause allergic reactions in sensitive individuals. One review of glucosamine-related adverse events in Australia found that 72% of all reports involved hypersensitivity reactions. Of these reactions, 35% were mild, including pruritis, urticaria, and lip edema, 49% were moderate, including dyspnea, and 16% were severe, including gait disturbance, somnolence, and hypotension. Anaphylaxis was reported in 1.5% of cases (102115). Also, in one clinical trial, a single patient developed allergic dermatitis considered to be likely due to glucosamine hydrochloride (89516). Glucosamine is derived from the exoskeletons of shrimp, lobster, and crabs. However, it is unclear if these adverse reactions were due to a shellfish sensitivity or general atopy. Additionally, shellfish allergies are caused by IgE antibodies to antigens in the meat of shellfish, not to antigens in the exoskeleton. Regardless, it is possible that some glucosamine products might be contaminated by this allergen during production (102115).
Neurologic/CNS ...Orally, glucosamine has been reported to cause drowsiness and headache (2608,89561,113636). Glucosamine plus chondroitin combination products that also contain manganese (e.g., CosaminDS) should always be taken according to product directions. When taken at doses slightly higher than the recommended dose, these products can sometimes supply greater than the tolerable upper limit (UL) for manganese which is 11 mg/day. Ingestion of more than 11 mg/day of manganese might cause significant central nervous system toxicity (7135).
Ocular/Otic ...In older persons, use of glucosamine sulfate has been associated with ocular dryness (89564). Increased intraocular pressure has occurred with glucosamine sulfate supplementation (89573,112460). Data from the FDA MedWatch adverse event reporting system shows that 0.21% of subjects taking glucosamine reported glaucoma, which is significantly greater than the 0.08% of subjects who reported glaucoma while using any other drug (112460).
Pulmonary/Respiratory ...Cases of asthma exacerbations associated with the use of glucosamine (form unknown)-chondroitin products have been reported (10002).
Renal ...Anecdotal reports have associated glucosamine with nephrotoxicity signals such as modestly elevated creatine phosphokinase and 1+ to 2+ proteinuria, but changes in kidney function have not been reported in long-term studies (7026,8942,10408,10409). It was also noted that effects may have been due to other concurrent medications or impurities in glucosamine-chondroitin products. Cases of acute interstitial nephritis induced by glucosamine (form unknown) have also been reported (89523).
Other ...There has been concern that glucosamine might increase the risk of metabolic disturbances resulting in increased cholesterol levels and blood pressure. However, glucosamine does not appear to increase the risk of these adverse effects. Taking glucosamine sulfate for up to 3 years does not significantly increase blood glucose or lipid levels, or cause any other disturbances in metabolism (7026,7075,8942,10311,10317).
General
...Orally, Lacticaseibacillus casei is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Serious Adverse Effects (Rare):
Orally: There is concern that lactobacilli may cause infections in some people.
Gastrointestinal ...Orally, taking Lacticaseibacillus casei in combination with other probiotics may cause gastrointestinal side effects including abdominal pain (90291); however, these events are uncommon.
Immunologic
...Since Lacticaseibacillus casei preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients.
Some lactobacilli species have been isolated in some cases of bacteremia, sepsis, splenic abscess, endocarditis, aortic dissection, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract. The majority of cases are not related to the use of probiotic supplements and most are not associated with the use of L. casei (107543,112516). There is at least one case of L. casei bacteremia and endocarditis thought to be related with L. casei intake in a 71-year-old immunocompromised female (112520).
There are two cases of L. casei infection in a prosthetic joint (90282,112514). In one case, the 95-year-old female with a history of hypertension, diabetes, and heart disease was known to consume yogurt containing L. casei. However, it was not confirmed that the infection was related to the consumption of this product. Spread from the gastrointestinal tract or vaginal flora could not be ruled out (90282). In the case of an 80-year-old male, the cause was unknown as there was no probiotic supplementation and no underlying medical condition or infectious portal of entry (112514).
A specific probiotic preparation (NBL probiotic ATP, Nobel) containing L. casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, Bifidobacterium animalis subsp. lactis, fructo-oligosaccharides, galacto-oligosaccharides, colostrum, and lactoferrin was found to be a significant risk factor for vancomycin-resistant Enterococcus colonization in premature infants. Although there was no direct link to determine causation, it was hypothesized that the probiotic mixture helped to mediate the acquisition and transfer of antibiotic resistance genes (96890).
General
...Orally and intravaginally, Lactobacillus acidophilus is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Intravaginally: Vaginal discharge.
Serious Adverse Effects (Rare):
Orally: There is concern that L. acidophilus may cause infections in some people.
Dermatologic ...Orally, in one clinical trial, a combination of Lactobacillus acidophilus La-5, Lacticaseibacillus paracasei subsp. paracasei F19, and Bifidobacterium animalis subsp. lacltis BB-12 was associated with two cases of rash, one with itching. However, it is not clear if these adverse effects were due to L. acidophilus, other ingredients, the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Orally, taking Lactobacillus acidophilus in combination with other probiotics may cause gastrointestinal side effects including epigastric discomfort (90239), abdominal pain (90239,90291,111785), dyspepsia (90239), flatulence (107497,107520), bloating (107497,111785), diarrhea (111785), vomiting (107537), and burping (90239); however, these events are uncommon.
Genitourinary ...Intravaginally, cream containing Lactobacillus acidophilus has been shown to cause increased vaginal discharge in about 5% of patients, compared to about 1% of patients receiving placebo cream (90237). Vaginal burning was reported by one person using intravaginal L. acidophilus and Limosilactobacillus fermentum in a clinical trial (111781).
Immunologic ...Since Lactobacillus acidophilus preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. L. acidophilus has been isolated in some cases of bacteremia, sepsis, splenic abscess, liver abscess, endocarditis, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract (107543,111782,111792). L. acidophilus endophthalmitis has been reported rarely (111787,111795). In one case, it was related to intravitreal injections for age-related macular degeneration in a 90-year-old female with an intraocular lens (111787). In another, it occurred following cataract surgery (111795).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, the turmeric constituent curcumin can cause vertigo, but this effect seems to be uncommon (81163).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).