Ingredients | Amount Per Serving (3 Capsules) |
---|---|
Gorilla Mind Cognition Complex
|
|
(Dimethylaminoethanol)
|
375 mg |
(L-Alpha Glycerylphosphorylcholine)
(50%)
(Alpha GPC (Alt. Name: L-Alpha Glycerylphosphorylcholine) Note: 50% )
|
300 mg |
200 mg | |
(Bacopa monnieri )
(standardized to 45% Bacosides)
(Bacopa monnieri (Form: standardized to 45% Bacosides) Genus: Bacopa Species: monnieri )
|
150 mg |
Smooth Energy & Focus Matrix
|
615 mg |
(TeaCrine)
|
|
(Huperzia serrata leaf standardized extract)
|
|
Gorilla Mind Absorption Catalyst
|
5 mg |
(fruit)
(standardized to 95% Piperine)
(Black Pepper fruit extract (Form: standardized to 95% Piperine) PlantPart: fruit )
|
Brown Rice Flour, Magnesium Stearate, Gelatin, FD&C Red #3, Titanium Dioxide, FD&C Yellow # 6, FD&C Red #40, FD&C Blue #1
Ingredients | Amount Per Serving (6 Capsules) |
---|---|
Gorilla Mind Cognition Complex
|
|
(Dimethylaminoethanol)
|
750 mg |
(L-Alpha Glycerylphosphorylcholine)
(50%)
(Alpha GPC (Alt. Name: L-Alpha Glycerylphosphorylcholine) Note: 50% )
|
600 mg |
400 mg | |
(Bacopa monnieri )
(standardized to 45% Bacosides)
(Bacopa monnieri (Form: standardized to 45% Bacosides) Genus: Bacopa Species: monnieri )
|
300 mg |
Smooth Energy & Focus Matrix
|
1230 mg |
(TeaCrine)
|
|
(Huperzia serrata leaf standardized extract)
|
|
Gorilla Mind Absorption Catalyst
|
10 mg |
(fruit)
(standardized to 95% Piperine)
(Black Pepper fruit extract (Form: standardized to 95% Piperine) PlantPart: fruit )
|
Brown Rice Flour, Magnesium Stearate, Gelatin, FD&C Red #3, Titanium Dioxide, FD&C Yellow # 6, FD&C Red #40, FD&C Blue #1
Below is general information about the effectiveness of the known ingredients contained in the product Gorilla Mind Smooth. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of hordenine.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Gorilla Mind Smooth. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. Alpha-GPC has been used with apparent safety at doses of 400 mg three times daily (1200 mg/day) for up to 6 months (12102,12176). ...when used intramuscularly and appropriately. Alpha-GPC has been administered intramuscularly with apparent safety at doses of 1000-1200 mg/day for 28 to 90 days (12100,12102).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Bacopa has been used safely in clinical trials at a dose of up to 600 mg daily for up to 12 weeks (10058,10059,17946,97605).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Clinical research suggests bacopa extract might be safe to use at a dose of 225 mg daily for up to 6 months or 320 mg daily for up to 14 weeks in children aged 6-14 years (33304,97603,109625).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Black pepper has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when black pepper oil is applied topically. Black pepper oil is nonirritating to the skin and is generally well tolerated (11). ...when black pepper oil is inhaled through the nose or as a vapor through the mouth, short-term. Black pepper oil as a vapor or as an olfactory stimulant has been used with apparent safety in clinical studies for up to 3 days and 30 days, respectively (29159,29160,29161,90502). There is insufficient reliable information available about the safety of black pepper when used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
CHILDREN: POSSIBLY UNSAFE
when used orally in large amounts.
Fatal cases of pepper aspiration have been reported in some patients (5619,5620). There is insufficient reliable information available about the safety of topical pepper oil when used in children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
PREGNANCY: LIKELY UNSAFE
when used orally in large amounts.
Black pepper might have abortifacient effects (11,19); contraindicated. There is insufficient reliable information available about the safety of topical pepper when used during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
There is insufficient reliable information available about the safety of black pepper when used in medicinal amounts during breast-feeding.
POSSIBLY SAFE ...when used orally and appropriately. Deanol has been safely used at doses up to 2 grams daily for up to 4 weeks and doses up to 500 mg daily for up to 3 months (1668,1671,1672,1673,1674,1675,1676,1679,1680,1681). There is insufficient reliable information available about the safety of deanol when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Huperzine A 200-800 mcg daily has been used with apparent safety in clinical trials lasting up to 6 months (3171,3561,4626,93478,93479,93480,93481,93482,93483,93485).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Huperzine A has been used with apparent safety in clinical research lasting for 1 month (4626).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY UNSAFE ...when used orally. Preliminary, low-quality clinical research suggests that phenethylamine can be used with apparent safely with medical supervision in doses up to 60 mg daily for up to 50 weeks (24338). However, there are concerns about the use of phenethylamine in dietary supplements. Phenethylamine has stimulant effects similar to amphetamines (29931,29934). A case report has also linked a phenethylamine-containing combination product to tachycardia, anxiety, and agitation (24343).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. L-theanine has been used safely in clinical research in doses of up to 900 mg daily for 8 weeks (12188,36439,96331,96332,96334,96341,97923,101986,104976). There is insufficient reliable information available about the safety of L-theanine when used long-term.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A specific L-theanine product (Suntheanine, Taiyo Kagaku) 200 mg twice daily has been used safely in males aged 8-12 years for up to 6 weeks (91744).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Tyrosine has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Tyrosine has been used safely in doses up to 150 mg/kg daily for up to 3 months (7210,7211,7215). ...when used topically and appropriately (6155).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of tyrosine during pregnancy and lactation when used in medicinal amounts.
Some pharmacokinetic research shows that taking a single dose of tyrosine 2-10 grams orally can modestly increase levels of free tyrosine in breast milk. However, total levels are not affected, and levels remain within the range found in infant formulas. Therefore, it is not clear if the increase in free tyrosine is a concern (91467).
Below is general information about the interactions of the known ingredients contained in the product Gorilla Mind Smooth. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, alpha-GPC might decrease the effects of scopolamine.
Details
A small clinical study shows that alpha-GPC can partially counteract the attention and memory impairment effects caused by scopolamine given intramuscularly (12103). Whether alpha-GPC can decrease the beneficial anti-motion sickness effects of the scopolamine patch (Transderm Scop) is unclear.
|
Theoretically, concurrent use might decrease the effectiveness of both agents.
Details
Bacopa seems to inhibit acetylcholinesterase and might increase acetylcholine levels, which could counteract the effects of anticholinergic drugs (17946). Similarly, anticholinergic drugs might counteract the cholinergic effects of bacopa.
|
Theoretically, bacopa might increase the effects and adverse effects of cevimeline.
Details
In one case, a 58-year-old female taking cevimeline long-term for Sjogren syndrome experienced hyperhidrosis, malaise, nausea, and tachycardia shortly after taking a single dose of bacopa. Symptoms resolved after two days. Cevimeline is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4, and researchers theorize that bacopa may have inhibited these isoenzymes (109627). However, it is unclear if bacopa causes clinically significant inhibition of either CYP2D6 or CYP3A4.
|
Theoretically, concurrent use of bacopa with other cholinergic drugs might have additive effects.
Details
Bacopa seems to inhibit acetylcholinesterase and might increase acetylcholine levels (17946). Theoretically, this could result in additive cholinergic effects when used with cholinergic drugs.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP1A2 substrates.
Details
|
Theoretically, bacopa might increase the levels and adverse effects of CYP2C19 substrates.
Details
In vitro evidence suggests that bacopa extract can moderately and non-competitively inhibit CYP2C19 enzymes (97606). It is not known whether this is clinically significant.
|
Theoretically, bacopa might increase the levels and adverse effects of CYP2C9 substrates.
Details
|
Theoretically, bacopa might increase the levels and adverse effects of CYP3A4 substrates.
Details
|
Theoretically, bacopa might have additive effects when used with thyroid hormone.
Details
Animal research suggests that bacopa increases thyroxine (T4) levels in mice by about 40% (33286).
|
Theoretically, black pepper might increase the effects and side effects of amoxicillin.
Details
Animal research shows that taking piperine, a constituent of black pepper, with amoxicillin increases plasma levels of amoxicillin (29269). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of bleeding when taken with antiplatelet or anticoagulant drugs.
Details
In vitro research shows that piperine, a constituent of black pepper, seems to inhibit platelet aggregation (29206). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal research shows that piperine, a constituent of black pepper, can reduce blood glucose levels (29225). Monitor blood glucose levels closely. Dose adjustments might be necessary.
|
Theoretically, black pepper might increase blood levels of atorvastatin.
Details
Animal research shows that taking piperine, a constituent of black pepper, 35 mg/kg can increase the maximum serum concentration of atorvastatin three-fold (104188). This has not been reported in humans.
|
Theoretically, black pepper might increase blood levels of carbamazepine, potentially increasing the effects and side effects of carbamazepine.
Details
One clinical study in patients taking carbamazepine 300 mg or 500 mg twice daily shows that taking a single 20 mg dose of purified piperine, a constituent of black pepper, increases carbamazepine levels. Piperine may increase carbamazepine absorption by increasing blood flow to the GI tract, increasing the surface area of the small intestine, or inhibiting cytochrome P450 3A4 (CYP3A4) in the gut wall. Absorption was significantly increased by 7-10 mcg/mL/hour. The time to eliminate carbamazepine was also increased by 4-8 hours. Although carbamazepine levels were increased, this did not appear to increase side effects (16833). In vitro research also shows that piperine can increase carbamazepine levels by 11% in a time-dependent manner (103819).
|
Theoretically, black pepper might increase the effects and side effects of cyclosporine.
Details
In vitro research shows that piperine, a constituent of black pepper, increases the bioavailability of cyclosporine (29282). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP1A1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP1A1 (29213). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2B1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP2B1 (29332). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2D6.
Details
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP3A4.
Details
|
Theoretically, black pepper might increase blood levels of lithium due to its diuretic effects. The dose of lithium might need to be reduced.
Details
Black pepper is thought to have diuretic properties (11).
|
Black pepper might increase blood levels of nevirapine.
Details
Clinical research shows that piperine, a constituent of black pepper, increases the plasma concentration of nevirapine. However, no adverse effects were observed in this study (29209).
|
Theoretically, black pepper might increase levels of P-glycoprotein substrates.
Details
|
Theoretically, black pepper might increase the sedative effects of pentobarbital.
Details
Animal research shows that piperine, a constituent of black pepper, increases pentobarbital-induced sleeping time (29214).
|
Black pepper might increase blood levels of phenytoin.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption, slow elimination, and increase levels of phenytoin (537,14442). Taking a single dose of black pepper 1 gram along with phenytoin seems to double the serum concentration of phenytoin (14375). Consuming a soup with black pepper providing piperine 44 mg/200 mL of soup along with phenytoin also seems to increase phenytoin levels when compared with consuming the same soup without black pepper (14442).
|
Black pepper might increase blood levels of propranolol.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of propranolol (538).
|
Black pepper might increase blood levels of rifampin.
Details
|
Black pepper might increase blood levels of theophylline.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of theophylline (538).
|
Theoretically, deanol might decrease the effectiveness of anticholinergic drugs.
Details
Deanol is thought to increase acetylcholine levels (1669).
|
Theoretically, deanol might increase the effects and adverse effects of cholinergic drugs.
Details
Deanol is thought to increase acetylcholine levels (1669).
|
Hordenine weakly inhibits cytochrome P450 2D6 (CYP2D6) enzymes in vitro (91878). Theoretically, hordenine might increase the levels of CYP2D6 substrates.
Details
Some of drugs that are CYP2D6 substrates include amitriptyline (Elavil), clozapine (Clozaril), codeine, desipramine (Norpramin), donepezil (Aricept), fentanyl (Duragesic), flecainide (Tambocor), fluoxetine (Prozac), meperidine (Demerol), methadone (Dolophine), metoprolol (Lopressor, Toprol XL), olanzapine (Zyprexa), ondansetron (Zofran), tramadol (Ultram), trazodone (Desyrel), and others.
|
Hordenine is structurally similar to tyramine (29888) In vitro research shows that hordenine is a selective substrate for monoamine oxidase-B in the liver (27943). Theoretically, concomitant use of hordenine with MAOIs might increase blood pressure, potentially leading to a hypertensive crisis.
Details
Some MAOIs include isocarboxazid (Marplan), phenelzine (Nardil), selegiline (Eldepryl, Emsam, Zelapar), and tranylcypromine (Parnate).
|
Hordenine is structurally similar to N-methyltyramine and synephrine, constituents in bitter orange known to have stimulant properties (29888). Theoretically, taking hordenine with drugs with stimulant properties might increase the risk of hypertension and other adverse cardiovascular effects.
Details
Some of these drugs include amphetamine, caffeine, methylphenidate, pseudoephedrine, and many others.
|
Theoretically, huperzine A might decrease the effects of anticholinergic drugs.
Details
|
Theoretically, concurrent use of huperzine A with cholinergic drugs might increase the effects and side effects of these medications.
Details
Huperzine A can inhibit acetylcholinesterase (AChE) and might cause cumulative effects if used with cholinergic drugs (3131).
|
Theoretically, taking phenethylamine concomitantly with MAOIs may increase adverse effects.
Details
In humans, phenethylamine is oxidized by MAO-B to form the inactive metabolite phenylacetic acid (29929,29930). Animal research shows that administering an MAOI prior to phenethylamine increases the amphetamine-like effects of phenethylamine (24360). However, low-quality clinical research has used phenethylamine with selegiline, an MAOI, with apparent safety (24338).
|
Theoretically, combining serotonergic drugs with phenethylamine might increase the risk of serotonergic adverse effects.
Details
Animal research shows that phenethylamine increases levels of serotonin, norepinephrine, and dopamine (24340,24344,24354). Theoretically, combining serotonergic drugs with phenethylamine might increase the risk of additive serotonergic adverse effects, including serotonin syndrome and cerebral vasoconstrictive disorders (8056). However, low-quality clinical research has used phenethylamine with selegiline, a monoamine oxidase inhibitor (MAOI), with apparent safety (24338).
|
Theoretically, theacrine might alter the effects of CNS depressants.
Details
Animal research shows that low doses of theacrine have sedating effects, whereas high doses might have stimulant effects (88778). Depending on the dose of theacrine used, it might increase or decrease the effects of CNS depressants. However, these effects have not yet been reported in humans.
|
Theanine might lower blood pressure, potentiating the effects of antihypertensive drugs.
Details
|
Theoretically, theanine might have additive sedative effects when used in conjunction with CNS depressants. However, it is unclear if this concern is clinically relevant.
Details
|
Theoretically, tyrosine might decrease the effectiveness of levodopa.
Details
Tyrosine and levodopa compete for absorption in the proximal duodenum by the large neutral amino acid (LNAA) transport system (2719). Advise patients to separate doses of tyrosine and levodopa by at least 2 hours.
|
Theoretically, tyrosine might have additive effects with thyroid hormone medications.
Details
Tyrosine is a precursor to thyroxine and might increase levels of thyroid hormones (7212).
|
Below is general information about the adverse effects of the known ingredients contained in the product Gorilla Mind Smooth. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, alpha-GPC seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Stroke.
Dermatologic ...Orally, some patients can experience skin rash (12102). Intramuscularly, alpha-GPC can cause erythema at the injection site (12101).
Gastrointestinal
...Orally, alpha-GPC has been rarely associated with diarrhea, heartburn, nausea, and vomiting (12102).
Intramuscularly, alpha-GPC has been rarely associated with diarrhea, heartburn, nausea, and vomiting (12102).
Neurologic/CNS
...Orally, alpha-GPC has been rarely associated with dizziness, excitation, headache, and insomnia (12102).
Alpha-GPC use for at least 2 months has also been associated with an elevated risk of stroke when compared with non-users or those who used alpha-GPC for less than 2 months (108883).
Intramuscularly, alpha-GPC has been rarely associated with confusion, excitation, fainting, headache, and insomnia (12102).
General
...Orally, bacopa is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, dry mouth, headache, nausea.
Cardiovascular ...Orally, bacopa has been reported to cause palpitations (10058).
Gastrointestinal ...Orally, bacopa has been reported to cause abdominal cramps, abdominal pain, bloating, decreased appetite, diarrhea, dry mouth, excessive thirst, flatulence, indigestion, nausea, and increased stool frequency. Rates of adverse gastrointestinal events have ranged from 12% to 30% (10058,17946,33295,97605,109623,111520).
Musculoskeletal ...Orally, bacopa has been reported to cause arthralgia, muscle fatigue, and myopathy (10058,109623,111522). In one case, a 21-year-old male experienced progressive proximal weakness, muscle atrophy, weight loss, dark urine, and elevated serum markers of myopathy, with muscle biopsy showing immune-mediated necrotizing myopathy, after taking a supplement containing bacopa for 5 years (111522).
Neurologic/CNS ...Orally, bacopa has been reported to cause drowsiness, headache, insomnia, and vivid dreams (10058,10059,17946,109623).
Other ...Orally, bacopa has been reported to cause flu like symptoms and fatigue (10058,97605,111520).
General
...Orally, black pepper seems to be well tolerated when used in the amounts found in food or when taken as a medicine as a single dose.
Topically and as aromatherapy, black pepper oil seems to be well tolerated.
Most Common Adverse Effects:
Orally: Burning aftertaste, dyspepsia, and reduced taste perception.
Inhalation: Cough.
Serious Adverse Effects (Rare):
Orally: Allergic reaction in sensitive individuals.
Gastrointestinal ...Orally, black pepper can cause a burning aftertaste (5619) and dyspepsia (38061). Single and repeated application of piperine, the active constituent in black pepper, to the tongue and oral cavity can decrease taste perception (29267). By intragastric route, black pepper 1.5 grams has been reported to cause gastrointestinal microbleeds (29164). It is not clear if such an effect would occur with oral administration.
Immunologic ...In one case report, a 17-month-old male developed hives, red eyes, facial swelling, and a severe cough following consumption of a sauce containing multiple ingredients. Allergen skin tests were positive to both black pepper and cayenne, which were found in the sauce (93947).
Ocular/Otic ...Topically, ground black pepper can cause redness of the eyes and swelling of the eyelids (5619).
Pulmonary/Respiratory ...When inhaled through the nose as an olfactory stimulant, black pepper oil has been reported to cause cough in one clinical trial (29162).
General
...Orally, deanol seems to be well tolerated (1668,1671,1672,1673,1674,1675,1676,1679,1680,1681).
However, deanol has been reported to cause constipation, diarrhea, urticaria, headache, drowsiness, insomnia, overstimulation, lucid dreams, confusion, motor retardation, depression, hypomania, and an increase in schizophrenia symptoms (1674,1680,1684,1685,1686,2706).
Most Common Adverse Effects:
Orally: Abdominal cramps, abdominal pain, diarrhea, drowsiness, nausea, vomiting.
Cardiovascular ...Orally, small elevations in blood pressure have been reported in some patients taking deanol up to 1800 mg daily. These effects improved after deanol discontinuation (1680).
Gastrointestinal ...Orally, deanol has been reported to cause diarrhea, abdominal cramps, abdominal pain, nausea, and vomiting (1674,1680).
Musculoskeletal ...Orally, deanol up to 1800 mg daily has been reported to cause motor retardation in a small number of patients. This effect improved after deanol discontinuation (1680).
Neurologic/CNS ...Orally, deanol has been reported to cause drowsiness, apathy, and confusion (1674,1680). In one case report, a physician promoted the use of deanol to induce lucid dreams, which may be considered an undesirable outcome for some patients (1686).
Psychiatric ...Orally, taking deanol at doses greater than 1000 mg daily has been reported to cause mood changes, including depression and hypomania, in patients with psychiatric conditions (1685). Deanol 1500 mg daily has been reported to increase schizophrenic symptoms in patients with chronic schizophrenia (1674).
General ...No clinical studies have evaluated the safety of hordenine in humans. However, hordenine is structurally similar to the stimulants N-methyltyramine and synephrine, which are found in bitter orange (29888). Theoretically, hordenine may cause stimulant-related side effects similar to these compounds, including tachycardia and hypertension.
Cardiovascular ...Hordenine is structurally similar to the stimulants N-methyltyramine and synephrine, which are found in bitter orange (29888). Theoretically, hordenine may cause stimulant-related side effects similar to these compounds, including tachycardia and hypertension. However, this has not been assessed or reported in humans.
General
...Orally, huperzine A seems to be well tolerated.
There is currently a limited amount of information about the tolerability of intramuscular huperzine A.
Most Common Adverse Effects:
All ROAs: Huperzine A can cause dose-dependent cholinergic side effects such as blurred vision, constipation, diarrhea, dizziness, dry mouth, insomnia, nausea, sweating, and vomiting.
Cardiovascular ...Orally, huperzine A might cause decreased heart rate (3138,93482). There are two cases reported where consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including hypertension (13193).
Gastrointestinal ...Orally, huperzine A can cause cholinergic side effects such as nausea, vomiting, diarrhea, and anorexia (93480,93481,93482,93483). Constipation and thirst have also been reported (93482,93483). In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including vomiting and diarrhea (13193).
Musculoskeletal ...In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including leg cramps (13193).
Neurologic/CNS ...Orally, huperzine A can cause cholinergic side effects such as dizziness (3140,55613,93481,93482) and sweating (93482). Huperzine A can also cause hyperactivity and insomnia (3138,3140,55613,93482). Fainting has also been reported (4624). In two case reports, consumption of a tea mistakenly brewed from Lycopodium selago, a source of huperzine A, has resulted in significant cholinergic toxicity, including sweating and slurred speech (13193).
General ...There is currently a limited amount of information available on the adverse effects of phenethylamine. A thorough evaluation of safety outcomes has not been conducted.
Cardiovascular ...A case of tachycardia has been reported for an individual who consumed a weight loss product containing phenethylamine 200-300 mg, as well as caffeine 500-750 mg, bitter orange 400-600 mg, willow bark 150-225 mg, cayenne pepper 80-120 mg, 1,3-dimethyloamyloamine 70-105 mg, gooseberry extract 40-60 mg, bergamot orange 40-60 mg, and black pepper 10-15 mg, daily for 2 months (24343). It is not clear if these adverse effects were related to phenethylamine.
Neurologic/CNS ...A case of anxiety and agitation has been reported for an individual who consumed a weight loss product containing phenethylamine 200-300 mg, caffeine 500-750 mg, bitter orange 400-600 mg, willow bark 150-225 mg, cayenne pepper 80-120 mg, 1,3-dimethyloamyloamine 70-105 mg, gooseberry extract 40-60 mg, bergamot orange 40-60 mg, and black pepper 10-15 mg, daily for 2 months (24343). It is not clear if these adverse effects were related to phenethylamine or other ingredients.
General ...Orally, theacrine seems to be well tolerated. No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, L-theanine seems to be well tolerated.
Most Common Adverse Effects:
Orally: Drowsiness, headaches.
Neurologic/CNS
...Orally, L-theanine may cause headaches (36439).
Patients have also reported drowsiness, increased duration of sleep, and increased dream activity after oral L-theanine use (96331).
A case of subtle facial tic starting within 4 days of taking L-theanine 400 mg daily has been reported for a pediatric patient. Although the tics reportedly ceased once theanine was discontinued, the child had exhibited tics in the past. Therefore, the adverse effect was not thought to be related to L-theanine (91744).
General
...Orally, tyrosine seems to be well tolerated.
No serious adverse effects have been documented; however, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Fatigue, headache, heartburn, and nausea.
Gastrointestinal ...Orally, tyrosine can cause nausea and heartburn when taken at a dose of 150 mg/kg (7211). Taking tyrosine 4 grams daily in combination with 5-hydroxytryptophan 800 mg and carbidopa 100 mg can cause diarrhea, nausea, and vomiting. These effects can be mitigated by lowering the dosage (918).
Musculoskeletal ...Orally, larger doses of tyrosine (150 mg/kg) can cause arthralgia, but this is uncommon (7211).
Neurologic/CNS ...Orally, larger doses of tyrosine (150 mg/kg) can cause headache and fatigue (7211). Taking a combination of tyrosine 4 grams, 5-hydroxytryptophan 800 mg, and carbidopa 100 mg can cause drowsiness and agitation. These effects can be mitigated by lowering the dosage (918).