Ingredients | Amount Per Serving |
---|---|
Calories
|
20 Calorie(s) |
Total Fat
|
0 Gram(s) |
(Na)
|
5 mg |
Total Carbohydrates
|
5 Gram(s) |
Dietary Fiber
|
0 Gram(s) |
Total Sugars
|
4 Gram(s) |
Added Sugars
|
0 Gram(s) |
Protein
|
0 Gram(s) |
(K)
|
49 mg |
32 mg | |
Ingredients
|
|
(Organic)
|
|
Pineapple
(juice)
(Organic)
|
|
(juice)
(Organic)
|
|
(Organic)
|
|
(juice)
(Organic)
|
|
(Organic)
|
|
(Panax ginseng )
(Organic)
|
|
(Bacillus coagulans GBI-30 6086 )
|
|
(Organic)
|
Below is general information about the effectiveness of the known ingredients contained in the product Digestion Shot. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Digestion Shot. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when acerola fruit is used orally and appropriately. Acerola fruit contains an average of 2000 mg vitamin C per 100 grams of fruit, although this content varies widely. Acerola fruit should be consumed in amounts that do not provide more vitamin C than the tolerable upper intake level (UL) of 2000 mg per day for adults (4844).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than found in foods.
LIKELY SAFE ...when used orally and appropriately in food amounts.
POSSIBLY SAFE ...when used orally and appropriately, short-term for medicinal purposes. Apple cider vinegar has been safely used in short-term studies for up to 12 weeks (17609,17614,97310).
POSSIBLY UNSAFE ...when used topically. Topical application of apple cider vinegar has been reported to cause chemical burns in at least three patients. Mild skin irritation is common (91662,93074,101172). ...when used orally in large amounts, long-term. A case of hypokalemia, hyperreninemia, and osteoporosis has been reported for a patient who consumed apple cider vinegar 250 mL daily for 6 years (31730).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when taken orally and appropriately. Bacillus coagulans spores in doses up to 6 billion colony-forming units (CFUs) daily have been used with apparent safety in clinical studies for up to 3 months (92726,92730,92734,92735,92736,92739,92740,104231,105169)(107611,107612,107614). Lower doses of B. coagulans up to 100 million CFUs daily have been used with apparent safety in clinical studies for up to one year (92738). There is insufficient reliable information available about the safety of non-viable, heat-killed B. coagulans formulations when used orally.
CHILDREN: POSSIBLY SAFE
when taken orally and appropriately.
Bacillus coagulans spores in doses up to 100 million colony-forming units (CFUs) daily have been used with apparent safety in clinical studies in infants of most ages for up to one year (92729,92733,92738) and in doses of one billion CFUs in children aged 6-8 years for 3 months (107615). There is insufficient reliable information available about the safety of Bacillus coagulans in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts typically found in food. Capsicum has Generally Recognized as Safe (GRAS) status in the US (4912). ...when used topically and appropriately (7038,10650,105345). The active capsicum constituent capsaicin is an FDA-approved ingredient used in certain over-the-counter, topical preparations (272).
POSSIBLY SAFE ...when used orally and appropriately, short-term in medicinal amounts. A specific sustained-release chili extract (Capsifen) has been used safely in doses of up to 200 mg daily, for up to 28 days (105196). ...when used intranasally and appropriately, short-term. Capsicum-containing nasal sprays, suspensions, and swabs seem to be safe when applied multiple times over 24 hours or when applied daily or every other day for up to 14 days. Although no serious side effects have been reported in clinical trials, intranasal application of capsicum-containing products can be very painful (14322,14324,14328,14329,14351,14352,14353,14356,14357) (14358,14359,14360,15016,105204). POSSIBLY UNSAFE when used orally, long-term or in high doses. There is concern that long-term use or use of excessive doses might be linked to hepatic or kidney damage, as well as hypertensive crisis (12404,40569,40606). There is insufficient reliable information available about the safety of capsicum when injected.
CHILDREN: POSSIBLY UNSAFE
when used topically in children under 2 years old (272).
There is insufficient reliable information available about the safety of capsicum when used orally in children.
PREGNANCY: LIKELY SAFE
when used topically and appropriately (272).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Capsicum 5 mg daily has been used for up to 28 days during the latter half of the second trimester and the third trimester (96457).
LACTATION: LIKELY SAFE
when used topically and appropriately (272).
LACTATION: POSSIBLY UNSAFE
when used orally.
Dermatitis can sometimes occur in infants when foods heavily spiced with capsicum peppers are ingested during lactation (739). Also, observational research suggests that intake of raw capsicum peppers during pregnancy is associated with an increased risk of sensitization to inhalant allergens in children by the age of 2 years (41021).
LIKELY SAFE ...when used orally and appropriately. Several studies show that drinking coconut water is safe (17666,17669,17678,17679,17680,95126,95136). Coconut water is commonly consumed as a beverage. There is insufficient reliable information available about the safety of intravenous use of coconut water.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Drinking coconut water appears to be safe when used in children (17666). Coconut water is commonly consumed as a beverage.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used in amounts commonly found in foods. Lemon has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when inhaled in amounts used for aromatherapy, short-term. Lemon essential oil has been used with apparent safety as aromatherapy for up to 2 weeks in clinical research (93475,98128,98129). There is insufficient reliable information available about the safety of lemon when used topically, or when used orally or intranasally in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Avoid using in amounts greater than those typically found in foods.
LIKELY SAFE ...when used orally and appropriately, short-term. Panax ginseng seems to be safe when used for up to 6 months (8813,8814,17736,89741,89743,89745,89746,89747,89748,103044,103477).
POSSIBLY UNSAFE ...when used orally, long-term. There is some concern about the long-term safety due to potential hormone-like effects, which might cause adverse effects with prolonged use (12537). Tell patients to limit continuous use to less than 6 months. There is insufficient reliable information available about the safety of Panax ginseng when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in infants.
Use of Panax ginseng in newborns is associated with intoxication that can lead to death (12). There is limited reliable information available about use in older children (24109,103049); avoid using.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Ginsenoside Rb1, an active constituent of Panax ginseng, has teratogenic effects in animal models (10447,24106,24107); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product Digestion Shot. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, the antioxidant effects of acerola might reduce the effectiveness of alkylating agents.
Details
Acerola contains vitamin C, an antioxidant. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as alkylating agents (391). In contrast, other researchers theorize that antioxidants might make alkylating chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Theoretically, concomitant use of acerola with aluminum salts might increase the amount of aluminum absorbed.
Details
Acerola contains vitamin C. It is thought that vitamin C chelates aluminum, keeping it in solution and available for absorption (10549,10550,10551). In people with normal renal function, urinary excretion of aluminum likely increases, making aluminum retention and toxicity unlikely (10549). However, patients with renal failure who take aluminum-containing compounds, such as phosphate binders, should avoid acerola in doses that provide more vitamin C than the recommended dietary allowances.
|
Theoretically, the antioxidant effects of acerola might reduce the effectiveness of antitumor antibiotics.
Details
Acerola contains vitamin C, an antioxidant. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as antitumor antibiotics (391). In contrast, other researchers theorize that antioxidants might make antitumor antibiotic chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on antitumor antibiotic chemotherapy.
|
Theoretically, acerola might reduce the clearance of aspirin; however, its vitamin C content is likely too low to produce clinically significant effects.
Details
Acerola contains vitamin C. It has been suggested that acidification of the urine by vitamin C can decrease the urinary excretion of salicylates, increasing plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589). The vitamin C content of acerola is typically about 2000 mg per 100 grams. Thus, a clinically significant interaction between acerola and aspirin is unlikely.
|
Theoretically, concomitant use of acerola with estrogens might increase estrogenic effects.
Details
Acerola contains vitamin C. Increases in plasma estrogen levels of up to 55% have occurred under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. However, increases in plasma estrogen levels may occur when women who are deficient in vitamin C take supplements (11161).
|
Theoretically, acerola might reduce the effectiveness of warfarin; however, its vitamin C content is likely too low to produce clinically significant effects.
Details
Acerola contains vitamin C. High doses of vitamin C may reduce the response to warfarin, possibly by causing diarrhea and reducing warfarin absorption (11566). This occurred in two people who took up to 16 grams daily of vitamin C, and resulted in decreased prothrombin time (9804,9806). Lower doses of 5-10 grams daily of vitamin C can also reduce warfarin absorption, but this does not seem to be clinically significant (9805,9806,11566,11567). The vitamin C content of acerola is typically about 2000 mg per 100 grams. Thus, a clinically significant interaction between acerola and warfarin is unlikely.
|
Theoretically, taking apple cider vinegar with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Apple cider vinegar might reduce fasting and postprandial blood glucose levels and decrease gastric emptying in people with diabetes (17609,17614,106285,106287). However, not all research agrees (106284). Theoretically, it might have additive effects on glucose levels when used with antidiabetes drugs.
|
Theoretically, concomitant use of apple cider vinegar with digoxin might increase the risk of cardiac toxicity.
Details
A case of hypokalemia related to chronic use of apple cider vinegar has been reported (5911). Theoretically, overuse of apple cider vinegar could decrease potassium levels, increasing the risk of toxicity with digoxin.
|
Theoretically, concomitant use of apple cider vinegar with diuretic drugs might increase the risk of hypokalemia.
Details
A case of hypokalemia related to chronic use of apple cider vinegar has been reported (5911). There is some concern that people taking apple cider vinegar along with potassium depleting diuretics might have an increased risk for hypokalemia.
|
Theoretically, concomitant use of apple cider vinegar with insulin might increase the risk of hypokalemia.
Details
|
Theoretically, taking antibiotics with Bacillus coagulans might decrease the effectiveness of B. coagulans.
Details
B. coagulans preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms. Tell patients to separate administration of antibiotics and B. coagulans preparations by at least two hours.
|
Theoretically, using topical capsaicin may increase the risk of ACE inhibitor-induced cough.
Details
There is one case report of a topically applied capsaicin cream contributing to the cough reflex in a patient using an ACEI (12414). However, it is unclear if this interaction is clinically significant.
|
Theoretically, capsicum may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro research shows that capsicum might increase the effects of antiplatelet drugs (12406,12407). Also, population research shows that capsicum is associated with an increased risk of self-reported bleeding in patients taking warfarin (12405,20348). However, clinical research shows that taking a single dose of capsaicin (Asian Herbex Ltd.), the active ingredient in capsicum, 400-800 mcg orally in combination with aspirin 500 mg does not decrease platelet aggregation when compared with taking aspirin 500 mg alone. Also, there was no notable effect on measures of platelet aggregation with capsaicin (92990). It is unclear whether capsaicin must be used in more than a single dose to affect platelet aggregation.
|
Theoretically, taking capsicum with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Preliminary clinical research shows that consuming capsicum 5 grams along with a glucose drink attenuates the rise in plasma glucose after 30 minutes by 21%, decreases the 2-hour postprandial area under the curve of plasma glucose by 11%, and increases the 2-hour postprandial area under the curve of plasma insulin by 58% in healthy individuals when compared with placebo (40453,40614). Other clinical research shows that taking capsicum 5 mg daily for 28 days significantly reduces postprandial blood glucose and insulin levels, but not fasting blood glucose and insulin levels, in patients with gestational diabetes (96457).
|
Theoretically, taking capsicum with aspirin might reduce the bioavailability of aspirin.
Details
Animal research shows that acute or chronic intake of capsicum pepper reduces oral aspirin bioavailability (22617). This has not been shown in humans.
|
Theoretically, taking capsicum with ciprofloxacin might increase levels and adverse effects of ciprofloxacin.
Details
Animal research shows that concomitant use of capsaicin, the active constituent of capsicum, and ciprofloxacin increases the bioavailability of ciprofloxacin by up to 70% (22613).
|
Theoretically, taking capsicum with theophylline might increase the levels and adverse effects of theophylline.
Details
|
Theoretically, taking coconut water with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking coconut water with antihypertensive drugs might increase the risk of hypotension.
Details
Preliminary clinical research shows that drinking coconut water might lower systolic and diastolic blood pressure in patients with hypertension (17680).
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Details
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
Details
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
Details
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
Details
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
Details
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
Details
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Details
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
Details
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Details
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Details
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, taking itraconazole capsules or tablets with a beverage containing lemon might increase the levels and clinical effects of itraconazole.
Details
In one case report, dissolving itraconazole tablets in a small amount of specific beverages containing lemon prior to administration increased the level of itraconazole in a lung transplant patient. In this case, the increased bioavailability was desirable and was likely due to improved tablet dissolution in the acidic beverage (110781).
|
Although Panax ginseng has shown antiplatelet effects in the laboratory, it is unlikely to increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro evidence suggests that ginsenoside constituents in Panax ginseng might decrease platelet aggregation (1522,11891). However, research in humans suggests that ginseng does not affect platelet aggregation (11890). Animal research indicates low oral bioavailability of Rb1 and rapid elimination of Rg1, which might explain the discrepancy between in vitro and human research (11153). Until more is known, use with caution in patients concurrently taking anticoagulant or antiplatelet drugs.
|
Theoretically, taking Panax ginseng with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Monitor blood glucose levels closely.
|
Theoretically, taking Panax ginseng with caffeine might increase the risk of adverse stimulant effects.
Details
|
Theoretically, Panax ginseng might decrease levels of drugs metabolized by CYP1A1.
Details
In vitro research shows that Panax ginseng can induce the CYP1A1 enzyme (24104).
|
Theoretically, Panax ginseng might increase levels of drugs metabolized by CYP2D6. However, research is conflicting.
Details
There is some evidence that Panax ginseng can inhibit the CYP2D6 enzyme by approximately 6% (1303,51331). In addition, in animal research, Panax ginseng inhibits the metabolism of dextromethorphan, a drug metabolized by CYP2D6, by a small amount (103478). However, contradictory research suggests Panax ginseng might not inhibit CYP2D6 (10847). Until more is known, use Panax ginseng cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, Panax ginseng might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Panax ginseng may affect the clearance of drugs metabolized by CYP3A4. One such drug is imatinib. Inhibition of CYP3A4 was believed to be responsible for a case of imatinib-induced hepatotoxicity (89764). In contrast, Panax ginseng has been shown to increase the clearance of midazolam, another drug metabolized by CYP3A4 (89734,103478). Clinical research shows that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478). Until more is known, use Panax ginseng cautiously in combination with CYP3A4 substrates.
|
Theoretically, concomitant use of large amounts of Panax ginseng might interfere with hormone replacement therapy.
Details
|
Theoretically, Panax ginseng might decrease blood levels of oral or intravenous fexofenadine.
Details
Animal research suggests that taking Panax ginseng in combination with oral or intravenous fexofenadine may reduce the bioavailability of fexofenadine. Some scientists have attributed this effect to the ability of Panax ginseng to increase the expression of P-glycoprotein (24101).
|
Theoretically, Panax ginseng might reduce the effects of furosemide.
Details
There is some concern that Panax ginseng might contribute to furosemide resistance. There is one case of resistance to furosemide diuresis in a patient taking a germanium-containing ginseng product (770).
|
Theoretically, Panax ginseng might increase the effects and adverse effects of imatinib.
Details
A case of imatinib-induced hepatotoxicity has been reported for a 26-year-old male with chronic myelogenous leukemia stabilized on imatinib for 7 years. The patient took imatinib 400 mg along with a Panax ginseng-containing energy drink daily for 3 months. Since imatinib-associated hepatotoxicity typically occurs within 2 years of initiating therapy, it is believed that Panax ginseng affected imatinib toxicity though inhibition of cytochrome P450 3A4. CYP3A4 is the primary enzyme involved in imatinib metabolism (89764).
|
Theoretically, Panax ginseng use might interfere with immunosuppressive therapy.
Details
Panax ginseng might have immune system stimulating properties (3122).
|
Theoretically, taking Panax ginseng with insulin might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Insulin dose adjustments might be necessary in patients taking Panax ginseng; use with caution.
|
Although Panax ginseng has demonstrated variable effects on cytochrome P450 3A4 (CYP3A4), which metabolizes lopinavir, Panax ginseng is unlikely to alter levels of lopinavir/ritonavir.
Details
Lopinavir is metabolized by CYP3A4 and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Panax ginseng has shown variable effects on CYP3A4 activity in humans (89734,89764). However, taking Panax ginseng (Vitamer Laboratories) 500 mg twice daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in 12 healthy volunteers (93578).
|
Theoretically, Panax ginseng may increase the clearance of midazolam.
Details
Midazolam is metabolized by cytochrome P450 3A4 (CYP3A4). Clinical research suggests that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478).
|
Theoretically, Panax ginseng can interfere with MAOI therapy.
Details
|
Theoretically, taking Panax ginseng with nifedipine might increase serum levels of nifedipine and the risk of hypotension.
Details
Preliminary clinical research shows that concomitant use can increase serum levels of nifedipine in healthy volunteers (22423). This might cause the blood pressure lowering effects of nifedipine to be increased when taken concomitantly with Panax ginseng.
|
Theoretically, Panax ginseng has an additive effect with drugs that prolong the QT interval and potentially increase the risk of ventricular arrhythmias. However, research is conflicting.
Details
|
Theoretically, taking Panax ginseng with raltegravir might increase the risk of liver toxicity.
Details
A case report suggests that concomitant use of Panax ginseng with raltegravir can increase serum levels of raltegravir, resulting in elevated liver enzymes levels (23621).
|
Theoretically, Panax ginseng might increase or decrease levels of selegiline, possibly altering the effects and side effects of selegiline.
Details
Animal research shows that taking selegiline with a low dose of Panax ginseng extract (1 gram/kg) reduces selegiline bioavailability, while taking a high dose of Panax ginseng extract (3 grams/kg) increases selegiline bioavailability (103053). More research is needed to confirm these effects.
|
Theoretically, taking Panax ginseng with stimulant drugs might increase the risk of adverse stimulant effects.
Details
|
Panax ginseng might affect the clearance of warfarin. However, this interaction appears to be unlikely.
Details
There has been a single case report of decreased effectiveness of warfarin in a patient who also took Panax ginseng (619). However, it is questionable whether Panax ginseng was the cause of this decrease in warfarin effectiveness. Some research in humans and animals suggests that Panax ginseng does not affect the pharmacokinetics of warfarin (2531,11890,17204,24105). However, other research in humans suggests that Panax ginseng might modestly increase the clearance of the S-warfarin isomer (15176). More evidence is needed to determine whether Panax ginseng causes a significant interaction with warfarin.
|
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
Details
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
Details
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Details
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
Details
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Details
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
Details
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
Details
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Details
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product Digestion Shot. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, acerola seems to be well tolerated.
However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Acerola has been linked with one case of anaphylaxis and one case of rectal obstruction.
Gastrointestinal ...Osmotic diarrhea and gastrointestinal upset have been reported with doses of vitamin C greater than the tolerable upper intake level (UL) of 2000 mg daily (4844). Theoretically this could occur with large doses of oral acerola. A case report describes rectal obstruction with mass consisting of partially digested acerola fruits in a 5-year-old child who had ingested an unknown quantity of fruits daily for 7 days. The child presented with vomiting, abdominal pain and distension, tenesmus, constipation, and dehydration, and required surgical disimpaction (93205).
Immunologic ...There is a case report of a 37 year old man who developed a pruritic rash, dyspnea, and tachycardia 5 minutes after drinking a mixture of apple and acerola juices. He had a history of hay fever, oral allergy symptoms with avocado, celery, walnut, and curry, and contact urticaria with latex, but tolerated apples and apple juice. IgE antibodies to acerola were identified in the patient's serum. Ultimately, cross-reactivity between a latex protein and acerola was determined (93206).
General
...In food amounts, apple cider vinegar is well tolerated.
It seems to be well tolerated when used orally, short-term for medicinal purposes. However, in larger amounts, long-term use may be unsafe.
Topically, apple cider vinegar may be unsafe.
Serious Adverse Effects (Rare):
Orally: Hypokalemia, hyperreninemia, and osteoporosis have been reported with long-term use.
Topically: Chemical burns, skin irritation.
Dermatologic ...Topically, apple cider vinegar may cause chemical burns. There is one published report of an individual who developed a chemical burn caused by a single topical application of apple cider vinegar containing 5% acetic acid to the skin (91662). Another case of chemical burn has been reported for a 14-year-old patient who applied apple cider vinegar to the skin for 3 days to remove a nevi. Symptoms included erythema, irritation, and non-inflammatory skin erosion. Symptoms were treated by applying mupirocin 2% ointment twice a day for several weeks and using sunscreen on the erosion and surrounding skin (93074). In one clinical trial, use of 0.5% apple cider vinegar soaks commonly caused skin irritation. One patient in this study experienced a nonpruritic papular rash, while another patient experienced severe pruritis with burning and erosion (101172). In another report, a female had an apple cider vinegar tablet lodged in the throat for 30 minutes, resulting in tenderness and pain in the larynx and difficulty swallowing for 6 months following the incident. This was thought to be due to the acid content of the tablet (13183).
Renal ...There is one published report of an individual who developed hypokalemia, elevated renin levels, high positive urinary anion gap, and osteoporosis after ingesting apple cider vinegar 250 mL per day for 6 years. The osteoporosis was attributed to buffering of the acute acid load by bone, and the other effects were attributed to significant bicarbonate excretion (31730).
General
...Orally, Bacillus coagulans is well tolerated.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Immunologic ...Since many probiotic preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. Bacteremia and sepsis have been reported in patients with indwelling or central venous catheters or patients who are severely ill and/or immunocompromised, including preterm infants, that were using probiotic products (4380,8561,13008,13070,90298,102416,103444,105138,105140,105141)(107543,107597,107599,111610,111612,111613,111850,111852,111853). However, reports of pathogenic colonization in relatively healthy patients with intact immune systems who do not have indwelling or central venous catheters are extremely rare (4380,4389,4390,4391,4393,4398,105139,107543,107545,107546,107547).
General
...Orally, capsicum is generally well tolerated in amounts typically found in food or when the extract is used in doses of up to 200 mg daily.
Topically and intranasally, capsaicin, a constituent of capsicum, is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, burning, diarrhea, dyspepsia, gas, headache, mild constipation, nausea, rhinorrhea, skin flushing, and sweating.
Serious Adverse Effects (Rare):
Orally: Cases of myocardial infarction and hypertensive crisis have been reported.
Cardiovascular
...Orally, palpitation was reported in one clinical trial (105196).
One case of myocardial infarction has been reported in a 41-year-old male without cardiovascular risk factors; the event was attributed to the use of an oral capsicum pepper pill that the patient had been taking for weight loss (40768). Another case of coronary vasospasm and acute myocardial infarction has been reported for a healthy 29-year-old male; the event was attributed to the use of a topical capsicum-containing patch that the patient had been applying to the middle of the back for 6 days (40658). Two cases of arterial hypertensive crisis have been reported for individuals who ingested a large amount of peppers and chili peppers the day before. One of the patients also had an acute myocardial infarction, and the other had high levels of thyroid stimulating hormone (40569,40606).
Dermatologic
...Orally, capsicum or its constituent capsaicin may cause urticaria and skin wheals in rare cases (96457,105203).
Topically, capsicum can cause a prickling sensation, itching, pain, burning, edema, stinging, irritation, rash, and erythema. About 1 in 10 patients who use capsaicin topically discontinue treatment because of adverse effects. These effects seem to occur more often with topical formulations containing higher concentrations of capsaicin, the active constituent of capsicum. Side effects tend to diminish with continued use (12401,15260,15261,40358,40439,40483,40547,40676,40682,40719)(40784,40847,92979,92983,92984,96453,105193,105197,105202,111514). In one case, application of a capsaicin 8% patch (Qutenza) for 60 minutes caused a second-degree burn, characterized by burning, erythema, severe pain, and blistering at the administration site. The burn was treated with topical corticosteroids, but 9 months later neuropathic pain persisted, resulting in limited mobility. It is unclear whether the mobility sequalae were caused by topical capsaicin or the patient's pre-existing neurological disorders (111514). Skin contact with fresh capsicum fruit can also cause irritation or contact dermatitis (12408).
Intranasally, capsaicin can cause nasal burning and pain in most patients. It also often causes lacrimation, sneezing, and excessive nasal secretion; however, these side effects appear to diminish with repeat applications (14323,14329,14358). In some cases, the burning sensation disappears after 5-8 applications (14351,14358). In some cases, patients are pretreated with intranasal lidocaine to decrease the pain of intranasal capsaicin treatment. However, even with lidocaine pretreatment, patients seem to experience significant pain (14324).
Gastrointestinal
...Orally, capsicum can cause upper abdominal discomfort, including irritation, fullness, dyspepsia, gas, bloating, nausea, epigastric pain and burning, anal burning, diarrhea, mild constipation, and belching (12403,12410,40338,40427,40456,40503,40560,40584,40605,40665)(40718,40725,40745,40808,40828,96456,96457,105194,105196).
There is a case report of a 3-year-old female who experienced a burning and swollen mouth and lips after touching the arm of a parent that had been treated with a capsaicin patch and then placing the fingers in the mouth (105199). Excessive amounts of capsaicin can lead to gastroenteritis and hepatic necrosis (12404). In a case report, a 40-year-old male with diabetes consumed white wine daily and chewed cayenne which was thought to result in black teeth stains and loss of enamel (40809). Some preliminary research links ingestion of capsaicin with stomach and gallbladder cancer; however the link may be due to contamination of capsaicin products with carcinogens (40771).
Topically, capsaicin can cause diarrhea and vomiting (105202).
Immunologic ...In a case report, a 34-year-old female had anaphylaxis involving difficulty breathing and stupor and also urticaria after consuming a red bell pepper, which is in the capsicum genus. The causal chemical was theorized to be 1,3-beta-glucanase (92978). In another case report, a 33-year-old female experienced angioedema, difficulty breathing and swallowing, and urticaria after ingesting raw green and red peppers (92982).
Neurologic/CNS ...Orally, capsicum can cause sweating and flushing of the head and neck, lacrimation, headache, faintness, and rhinorrhea (7005,12410,105196,105203). Topically, applying capsaicin can cause headache (96450,105202). Injection of capsaicin into the intermetatarsal space has also been associated with headache (96454).
Ocular/Otic
...Topically, capsicum can be extremely irritating to the eyes and mucous membranes.
Capsicum oleoresin, an oily extract in pepper self-defense sprays, causes intense eye pain. It can also cause erythema, blepharospasm, tearing, shortness of breath, and blurred vision. In rare cases, corneal abrasions have occurred (12408,12409,40345,40348,40383,40720,40857).
Inhalation of capsicum can cause eye irritation, and allergic alveolitis (5885). In a case report, a 38-year-old female had acute anterior uveitis that developed about 12 hours after using a specific patch (Isola Capsicum N Plus) that contained capsaicin 1.5 mg per patch and methyl salicylate 132 mg per patch for neck pain. The uveitis was controlled with topical steroids and did not recur (92977).
Oncologic ...Population research suggests that moderate to high intake of capsaicin, the active constituent of capsicum, is associated with an increased risk of gastric cancer, while low intake is associated with a decreased risk. It is not clear from the study what amount of capsaicin is considered high versus low intake (92988). Additionally, some research suggests that any link may be due to contamination of capsaicin products with carcinogens (40771).
Pulmonary/Respiratory
...Orally, difficulty breathing was reported in a clinical trial (105196).
Topically, nasopharyngitis related to the use of a cream containing capsaicin has been reported (105202).
Inhalation of capsicum and exposure to capsicum oleoresin spray can cause cough, dyspnea, pain in the nasal passages, sneezing, rhinitis, and nasal congestion (5885,15016,40522,40546,40647). In rare cases, inhalation of the capsicum oleoresin or pepper spray has caused cyanosis, apnea, respiratory arrest and death in people. Death was caused by asphyxiation probably due to acute laryngeal edema and bronchoconstriction from inhalation of the capsicum oleoresin spray (40546,40672,40837,40879).
In a case report, a 47-year-old female who was exposed to capsaicin gas for more than 20 minutes experienced acute cough, shortness of breath, short-term chest pain, wheezing, and difficulty breathing for months afterwards (92980). In rare cases, exposure to capsicum oleoresin spray resulted in apnea, pulmonary injury, cyanosis, and even respiratory arrest (40383,40546).
General ...Orally, coconut water is well tolerated.
Gastrointestinal ...When consumed as a rehydration beverage following exercise, some people experience fullness or stomach upset (17678,95126). However, gastrointestinal distress is not reported in all studies (95139). Also, in some cases it appears to occur at a lower rate when compared with drinking plain water or drinking a carbohydrate-electrolyte rehydration fluid (17678).
Neurologic/CNS ...In one case report, a 69-year-old male died within approximately 30 hours of consuming a small amount of coconut water that was found to contain 3-nitropropionic acid due to spoilage with Arthrinium saccharicola. About 3 hours after consumption, the patient developed sweating, nausea, and vomiting, and was in a state of reduced consciousness when presenting to the hospital about 1.5 hours later. Other symptoms included confusion, dystonia, and poor balance, as well as metabolic acidosis. The coconut was pre-shaved and although refrigeration was recommended, it had been stored at room temperature for approximately one month after purchase (107670).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, lemon is well tolerated in amounts commonly found in foods.
A thorough evaluation of safety outcomes has not been conducted on the use of larger amounts.
Most Common Adverse Effects:
Orally: Epigastralgia and heartburn with the regular consumption of fresh lemon juice.
Dermatologic ...Topically, the application of lemon oil might cause photosensitivity, due to furocoumarin derivative content. This occurs most often in fair-skinned people (11019).
Gastrointestinal ...Orally, fresh lemon juice, taken as 60 mL twice daily, has been reported to cause gastrointestinal disturbances in 37% of patients in one clinical trial, compared with 8% of patients in the placebo group. Specifically, of the patients consuming lemon juice, 21% experienced heartburn and 8% experienced epigastralgia, compared to 1% and 3%, respectively, in the placebo group (107489).
General
...Orally, Panax ginseng is generally well tolerated when used for up to 6 months.
There is some concern about the long-term safety due to potential hormone-like effects.
Topically, no adverse effects have been reported when ginseng is used as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Insomnia.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, arrhythmia, ischemia, Stevens-Johnson syndrome.
Cardiovascular ...Panax ginseng may cause hypertension, hypotension, and edema when used orally in high doses, long-term (3353). However, single doses of Panax ginseng up to 800 mg are not associated with changes in electrocardiogram (ECG) parameters or increases in heart rate or blood pressure (96218). There is a case report of menometrorrhagia and tachyarrhythmia in a 39-year-old female who took Panax ginseng 1000-1500 mg/day orally and also applied a facial cream topically that contained Panax ginseng. Upon evaluation for menometrorrhagia, the patient also reported a history of palpitations. It was discovered that she had sinus tachycardia on ECG. However, the patient was a habitual consumer of coffee 4-6 cups/day and at the time of evaluation was also mildly anemic. The patient was advised to discontinue taking Panax ginseng. During the 6 month period following discontinuation the patient did not have any more episodes of menometrorrhagia or tachyarrhythmia (13030). Also, a case of transient ischemic attack secondary to a hypertensive crisis has been reportedly related to oral use of Panax ginseng (89402).
Dermatologic
...Orally, Panax ginseng may cause itching or an allergic response consisting of systemic rash and pruritus (89743,89760,104953).
Skin eruptions have also been reported with use of Panax ginseng at high dosage, long-term (3353). Uncommon side effects with oral Panax ginseng include Stevens-Johnson syndrome (596).
In one case report, a 6-year-old male with a previous diagnosis of generalized pustular psoriasis, which had been in remission for 18 months, presented with recurrent pustular lesions after consuming an unspecified dose of Panax ginseng. The patient was diagnosed with pityriasis amiantacea caused by subcorneal pustular dermatosis. Treatment with oral dapsone 25 mg daily was initiated, and symptoms resolved after 4 weeks (107748).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, mild pain, local irritation, and burning have occurred (2537).
Endocrine
...The estrogenic effects of ginseng are controversial.
Some clinical evidence suggests it doesn't have estrogen-mediated effects (10981). However, case reports of ginseng side effects such as postmenopausal vaginal bleeding suggest estrogenic activity (590,591,592,10982,10983).
In a 12-year-old Korean-Japanese male, enlargement of both breasts with tenderness in the right breast (gynecomastia) occurred after taking red ginseng extract 500 mg daily orally for one month. Following cessation of the product, there was no further growth or pain (89733). Swollen and tender breasts also occurred in a 70-year-old female using Panax ginseng orally (590).
Gastrointestinal ...Orally, Panax ginseng can cause decreased appetite (3353), diarrhea (3353,89734,103477,112841), abdominal pain (89734,87984,112841), and nausea (589,87984). However, these effects are typically associated with long-term, high-dose usage (3353). Some evidence suggests that fermented Panax ginseng is more likely to cause abdominal pain and diarrhea when compared with unfermented Panax ginseng (112841).
Genitourinary
...Amenorrhea has been reported with oral use of Panax ginseng (3353).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, sporadic erectile dysfunction and excessively delayed ejaculation have occurred (2537). Less commonly, patients can experience vaginal bleeding (591,592,3354,23630).
Hepatic ...It is unclear if Panax ginseng is associated with adverse hepatic effects. Cholestatic hepatitis has been reported in a 65-year old male following oral use of a combination product containing Panax ginseng and other ingredients (Prostata). However, it is unclear if this adverse effect was due to Panax ginseng, other ingredients, or the combination (598).
Immunologic ...A case of anaphylaxis, with symptoms of hypotension and rash, has been reported following ingestion of a small amount of Panax ginseng syrup (11971).
Neurologic/CNS ...Orally, one of the most common side effects to Panax ginseng is insomnia (589,89734,111336). Headache (594,23638,112840), vertigo, euphoria, and mania (594) have also been reported. Migraine and somnolence occurred in single subjects in a clinical trial (87984). In a case report of a 46-year-old female, orobuccolingual dyskinesia occurred following oral use of a preparation containing black cohosh 20 mg and Panax ginseng 50 mg twice daily for menopausal symptoms. The patient's condition improved once the product was stopped and treatment with baclofen 40 mg and clonazepam 20 mg daily was started (89735).
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).