Ingredients | Amount Per 1 VegCap |
---|---|
Proprietary Blend
|
400 mg |
(Taraxacum mongolicum )
(whole plant)
|
|
Purslane
(Portulaca oleracea )
(top)
|
|
Assam Indigo
(Strobilanthes cusia )
(leaf)
|
|
Assam Indigo
(Strobilanthes cusia )
(root)
|
|
Thlaspi arvense
(Thlaspi arvense )
(whole plant)
|
|
(Bupleurum chinense )
(root)
|
|
(Sculellariae baicalensis )
(root)
|
|
Typhonium
(Typhonium flagelliforme )
(rhizome)
|
|
(Cinnamomum cassia )
(twig)
|
|
(Glycyrrhiza uralensis )
(root)
|
|
(Panax ginseng )
(root)
|
Vegetable Capsule (Form: Hypromellose, Water)
Below is general information about the effectiveness of the known ingredients contained in the product VS-C. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product VS-C. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Oral Baikal skullcap 0.5-3.52 grams daily has been used with apparent safety for up to 8 weeks (92776,101738,101739,110023). However, a high quality assessment of safety has not been conducted. A specific product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been associated with an increased risk for liver and lung injury. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination. There is insufficient reliable information available about the safety of Baikal skullcap when used intravenously or topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Bupleurum has been used with apparent safety as part of a multi-ingredient decoction (sho-saiko-to) for up to 5 years (37391,37410). It has also been used with apparent safety as part of another multi-ingredient decoction (chima qingwen) at doses of up to 40 grams bupleurum daily for up to 5 days (100167).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when consumed in amounts commonly found in foods. Cassia cinnamon has Generally Recognized As Safe (GRAS) status in the US for use as a spice or flavoring agent (4912) ...when used orally and appropriately, short-term. Cassia cinnamon 1-2 grams daily has been used safely for up to 3 months (17011,21914). Cassia cinnamon 3-6 grams daily has been used safely for up to 6 weeks (11347,14344). Cassia cinnamon extract corresponding to 3 grams daily of cassia cinnamon powder has also been used safely for up to 4 months (21916).
POSSIBLY SAFE ...when used topically, short-term. Cassia cinnamon oil 5% cream applied topically to the legs has been used safely in one clinical trial (59580).
POSSIBLY UNSAFE ...when used orally in high doses, long-term. Some cassia cinnamon products contain high levels of coumarin. Coumarin can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg daily can result in hepatotoxicity that resolves when coumarin use is discontinued (15302). In most cases, ingestion of cassia cinnamon will not provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Cassia cinnamon 1 gram daily has been used safely in adolescents 13-18 years of age for up to 3 months (89648).
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of cassia cinnamon when used in medicinal amounts during pregnancy and breast-feeding. Stay on the safe side and stick to food amounts.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Dandelion has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (12). There is insufficient reliable information available about the safety of dandelion when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Panax ginseng seems to be safe when used for up to 6 months (8813,8814,17736,89741,89743,89745,89746,89747,89748,103044,103477).
POSSIBLY UNSAFE ...when used orally, long-term. There is some concern about the long-term safety due to potential hormone-like effects, which might cause adverse effects with prolonged use (12537). Tell patients to limit continuous use to less than 6 months. There is insufficient reliable information available about the safety of Panax ginseng when used topically.
CHILDREN: LIKELY UNSAFE
when used orally in infants.
Use of Panax ginseng in newborns is associated with intoxication that can lead to death (12). There is limited reliable information available about use in older children (24109,103049); avoid using.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Ginsenoside Rb1, an active constituent of Panax ginseng, has teratogenic effects in animal models (10447,24106,24107); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product VS-C. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol.
Details
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might potentiate the sedative effects of alcohol (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap might increase the risk of bleeding when used concomitantly with anticoagulant and antiplatelet drugs.
Details
Preliminary clinical research suggests that taking capsules containing a combination of astragalus, goldthread, and Baikal skullcap daily for 4 weeks inhibits platelet aggregation; the effect seems to be similar to that of aspirin 50 mg daily (33075). It is unclear if this effect is due to Baikal skullcap, other ingredients, or the combination.
|
Theoretically, concomitant use of Baikal skullcap with antidiabetes drugs might enhance blood glucose lowering effects.
Details
Baicalein, a constituent of Baikal skullcap, has alpha-glucosidase inhibitory activity in vitro (6292). Animal research also suggests that Baikal skullcap enhances the antidiabetic effects of metformin (33408). However, in a small human study, taking Baikal skullcap extract did not enhance the antidiabetic effects of metformin, although it did modestly lower glucose levels during an oral glucose tolerance test (OGTT) (101738). Until more is known, use cautiously.
|
Theoretically, concomitant use of Baikal skullcap with antihypertensive drugs might have additive effects and increase the risk of hypotension.
Details
Animal research suggests that baicalein, a constituent of Baikal skullcap, might lower blood pressure (33374).
|
Theoretically, concomitant use of Baikal skullcap and antithyroid drugs may result in additive activity and increase the risk of hypothyroidism.
Details
In an animal hyperthyroid model, Baikal skullcap improved levels of triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) (101736). The clinical significance of this effect is unclear.
|
Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties.
Details
In vitro and animal research suggests that Baikal skullcap binds to GABA-A receptors and causes sedation. Theoretically, Baikal skullcap might cause additive therapeutic and adverse effects when used concomitantly with drugs with sedative properties (6290,6291,33477). Preliminary clinical research has not identified clinically relevant sedation after use of Baikal skullcap; however, a thorough evaluation of safety outcomes has not been conducted.
|
Theoretically, Baikal skullcap may increase levels of drugs metabolized by CYP1A2 enzymes.
Details
|
Theoretically, Baikal skullcap might increase levels of drugs metabolized by CYP2C19 enzymes.
Details
In vitro evidence suggest that wogonin, a constituent of Baikal skullcap, modestly inhibits the activity of CYP2C19 enzymes (33484). This effect has not been reported in humans.
|
Theoretically, concomitant use of large amounts of Baikal skullcap might interfere with hormone replacement therapy, due to competition for estrogen receptors.
Details
In vitro evidence suggests that Baikal skullcap has estrogenic activity (16061).
|
Theoretically, Baikal skullcap might reduce lithium excretion and increase serum levels of lithium.
Details
Baikal skullcap is thought to have diuretic properties, which may reduce lithium excretion (5541). The dose of lithium might need to be decreased.
|
Theoretically, Baikal skullcap might alter the levels and clinical effects of OATP substrates.
Details
Some pharmacokinetic research shows that baicalin, a constituent of Baikal skullcap, can decrease plasma levels of rosuvastatin. The mechanism is thought to involve stimulation of the activity of the organic anion-transporting polypeptide 1B1 (OATP1B1), which transports rosuvastatin into the liver. This decreases plasma levels of the drug, but increases levels at the site of action in the liver. The degree to which rosuvastatin levels are affected depends on the OATP1B1 haplotype of the individual (16395). Baikal skullcap might also affect other OATP1B1 substrates (16396,16397,16398).
|
Theoretically, Baikal skullcap might increase levels of drugs transported by P-glycoprotein.
Details
|
Theoretically, bupleurum might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, bupleurum might decrease the effects of antidiabetes drugs.
Details
|
Theoretically, bupleurum might decrease the effects of immunosuppressants.
Details
|
Theoretically, cassia cinnamon may have additive effects with antidiabetes drugs.
Details
|
Theoretically, large doses of cassia cinnamon might cause additive effects when used with hepatotoxic drugs.
Details
There is some concern that ingesting large amounts of cassia cinnamon for an extended duration might cause hepatotoxicity in some people. Cassia cinnamon contains coumarin, which can cause hepatotoxicity in animal models (15299,21920). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin use is discontinued (15302,97249). Lower amounts might also cause liver problems in sensitive people, such as those with liver disease or those taking potentially hepatotoxic agents.
|
Theoretically, taking dandelion root along with anticoagulant or antiplatelet drugs might increase the risk of bruising and bleeding.
Details
In vitro research suggests that dandelion root inhibits platelet aggregation (18291).
|
Theoretically, dandelion might increase the risk for hypoglycemia when used with antidiabetes drugs.
Details
Laboratory research suggests that dandelion extract may have moderate alpha-glucosidase inhibitor activity and might also increase insulin secretion (13474,90926). Also, in a case report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemia 2 weeks after beginning to eat salads containing dandelion (46960).
|
Theoretically, dandelion might increase levels of drugs metabolized by CYP1A2.
Details
Laboratory research suggests that dandelion might inhibit CYP1A2 (12734). So far, this interaction has not been reported in humans. However, until more is known, watch for an increase in the levels of drugs metabolized by CYP1A2 in patients taking dandelion.
|
Theoretically, dandelion might increase the clearance of drugs that are UDP-glucuronosyltransferase substrates.
Details
There is some preliminary evidence that dandelion might induce UDP-glucuronosyltransferase, a phase II enzyme (12734).
|
Theoretically, through diuretic effects, dandelion might reduce excretion and increase levels of lithium.
Details
Animal research suggests that dandelion has diuretic properties (13475). As diuretics can increase serum lithium levels, the dose of lithium might need to be decreased when taken with dandelion.
|
Theoretically, dandelion might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Details
Dandelion contains significant amounts of potassium (13465).
|
Theoretically, dandelion might lower fluoroquinolone levels.
Details
Animal research shows that dandelion reduces absorption of ciprofloxacin and can lower levels by 73% (13477). However, this effect has not been reported in humans.
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
Details
|
Theoretically, licorice might reduce the effects of cisplatin.
Details
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Details
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
Details
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
Details
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
Details
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
Details
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Details
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Details
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
Details
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Details
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Details
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
Details
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
Details
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Details
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Details
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
Although Panax ginseng has shown antiplatelet effects in the laboratory, it is unlikely to increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro evidence suggests that ginsenoside constituents in Panax ginseng might decrease platelet aggregation (1522,11891). However, research in humans suggests that ginseng does not affect platelet aggregation (11890). Animal research indicates low oral bioavailability of Rb1 and rapid elimination of Rg1, which might explain the discrepancy between in vitro and human research (11153). Until more is known, use with caution in patients concurrently taking anticoagulant or antiplatelet drugs.
|
Theoretically, taking Panax ginseng with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Monitor blood glucose levels closely.
|
Theoretically, taking Panax ginseng with caffeine might increase the risk of adverse stimulant effects.
Details
|
Theoretically, Panax ginseng might decrease levels of drugs metabolized by CYP1A1.
Details
In vitro research shows that Panax ginseng can induce the CYP1A1 enzyme (24104).
|
Theoretically, Panax ginseng might increase levels of drugs metabolized by CYP2D6. However, research is conflicting.
Details
There is some evidence that Panax ginseng can inhibit the CYP2D6 enzyme by approximately 6% (1303,51331). In addition, in animal research, Panax ginseng inhibits the metabolism of dextromethorphan, a drug metabolized by CYP2D6, by a small amount (103478). However, contradictory research suggests Panax ginseng might not inhibit CYP2D6 (10847). Until more is known, use Panax ginseng cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, Panax ginseng might increase or decrease levels of drugs metabolized by CYP3A4.
Details
Panax ginseng may affect the clearance of drugs metabolized by CYP3A4. One such drug is imatinib. Inhibition of CYP3A4 was believed to be responsible for a case of imatinib-induced hepatotoxicity (89764). In contrast, Panax ginseng has been shown to increase the clearance of midazolam, another drug metabolized by CYP3A4 (89734,103478). Clinical research shows that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478). Until more is known, use Panax ginseng cautiously in combination with CYP3A4 substrates.
|
Theoretically, concomitant use of large amounts of Panax ginseng might interfere with hormone replacement therapy.
Details
|
Theoretically, Panax ginseng might decrease blood levels of oral or intravenous fexofenadine.
Details
Animal research suggests that taking Panax ginseng in combination with oral or intravenous fexofenadine may reduce the bioavailability of fexofenadine. Some scientists have attributed this effect to the ability of Panax ginseng to increase the expression of P-glycoprotein (24101).
|
Theoretically, Panax ginseng might reduce the effects of furosemide.
Details
There is some concern that Panax ginseng might contribute to furosemide resistance. There is one case of resistance to furosemide diuresis in a patient taking a germanium-containing ginseng product (770).
|
Theoretically, Panax ginseng might increase the effects and adverse effects of imatinib.
Details
A case of imatinib-induced hepatotoxicity has been reported for a 26-year-old male with chronic myelogenous leukemia stabilized on imatinib for 7 years. The patient took imatinib 400 mg along with a Panax ginseng-containing energy drink daily for 3 months. Since imatinib-associated hepatotoxicity typically occurs within 2 years of initiating therapy, it is believed that Panax ginseng affected imatinib toxicity though inhibition of cytochrome P450 3A4. CYP3A4 is the primary enzyme involved in imatinib metabolism (89764).
|
Theoretically, Panax ginseng use might interfere with immunosuppressive therapy.
Details
Panax ginseng might have immune system stimulating properties (3122).
|
Theoretically, taking Panax ginseng with insulin might increase the risk of hypoglycemia.
Details
Clinical research suggests that Panax ginseng might decrease blood glucose levels (89740). Insulin dose adjustments might be necessary in patients taking Panax ginseng; use with caution.
|
Although Panax ginseng has demonstrated variable effects on cytochrome P450 3A4 (CYP3A4), which metabolizes lopinavir, Panax ginseng is unlikely to alter levels of lopinavir/ritonavir.
Details
Lopinavir is metabolized by CYP3A4 and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Panax ginseng has shown variable effects on CYP3A4 activity in humans (89734,89764). However, taking Panax ginseng (Vitamer Laboratories) 500 mg twice daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in 12 healthy volunteers (93578).
|
Theoretically, Panax ginseng may increase the clearance of midazolam.
Details
Midazolam is metabolized by cytochrome P450 3A4 (CYP3A4). Clinical research suggests that Panax ginseng can reduce midazolam area under the curve by 44%, maximum plasma concentration by 26%, and time to reach maximum plasma concentration by 29% (89734). Midazolam metabolism was also increased in animals given Panax ginseng (103478).
|
Theoretically, Panax ginseng can interfere with MAOI therapy.
Details
|
Theoretically, taking Panax ginseng with nifedipine might increase serum levels of nifedipine and the risk of hypotension.
Details
Preliminary clinical research shows that concomitant use can increase serum levels of nifedipine in healthy volunteers (22423). This might cause the blood pressure lowering effects of nifedipine to be increased when taken concomitantly with Panax ginseng.
|
Theoretically, Panax ginseng has an additive effect with drugs that prolong the QT interval and potentially increase the risk of ventricular arrhythmias. However, research is conflicting.
Details
|
Theoretically, taking Panax ginseng with raltegravir might increase the risk of liver toxicity.
Details
A case report suggests that concomitant use of Panax ginseng with raltegravir can increase serum levels of raltegravir, resulting in elevated liver enzymes levels (23621).
|
Theoretically, Panax ginseng might increase or decrease levels of selegiline, possibly altering the effects and side effects of selegiline.
Details
Animal research shows that taking selegiline with a low dose of Panax ginseng extract (1 gram/kg) reduces selegiline bioavailability, while taking a high dose of Panax ginseng extract (3 grams/kg) increases selegiline bioavailability (103053). More research is needed to confirm these effects.
|
Theoretically, taking Panax ginseng with stimulant drugs might increase the risk of adverse stimulant effects.
Details
|
Panax ginseng might affect the clearance of warfarin. However, this interaction appears to be unlikely.
Details
There has been a single case report of decreased effectiveness of warfarin in a patient who also took Panax ginseng (619). However, it is questionable whether Panax ginseng was the cause of this decrease in warfarin effectiveness. Some research in humans and animals suggests that Panax ginseng does not affect the pharmacokinetics of warfarin (2531,11890,17204,24105). However, other research in humans suggests that Panax ginseng might modestly increase the clearance of the S-warfarin isomer (15176). More evidence is needed to determine whether Panax ginseng causes a significant interaction with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product VS-C. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, Baikal skullcap seems to be well-tolerated.
There is currently a limited amount of information on the adverse effects of intravenous and topical Baikal skullcap.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, erythema, nausea, pruritus, and vomiting.
Intravenously: Skin reactions.
Topically: Dermatitis.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity and hypersensitivity pneumonitis have been reported with a specific combination product (Limbrel, Primus Pharmaceuticals) containing extracts of Baikal skullcap and catechu.
Cardiovascular ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, elevated triglyceride levels occurred in 1 of 10 patients who received 400 mg every 8 hours and 2 of 10 patients treated with 600 mg every 8 hours, compared with 0 of 10 patients who received 200 mg every 8 hours and 0 of 6 patients who received placebo. Triglyceride elevations were considered mild and resolved after discontinuation (110023).
Dermatologic
...Orally, taking Baikal skullcap may cause erythema and pruritus (105867).
Intravenously, Baikal skullcap as part of a Tanreqing injection has been associated with reports of skin reactions in some pediatric patients (96281).
Topically, several cases of allergic contact dermatitis have been reported after applying sunscreen containing Baikal skullcap extract (105869,105870). Allergic contact dermatitis has also been reported after applying a facial cream (Resveratrol BE, Skinceuticals) containing Baikal skullcap root extract 0.5% and resveratrol 1%. Patch testing identified a positive reaction to both ingredients (110024). Baikal skullcap-induced dermatitis appears to respond to treatment with a topical corticosteroid and calcineurin inhibitor (105870).
Gastrointestinal ...Orally, use of Baikal skullcap has been associated with epigastric pain, abdominal pain, constipation, diarrhea, nausea, and vomiting (101738,105867).
Hepatic
...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of acute liver damage.
There have been at least five published reports of liver damage associated with this product. In all cases, the patients were females aged 54-68 years taking doses of 250-500 mg twice daily for 1-3 months. Signs and symptoms included jaundice, pruritus, abdominal pain, fever, rash, and elevated serum bilirubin and liver transaminase levels. All patients fully recovered and levels normalized within 3 months after discontinuation (18009,96282). In addition to these published case reports, approximately 30 liver-related adverse events have been reported to the manufacturer of this product (18009). The mechanism of hepatotoxicity is unclear (18009,18010); it is estimated that the incidence of hepatotoxicity with this product is around 1 in 10,000, although the actual incidence is unknown (18010). In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Hepatotoxicity has also been reported in two patients taking a specific dietary supplement (Move Free Advanced, Reckitt Benckiser) containing Baikal skullcap, black catechu, glucosamine, chondroitin, and hyaluronic acid (33460) and in a patient taking Baikal skullcap, elderflower, horseradish, and white willow (101737). The investigators determined that the hepatotoxicity was likely caused by Baikal skullcap in these cases (33460,101737). Additionally, cases of liver injury are reported in 4 of 37 patients taking various Kampo formulations containing Baikal skullcap and other herbs daily. Patients presented with elevated liver function tests 7 to 38 days after consumption (112179). It is unclear if this adverse effect is from Baikal skullcap, other ingredients, or the combination.
In a small study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, liver transaminase elevations occurred in 2 of 10 patients who received 400 mg every 8 hours for 6 days, compared with 0 of 6 patients who received placebo. No patients receiving either 200 mg or 600 mg every 8 hours experienced liver transaminase elevations. The elevations were considered mild and resolved after discontinuation (110023).
Pulmonary/Respiratory ...A specific combination product (Limbrel, Primus Pharmaceuticals) containing flavocoxid, a mixture of Baikal skullcap flavonoid extract and catechu extract, has been linked to several reports of hypersensitivity pneumonitis. Symptoms include fever, chills, headache, cough, chronic bronchitis, shortness of breath, weight loss, and fatigue. In 2017, the US Food and Drug Administration (FDA) formally requested the recall of all non-expired lots of this product due to the risk for liver and lung injury (106042). It is unclear if these effects were due to Baikal skullcap, catechu, or the combination.
Renal ...Orally, in a small clinical study evaluating the safety of baicalein, a constituent of Baikal skullcap, in healthy adults, proteinuria of undefined severity occurred in 1 of 10 patients who received 200 mg every 8 hours for 6 days, 3 of 10 patients who received 400 mg every 8 hours for 6 days, and 5 of 10 patients who received 600 mg every 8 hours for 6 days, compared with 1 of 6 patients who received placebo. The proteinuria was considered mild and resolved after discontinuation (110023).
General ...Orally, bupleurum seems to be well tolerated. However, most research has evaluated bupleurum in combination with other ingredients; the adverse effects of bupleurum when used alone are unclear.
Gastrointestinal ...Orally, a specific bupleurum-containing combination product (sho-saiko-to) has been reported to cause nausea, anorexia, and abdominal fullness (37391). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
Hepatic ...Orally, a specific bupleurum-containing combination product (sho-saiko-to) has been associated with at least 24 reported cases of hepatotoxicity (92575). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
Neurologic/CNS ...Orally, a specific bupleurum-containing combination product (sho-saiko-to) has been reported to cause fatigue and paresthesia (37391). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
Pulmonary/Respiratory ...Orally, combination products containing bupleurum have been reported to cause eosinophilic pneumonia (354), pulmonary edema (361), and multiple cases of pneumonitis (355,356,357,37404). A specific combination product (sho-saiko-to), used in combination with interferon-alpha in patients with chronic active hepatitis, has also been associated with multiple cases of pneumonitis (358,359,360). It is unclear if these adverse effects are due to bupleurum, other ingredients, or the combination.
General
...Orally, cassia cinnamon appears to be well-tolerated.
Significant side effects have not been reported in most patients.
Most Common Adverse Effects:
Topically: Burning mouth, stomatitis.
Dermatologic
...In one clinical trial, a rash was reported in one patient taking cassia cinnamon 1 gram daily for 90 days (17011).
In one case, a 58-year-old female with a documented allergy to topically applied cinnamic alcohol presented with eyelid dermatitis, which was found to be a manifestation of systemic contact dermatitis to cinnamon in the diet. Symptoms improved in two days and completely cleared five days after discontinuing the addition of cinnamon to food products (95599). In other case reports, two adults presented with allergic contact cheilitis following the ingestion of chai tea with cinnamon and yogurt with cinnamon. Cinnamon components were confirmed as the causative allergic agents with patch tests, and both cases of allergic contact cheilitis completely resolved upon cessation of the cinnamon-containing products (113516,113515).
Topically, allergic skin reactions and stomatitis from toothpaste flavored with cassia cinnamon have been reported (11915,11920). Intraoral allergic reactions with symptoms of tenderness and burning sensations of the oral mucosa have also been reported in patients using breath fresheners, toothpaste, mouthwash, candy, or chewing gum containing cinnamon, cinnamic aldehyde or cinnamic alcohol as flavoring agents. Glossodynia, or burning mouth syndrome, has also been reported in a 62-year-old female who ate apples dipped in cinnamon nightly (95598), and allergic contact dermatitis has been reported in a teenage female using a homemade cinnamon sugar face scrub (95596).
Endocrine ...In one clinical trial, a hypoglycemic seizure was reported in one patient taking cassia cinnamon 1 gram daily for 3 months. The event occurred one day after enrolling in the study (89648). It is unclear if cassia cinnamon caused this event.
Hepatic ...There is some concern about the safety of ingesting large amounts of cassia cinnamon for extended durations due to its coumarin content. Coumarin can cause hepatotoxicity in animal models (15299). In humans, very high doses of coumarin from 50-7000 mg/day can result in hepatotoxicity that resolves when coumarin is discontinued (15302). In clinical trials, taking cassia cinnamon 360 mg to 12 grams daily for 3 months did not significantly increase levels of aspartate transaminase (AST) or alanine transaminase (ALT) (21918,96280,108259). However, in one case report, acute hepatitis with elevated AST and ALT occurred in a 73-year-old female who started taking a cinnamon supplement (dose unknown) one week prior to admission. The cinnamon supplement was added on to high-dose rosuvastatin, which may have led to additive adverse hepatic effects. After discontinuing both products, liver function returned to normal, and the patient was able to restart rosuvastati without further complications (97249). In most cases, ingestion of cassia cinnamon won't provide a high enough amount of coumarin to cause significant toxicity; however, in especially sensitive people, such as those with liver disease or taking potentially hepatotoxic agents, prolonged ingestion of large amounts of cassia cinnamon might exacerbate the condition.
Immunologic ...An unspecified allergic reaction was reported in one patient taking cassia cinnamon 1 gram daily for 3 months (89648).
General
...Orally, dandelion seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, heartburn, and stomach discomfort.
Topically: Dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...In one report, a 39-year-old obese woman developed palpitations and syncope after taking a weight loss supplement containing a combination of dandelion, bladderwrack, and boldo for 3 weeks. The patient was found to have prolonged QT-interval on ECG and frequent episodes of sustained polymorphic ventricular tachycardia (14321). It is not clear whether dandelion, another ingredient, or the combination of ingredients is responsible for this adverse effect. The product was not analyzed to determine the presence of any potential toxic contaminants.
Dermatologic ...Topically, dandelion can cause contact dermatitis and erythema multiforme in sensitive individuals. Dandelion can cause an allergic reaction in individuals sensitive to the Asteraceae/Compositae family (13478,13481,42893,46945,46977). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Endocrine ...In one report, a 56-year-old man with renal impairment developed hyperoxalaemia and peripheral gangrene after ingesting large amounts of dandelion tea (10 to 15 cups daily for 6 months). The adverse effect was attributed to the high oxalate content of dandelion tea (258 mcmol/L) and reduced renal oxalate clearance caused by renal impairment (90639). In another report, a 58-year-old woman with type 2 diabetes who was being treated with insulin developed hypoglycemic symptoms 2 weeks after beginning to eat salads containing dandelion (46960). The hypoglycemic effect was attributed to the potential alpha-glucosidase inhibitory activity of dandelion.
Gastrointestinal ...Gastrointestinal symptoms, including stomach discomfort, diarrhea, and heartburn, have been reported following oral use of dandelion (19146,36931). A case of intestinal blockage has been reported for a patient who ingested a large amount of dandelion greens three weeks after undergoing a stomach operation (46981). Also, a case of hemorrhagic cystitis has been reported for a 33-year-old woman who took a specific herbal product (Slim-Kombu, Balestra and Mech, Vicenza, Italy) containing 20 herbal extracts, including dandelion extract. Symptoms resolved after the patient discontinued using the product, and symptoms resumed when the patient began taking the supplement again four months later. While various ingredients in the supplement may have contributed to the symptoms, it is possible that dandelion extract may have contributed to the effect due to its diuretic, laxative, cholagogue, and antirheumatic properties (46959).
Other ...Orally, products containing dandelion pollen can cause allergic reactions, including anaphylaxis (13479,13480). Also, rhinoconjunctivitis and asthma have been reported after handling products such as bird feed containing dandelion and other herbs, with reported positive skin tests for dandelion hypersensitivity (46948). Dandelion pollen may cause pollinosis, such as allergic rhinitis and conjunctivitis (18065,46951,46964,46966,46972).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General
...Orally, Panax ginseng is generally well tolerated when used for up to 6 months.
There is some concern about the long-term safety due to potential hormone-like effects.
Topically, no adverse effects have been reported when ginseng is used as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Insomnia.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, arrhythmia, ischemia, Stevens-Johnson syndrome.
Cardiovascular ...Panax ginseng may cause hypertension, hypotension, and edema when used orally in high doses, long-term (3353). However, single doses of Panax ginseng up to 800 mg are not associated with changes in electrocardiogram (ECG) parameters or increases in heart rate or blood pressure (96218). There is a case report of menometrorrhagia and tachyarrhythmia in a 39-year-old female who took Panax ginseng 1000-1500 mg/day orally and also applied a facial cream topically that contained Panax ginseng. Upon evaluation for menometrorrhagia, the patient also reported a history of palpitations. It was discovered that she had sinus tachycardia on ECG. However, the patient was a habitual consumer of coffee 4-6 cups/day and at the time of evaluation was also mildly anemic. The patient was advised to discontinue taking Panax ginseng. During the 6 month period following discontinuation the patient did not have any more episodes of menometrorrhagia or tachyarrhythmia (13030). Also, a case of transient ischemic attack secondary to a hypertensive crisis has been reportedly related to oral use of Panax ginseng (89402).
Dermatologic
...Orally, Panax ginseng may cause itching or an allergic response consisting of systemic rash and pruritus (89743,89760,104953).
Skin eruptions have also been reported with use of Panax ginseng at high dosage, long-term (3353). Uncommon side effects with oral Panax ginseng include Stevens-Johnson syndrome (596).
In one case report, a 6-year-old male with a previous diagnosis of generalized pustular psoriasis, which had been in remission for 18 months, presented with recurrent pustular lesions after consuming an unspecified dose of Panax ginseng. The patient was diagnosed with pityriasis amiantacea caused by subcorneal pustular dermatosis. Treatment with oral dapsone 25 mg daily was initiated, and symptoms resolved after 4 weeks (107748).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, mild pain, local irritation, and burning have occurred (2537).
Endocrine
...The estrogenic effects of ginseng are controversial.
Some clinical evidence suggests it doesn't have estrogen-mediated effects (10981). However, case reports of ginseng side effects such as postmenopausal vaginal bleeding suggest estrogenic activity (590,591,592,10982,10983).
In a 12-year-old Korean-Japanese male, enlargement of both breasts with tenderness in the right breast (gynecomastia) occurred after taking red ginseng extract 500 mg daily orally for one month. Following cessation of the product, there was no further growth or pain (89733). Swollen and tender breasts also occurred in a 70-year-old female using Panax ginseng orally (590).
Gastrointestinal ...Orally, Panax ginseng can cause decreased appetite (3353), diarrhea (3353,89734,103477,112841), abdominal pain (89734,87984,112841), and nausea (589,87984). However, these effects are typically associated with long-term, high-dose usage (3353). Some evidence suggests that fermented Panax ginseng is more likely to cause abdominal pain and diarrhea when compared with unfermented Panax ginseng (112841).
Genitourinary
...Amenorrhea has been reported with oral use of Panax ginseng (3353).
Topically, when a specific multi-ingredient cream preparation (SS Cream) has been applied to the glans penis, sporadic erectile dysfunction and excessively delayed ejaculation have occurred (2537). Less commonly, patients can experience vaginal bleeding (591,592,3354,23630).
Hepatic ...It is unclear if Panax ginseng is associated with adverse hepatic effects. Cholestatic hepatitis has been reported in a 65-year old male following oral use of a combination product containing Panax ginseng and other ingredients (Prostata). However, it is unclear if this adverse effect was due to Panax ginseng, other ingredients, or the combination (598).
Immunologic ...A case of anaphylaxis, with symptoms of hypotension and rash, has been reported following ingestion of a small amount of Panax ginseng syrup (11971).
Neurologic/CNS ...Orally, one of the most common side effects to Panax ginseng is insomnia (589,89734,111336). Headache (594,23638,112840), vertigo, euphoria, and mania (594) have also been reported. Migraine and somnolence occurred in single subjects in a clinical trial (87984). In a case report of a 46-year-old female, orobuccolingual dyskinesia occurred following oral use of a preparation containing black cohosh 20 mg and Panax ginseng 50 mg twice daily for menopausal symptoms. The patient's condition improved once the product was stopped and treatment with baclofen 40 mg and clonazepam 20 mg daily was started (89735).