Ingredients | Amount Per Serving 1 Scoop |
---|---|
Calories
|
35 Calorie(s) |
Protein
|
9 Gram(s) |
(Lipid Metabolite Ascorbate)
|
90 mg |
Multi Collagen Beauty Complex
|
10.1 Gram(s) |
(hide)
|
|
Eggshell Membrane Collagen, Fermented
(shell)
|
|
Chicken Bone Broth Protein concentrate
(bone)
|
|
(fruit)
|
|
(Bacillus coagulans )
(2 Billions CFU at time of manufacture)
|
|
(Cod, Haddock, Pollock)
|
|
(shoot)
|
|
Okra
(pod)
|
|
(fruit)
|
|
(Sophora )
(flower)
|
|
(berry)
|
|
(fruit)
|
|
(fruit)
|
Citric Acid, Natural Guava Flavor With Other Natural Flavor, Red Beet PlantPart: juice, Spirulina extract, Purple Corn Juice, natural Passion Fruit flavor, Stevia leaf extract PlantPart: leaf Genus: Stevia
Ingredients | Amount Per Serving 2 Scoops |
---|---|
Calories
|
70 Calorie(s) |
Protein
|
18 Gram(s) |
(Lipid Metabolite Ascorbate)
|
180 mg |
Multi Collagen Beauty Complex
|
20.2 Gram(s) |
(hide)
|
|
Eggshell Membrane Collagen, Fermented
(shell)
|
|
Chicken Bone Broth Protein concentrate
(bone)
|
|
(fruit)
|
|
(Bacillus coagulans )
(2 Billions CFU at time of manufacture)
|
|
(Cod, Haddock, Pollock)
|
|
(shoot)
|
|
Okra
(pod)
|
|
(fruit)
|
|
(Sophora )
(flower)
|
|
(berry)
|
|
(fruit)
|
|
(fruit)
|
Citric Acid, Natural Guava Flavor With Other Natural Flavor, Red Beet PlantPart: juice, Spirulina extract, Purple Corn Juice, natural Passion Fruit flavor, Stevia leaf extract PlantPart: leaf Genus: Stevia
Below is general information about the effectiveness of the known ingredients contained in the product Multi Collagen Protein Beauty Within Guava Passionfruit Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of camu camu.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Multi Collagen Protein Beauty Within Guava Passionfruit Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Acai pulp, in a dose of up to 162.5 grams daily, has been used with apparent safety for up to 3 months in clinical research (17731,99400). There is insufficient reliable information available about the safety of acai when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when acerola fruit is used orally and appropriately. Acerola fruit contains an average of 2000 mg vitamin C per 100 grams of fruit, although this content varies widely. Acerola fruit should be consumed in amounts that do not provide more vitamin C than the tolerable upper intake level (UL) of 2000 mg per day for adults (4844).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than found in foods.
LIKELY SAFE ...when used in amounts commonly found in foods. Asparagus seed and root extract have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of asparagus when used orally in medicinal amounts or when applied topically.
PREGNANCY: LIKELY SAFE
when used in amounts commonly found in foods (4912).
PREGNANCY: POSSIBLY UNSAFE
when used in larger amounts for medicinal purposes.
Asparagus extracts may have contraceptive effects (6); avoid using.
LACTATION: LIKELY SAFE
when used in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of asparagus when used in medicinal amounts during lactation.
POSSIBLY SAFE ...when taken orally and appropriately. Bacillus coagulans spores in doses up to 6 billion colony-forming units (CFUs) daily have been used with apparent safety in clinical studies for up to 3 months (92726,92730,92734,92735,92736,92739,92740,104231,105169)(107611,107612,107614). Lower doses of B. coagulans up to 100 million CFUs daily have been used with apparent safety in clinical studies for up to one year (92738). There is insufficient reliable information available about the safety of non-viable, heat-killed B. coagulans formulations when used orally.
CHILDREN: POSSIBLY SAFE
when taken orally and appropriately.
Bacillus coagulans spores in doses up to 100 million colony-forming units (CFUs) daily have been used with apparent safety in clinical studies in infants of most ages for up to one year (92729,92733,92738) and in doses of one billion CFUs in children aged 6-8 years for 3 months (107615). There is insufficient reliable information available about the safety of Bacillus coagulans in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
There is insufficient reliable information available about the safety of camu camu.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Drinking decaffeinated coffee or coffee containing caffeine in low to moderate amounts is safe (15,98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 4 cups of coffee daily providing caffeine 400 mg daily is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of beverages such as coffee that contain caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Acute use of high doses of caffeine (more than 400 mg per day), which is found in more than 4 cups of caffeinated coffee, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Drinking caffeinated coffee in amounts greater than 6 cups per day (about 600 mg caffeine) short-term or long-term can also cause caffeinism, with symptoms of anxiety possibly progressing to delirium and agitation. Chronic use of caffeine, especially in large amounts, can sometimes produce tolerance, habituation, and psychological dependence (3719). Abrupt discontinuance of caffeine can cause physical withdrawal symptoms (11733). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as coffee, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. ...when used rectally as an enema. Coffee enemas have been linked to cases of severe electrolyte abnormalities and septicemia leading to severe side effects including death (3026,3347,3349,6652).
CHILDREN: POSSIBLY SAFE
when coffee containing caffeine is consumed orally in moderate amounts.
Oral intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). However, higher doses should be avoided. The adverse effects typically associated with caffeine-containing coffee are usually more severe in children than adults (11733).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Intake of caffeine from coffee and other sources should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen. Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). In some studies, consuming amounts over 200 mg daily has been associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in people with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume caffeine in doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as coffee, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY UNSAFE
when caffeinated coffee providing more than 300 mg of caffeine daily is consumed orally.
Caffeine from coffee crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption from all sources below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee. High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). Drinking more than 6 cups of coffee daily increases the risk of spontaneous abortion (2709). Drinking 8 or more cups of coffee daily doubles the risk of stillbirth when compared with those who do not drink coffee during pregnancy (10621).
LACTATION: POSSIBLY SAFE
when used orally.
Drinking one or two caffeine-containing beverages daily during lactation is not associated with unacceptable levels of caffeine in human milk (11734).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine from coffee can cause wakefulness or irritability in breast-fed infants. Caffeine can also cause feeding intolerance and gastrointestinal irritation in infants (6026).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Collagen peptides have been used with apparent safety at doses up to 10 grams daily for up to 6 months and in doses up to 40 grams daily for up to 4 weeks (97632,97635,101615,101621,104638,104643,104644,104647,101622,110667). PREGNANCY &
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally. Mangosteen has been used with apparent safety at a dose of up to 560 mg daily for 12 weeks (110127). It has also been used with apparent safety in combination with Sphaeranthus indicus (Meratrim, Laila Nutraceuticals) or Indian cassia (Cindura, Laila Nutraceuticals), for a total dose of 800 mg daily for up to 16 weeks (97876,97878,97879,101079). ...when used topically as a single dose. Mangosteen pericarp 4% gel has been applied once along the gum line with apparent safety (97875).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when the fruit is used orally and appropriately. A specific brand of pagoda tree fruit extract (Rexflavone, Rexgene Biotech Co. Ltd.) has been used safely in doses of up to 350 mg daily for up to 12 weeks (99966).
POSSIBLY UNSAFE ...when the seeds are used orally (18). Regular use of seed meal can cause facial edema or even death (18).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when the seed is used orally (18); avoid using.
There is insufficient reliable information available about the safety of the fruit when used orally during pregnancy or lactation.
LIKELY SAFE ...when pomegranate fruit or fruit juice is used orally and appropriately. Pomegranate juice has been safely used in studies lasting up to 3 years (4912,8310,13022,13023,13690,14137,14388,17329,91693).
POSSIBLY SAFE ...when pomegranate extract is taken orally and appropriately. A specific pomegranate ellagitannin-enriched polyphenol extract (POMx, POM Wonderful) 1-3 grams daily has been safely used for up to 18 months (17729,69261,91686,91695,91697,99100,105269). ...when pomegranate seed oil is used orally and appropriately. Pomegranate seed oil 60 mg daily has been used with apparent safety for up to 12 weeks (91685). ...when a hot water extract of pomegranate seed powder is used orally and appropriately. Pomegranate seed powder 5 grams daily has been used with apparent safety for up to 8 weeks (105270). ...when pomegranate extract is used topically on oral mucosa (13689).
POSSIBLY UNSAFE ...when the pomegranate root, stem, and peel are used orally in large amounts. Bark of the pomegranate root and stem contains the piperidine alkaloids pelletierine, pseudopelletierine, isopelletierine, and methyl isopelletierine. These alkaloids have muscle relaxant properties that have been associated with paralysis and death in animals (13687,13694,13695). Dried pomegranate peel may contain aflatoxin, which is a potent hepatocarcinogen and toxin (92018).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when the fruit or fruit juice is consumed orally and appropriately (13686,105267).
There is insufficient reliable information available regarding the safety of using other forms of pomegranate or other parts of the plant during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product Multi Collagen Protein Beauty Within Guava Passionfruit Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking acai with antidiabetes drugs might interfere with glycemic control.
Details
|
Theoretically, the antioxidant effects of acerola might reduce the effectiveness of alkylating agents.
Details
Acerola contains vitamin C, an antioxidant. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as alkylating agents (391). In contrast, other researchers theorize that antioxidants might make alkylating chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Theoretically, concomitant use of acerola with aluminum salts might increase the amount of aluminum absorbed.
Details
Acerola contains vitamin C. It is thought that vitamin C chelates aluminum, keeping it in solution and available for absorption (10549,10550,10551). In people with normal renal function, urinary excretion of aluminum likely increases, making aluminum retention and toxicity unlikely (10549). However, patients with renal failure who take aluminum-containing compounds, such as phosphate binders, should avoid acerola in doses that provide more vitamin C than the recommended dietary allowances.
|
Theoretically, the antioxidant effects of acerola might reduce the effectiveness of antitumor antibiotics.
Details
Acerola contains vitamin C, an antioxidant. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as antitumor antibiotics (391). In contrast, other researchers theorize that antioxidants might make antitumor antibiotic chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on antitumor antibiotic chemotherapy.
|
Theoretically, acerola might reduce the clearance of aspirin; however, its vitamin C content is likely too low to produce clinically significant effects.
Details
Acerola contains vitamin C. It has been suggested that acidification of the urine by vitamin C can decrease the urinary excretion of salicylates, increasing plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589). The vitamin C content of acerola is typically about 2000 mg per 100 grams. Thus, a clinically significant interaction between acerola and aspirin is unlikely.
|
Theoretically, concomitant use of acerola with estrogens might increase estrogenic effects.
Details
Acerola contains vitamin C. Increases in plasma estrogen levels of up to 55% have occurred under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. However, increases in plasma estrogen levels may occur when women who are deficient in vitamin C take supplements (11161).
|
Theoretically, acerola might reduce the effectiveness of warfarin; however, its vitamin C content is likely too low to produce clinically significant effects.
Details
Acerola contains vitamin C. High doses of vitamin C may reduce the response to warfarin, possibly by causing diarrhea and reducing warfarin absorption (11566). This occurred in two people who took up to 16 grams daily of vitamin C, and resulted in decreased prothrombin time (9804,9806). Lower doses of 5-10 grams daily of vitamin C can also reduce warfarin absorption, but this does not seem to be clinically significant (9805,9806,11566,11567). The vitamin C content of acerola is typically about 2000 mg per 100 grams. Thus, a clinically significant interaction between acerola and warfarin is unlikely.
|
Theoretically, asparagus root might increase diuresis and electrolyte loss when used with diuretic drugs.
Details
|
Theoretically, asparagus root might cause diuresis, reducing lithium clearance.
Details
|
Theoretically, taking antibiotics with Bacillus coagulans might decrease the effectiveness of B. coagulans.
Details
B. coagulans preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms. Tell patients to separate administration of antibiotics and B. coagulans preparations by at least two hours.
|
Theoretically, coffee might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Details
Coffee contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level (38172). However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products, be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
Details
|
Coffee reduces alendronate bioavailability.
Details
Separate coffee ingestion and alendronate administration by two hours. Coffee reduces alendronate bioavailability by 60% (11735).
|
Theoretically, coffee may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
Coffee contains caffeine. Caffeine is reported to have antiplatelet activity (8028,8029). Theoretically, the caffeine in coffee might increase the risk of bleeding when used concomitantly with these agents. However, this interaction has not been reported in humans. There is some evidence that caffeinated coffee might increase the fibrinolytic activity in blood (8030).
|
Theoretically, concomitant use of coffee and antidiabetes drugs might interfere with blood glucose control.
Details
|
Theoretically, concomitant use of large amounts of coffee might increase cardiac inotropic effects of beta-agonists.
Details
Coffee contains caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, cimetidine might increase the effects and adverse effects of caffeine in coffee.
Details
|
Theoretically, coffee might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Details
Coffee contains caffeine. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in coffee.
Details
|
Theoretically, coffee might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Details
Coffee contains caffeine. Caffeine is a methylxyanthine that may inhibit dipyridamole-induced vasodilation (11770,11772,24974,37985,53795). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products such as coffee, be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
Details
Coffee contains caffeine. In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, concomitant use might increase the risk of hypokalemia.
Details
|
Theoretically, concomitant use might increase the risk of stimulant adverse effects.
Details
Coffee contains caffeine. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,9740,10307). Tell patients to avoid taking caffeine with ephedrine and other stimulants.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Details
Coffee contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Details
|
Coffee consumption can decrease the levels and clinical effects of lamotrigine.
Details
A pharmacokinetic study in patients taking lamotrigine shows that consumption of coffee, both caffeinated and decaffeinated, can decrease the area under the concentration-time curve (AUC) and the peak plasma level (Cmax) of lamotrigine. Each additional cup of coffee reduced the AUC and Cmax by 4% and 3%, respectively. It is unclear whether this interaction is due to induction of lamotrigine metabolism or inhibition of lamotrigine absorption (107837).
|
Coffee can reduce the absorption of levothyroxine.
Details
In some patients, coffee can reduce levothyroxine absorption, possibly through the formation of non-absorbable complexes. A pharmacokinetic study in these patients found that 25-30 mL of espresso coffee consumed with levothyroxine tablets delayed the time to peak plasma levels by 38-43 minutes, reduced the peak plasma level (Cmax) by 19% to 36%, and reduced the area under the curve (AUC) by 27% to 36%. Coffee consumed one hour after levothyroxine did not affect absorption (16401). It is not known whether this interaction occurs with other types of coffee. Tell patients to avoid drinking coffee at the same time that they take their levothyroxine, and for up to an hour afterwards.
|
Theoretically, abrupt coffee withdrawal might increase the levels and adverse effects of lithium.
Details
Coffee contains caffeine. Abrupt caffeine withdrawal can increase serum lithium levels (609). Two cases of lithium tremor that worsened with abrupt coffee withdrawal have been reported (609,610). There is also one case of a 2.8-fold increase in blood lithium levels after a patient taking lithium reduced his coffee consumption from 13-20 cups daily to 10 cups daily (97369).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Details
Coffee contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Details
Coffee contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, coffee might reduce the effects of pentobarbital.
Details
Coffee contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine. Also, coffee may bind to phenothiazines and reduce their absorption.
Details
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
Details
|
Theoretically, coffee might increase the levels and clinical effects of pioglitazone.
Details
Coffee contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Details
Coffee contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Details
Coffee contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Details
Coffee contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, coffee might increase the levels and adverse effects of theophylline.
Details
|
Theoretically, TCAs might bind with coffee constituents when taken at the same time.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Details
Coffee contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, concomitant use of mangosteen with anticoagulant or antiplatelet drugs may increase the risk of bleeding.
Details
|
Theoretically, concomitant use of mangosteen with donepezil might increase the effects of donepezil.
Details
Animal research shows that concomitant use of an aqueous extract of mangosteen pericarp with donepezil increases brain concentrations of donepezil at 4 hours by 64% without associated effects on systemic exposure (106791).
|
Theoretically, pagoda tree might reduce the clearance of caffeine.
Details
Pagoda tree contains genistein. Taking genistein 1 gram daily for 14 days seems to inhibit caffeine clearance and metabolism in healthy females (23582). This effect has been attributed to inhibition of the cytochrome P450 1A2 (CYP1A2) enzyme, which is involved in caffeine metabolism. It is unclear if this effect occurs with the lower amounts of genistein found in pagoda tree.
|
Theoretically, taking pomegranate with ACEIs might increase the risk of adverse effects.
Details
Pomegranate juice is thought to have ACE inhibitor-like effects (8310).
|
Theoretically, taking pomegranate with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, taking pomegranate with carbamazepine might increase the risk of adverse effects, although research suggests this interaction is unlikely to be clinically significant.
Details
Animal research shows that pomegranate juice may inhibit cytochrome P450 3A4 (CYP3A4) metabolism of carbamazepine and increase levels of carbamazepine by 1.5 times without prolonging the elimination half-life. This suggests that pomegranate juice inhibits intestinal CYP3A4, but might not inhibit hepatic CYP3A4 (13188). However, some human research suggests that pomegranate does not significantly inhibit CYP3A4 drug metabolism in humans (16711,16712,17326).
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP2C9.
Details
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP2D6.
Details
In vitro, pomegranate juice inhibits CYP2D6 (13703). However, the clinical significance of this potential interaction in humans is not known.
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP3A4, but most research suggests this interaction is unlikely to be clinically significant.
Details
Pomegranate contains several polyphenols that have individually been shown to inhibit CYP3A4. However, there is contradictory evidence about the effect of whole pomegranate juice on CYP3A4 activity. In vitro, pomegranate juice significantly inhibits the CYP3A4 enzyme, with comparable inhibition to grapefruit juice (13188,16711,17326). In an animal model, pomegranate juice inhibits CYP3A4 metabolism of carbamazepine and increases levels of carbamazepine by 1.5 times (13188); however, in human volunteers, drinking a single glass of pomegranate juice 240 mL or taking 200 mL daily for 2 weeks does not significantly affect levels of the CYP3A4 substrate midazolam after oral or intravenous administration (16711,17730). Another study in healthy volunteers shows that consuming pomegranate juice 300 mL three times daily for three days also does not significantly affect levels of simvastatin, a CYP3A4 substrate (16712,91696) This suggests that pomegranate is unlikely to significantly affect levels of CYP3A4 substrates in humans (17326).
|
Theoretically, taking pomegranate with rosuvastatin might increase the risk of adverse effects.
Details
In one case, a patient taking rosuvastatin 5 mg every other day in combination with ezetimibe 10 mg daily developed rhabdomyolysis after drinking pomegranate juice 200 mL twice weekly for 3 weeks. This patient had a history of elevated creatine kinase levels while not receiving any statin treatment. This suggests a possible underlying myopathy and predisposition to rhabdomyolysis (14465).
|
Theoretically, pomegranate might increase levels of tolbutamide, although research suggests this interaction is unlikely to be clinically significant.
Details
Animal research shows that pomegranate juice inhibits the cytochrome P450 2C9 (CYP2C9) metabolism of tolbutamide. Pomegranate juice increased tolbutamide levels by 1.2 times without prolonging the elimination half-life. This suggests that pomegranate juice inhibits intestinal CYP2C9, but might not inhibit hepatic CYP2C9 (17327). Despite this evidence, clinical research shows that neither pomegranate juice nor pomegranate extract have a significant effect on CYP2C9 activity in humans (91694). This interaction does not appear to be clinically significant in humans.
|
Theoretically, pomegranate might increase warfarin levels and increase the risk of bleeding. Also, discontinuing regular consumption of pomegranate juice might decrease warfarin levels.
Details
In one case report, a patient had a stable, therapeutic bleeding time, as measured by international normalized ratio (INR), while taking warfarin in combination with pomegranate juice 2-3 times per week. The patient became subtherapeutic within about 10 days after discontinuing pomegranate juice, which required a warfarin dose increase (17328). In another case report, a patient with a stable INR for over one year presented with an INR of 14. The patient noted no changes to medications or diet but did report consuming around 3 liters of pomegranate juice over the previous week. The patient's INR stabilized upon moderation of pomegranate juice consumption (24273). The mechanism of this potential interaction is unclear.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product Multi Collagen Protein Beauty Within Guava Passionfruit Flavor. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, acai seems to be well tolerated.
Other ...Raw acai fruit and juice can be contaminated with a parasitic protozoan called Trypanosoma cruzi, which causes American trypanosomiasis or Chagas Disease. A Brazilian outbreak of this disease in 2006 was linked to consumption of acai juice (17194,30245).
General
...Orally, acerola seems to be well tolerated.
However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Acerola has been linked with one case of anaphylaxis and one case of rectal obstruction.
Gastrointestinal ...Osmotic diarrhea and gastrointestinal upset have been reported with doses of vitamin C greater than the tolerable upper intake level (UL) of 2000 mg daily (4844). Theoretically this could occur with large doses of oral acerola. A case report describes rectal obstruction with mass consisting of partially digested acerola fruits in a 5-year-old child who had ingested an unknown quantity of fruits daily for 7 days. The child presented with vomiting, abdominal pain and distension, tenesmus, constipation, and dehydration, and required surgical disimpaction (93205).
Immunologic ...There is a case report of a 37 year old man who developed a pruritic rash, dyspnea, and tachycardia 5 minutes after drinking a mixture of apple and acerola juices. He had a history of hay fever, oral allergy symptoms with avocado, celery, walnut, and curry, and contact urticaria with latex, but tolerated apples and apple juice. IgE antibodies to acerola were identified in the patient's serum. Ultimately, cross-reactivity between a latex protein and acerola was determined (93206).
General
...Asparagus is usually well tolerated when used in food amounts.
Information on its use in medicinal amounts is limited.
Most Common Adverse Effects:
Orally: Urine odor.
Serious Adverse Effects (Rare):
All routes of administration: Allergic reactions.
Gastrointestinal ...Orally, a specific combination product (Asparagus-P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused constipation, abdominal distension and pain, nausea, dry mouth, and gallbladder complaints in up to 50% of the study population in one clinical trial (94940). It is not clear if these effects were due to asparagus root, parsley, or the combination.
Genitourinary
...Orally, asparagus can cause a strong urine odor in some people.
It is not produced in all individuals, nor are all individuals able to smell the odor (32581,32583,32584,94942).
Orally, a specific combination product (Asparagus-P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused dysuria in approximately 2.5% of patients in one clinical trial (94940). It is not clear if this effect was due to asparagus root, parsley, or the combination.
Immunologic ...Orally and topically, asparagus can cause allergic reactions. They can occur in individuals sensitive to other members of the Liliaceae family, including onions, garlic, leeks, and chives (15557,15561,15562). Ingestion of fresh or canned asparagus can cause itchy eyes, runny nose, coughing, urticaria, dysphagia, dyspnea, and anaphylaxis in sensitized people (15561,15562,15564,32536,32594). There are also reports of fixed food eruptions, with lesions occurring at the same skin locations after ingesting asparagus on three separate occasions (15557,94941). Topically, exposure to asparagus during harvesting, processing, or cooking has caused contact dermatitis, urticaria, asthma, rhinitis, and conjunctivitis (15557,15561,15562,15564,32587,94943).
Musculoskeletal ...Orally, a specific combination product (Asparagus- P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused gout in approximately 2% of patients in one clinical trial (94940). It is not clear if this effect was due to asparagus root, parsley, or the combination.
Renal ...Orally, a specific combination product (Asparagus-P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused kidney pain and peripheral edema in approximately 15% of patients in one clinical trial (94940). It is not clear if these effects were due to asparagus root, parsley, or the combination.
General
...Orally, Bacillus coagulans is well tolerated.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Immunologic ...Since many probiotic preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. Bacteremia and sepsis have been reported in patients with indwelling or central venous catheters or patients who are severely ill and/or immunocompromised, including preterm infants, that were using probiotic products (4380,8561,13008,13070,90298,102416,103444,105138,105140,105141)(107543,107597,107599,111610,111612,111613,111850,111852,111853). However, reports of pathogenic colonization in relatively healthy patients with intact immune systems who do not have indwelling or central venous catheters are extremely rare (4380,4389,4390,4391,4393,4398,105139,107543,107545,107546,107547).
General ...There is currently a limited amount of information on the adverse effects of camu camu. A thorough evaluation of safety outcomes has not been conducted.
General
...Orally, caffeinated or decaffeinated coffee is well tolerated in moderate amounts.
Most Common Adverse Effects:
Orally: Drinking coffee containing caffeine can cause agitation, anxiety, chest pain, diuresis, gastric distress, headache, insomnia, nervousness, premature heart rate, ringing in the ears, and vomiting. These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly). With chronic caffeine use, especially in large amounts, habituation, tolerance, and psychological dependence can occur.
Abrupt discontinuation of caffeine may result in physical withdrawal symptoms, including anxiety, decreased physical energy, depressed mood, difficulty concentrating, drowsiness, fatigue, headache, irritability, reduced alertness, and rhinorrhea.
Rectally: Coffee enemas have been linked to proctocolitis, severe electrolyte abnormalities, and septicemia leading to death.
Cardiovascular
...Orally, coffee containing caffeine can cause chest pain and premature heartbeat (8042,111045).
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042). Excessive doses of caffeine can cause massive catecholamine release and subsequent sinus tachycardia (11832,11838,13734,13735).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in hypertensive patients (1451,1452,2722,13739,105312). Drinking one or more cups of caffeinated coffee daily also doesn't seem to increase the risk of developing hypertension in habitual coffee drinkers (8033,13739,111037).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily, or approximately 4 cups of caffeinated coffee, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,105310), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453,105310), or cardiovascular disease (CVD) in general (37805,98806,104882). However, some observational research suggests that drinking at least 1 cup of coffee per week is associated with a 40% increased risk of atrial fibrillation, with the highest incidence of atrial fibrillation occurring in adults consuming at least 6 cups daily (111042). Also, one large, observational study found a J-shaped association between regular coffee consumption and the risk of developing acute coronary syndromes. Moderate consumption of less than 300 mL daily (about 1.3 cups) was associated with a lower risk of developing acute coronary syndromes, whereas regular consumption of 300 mL daily or more was associated with an increased risk (11318). In contrast, other observational research in people without a history of CVD has found that drinking more than 6 cups of coffee daily does not appear to be associated with an increased risk of developing coronary heart disease (14343). Also, in people with a history of CVD, population research has found that coffee consumption is associated with a reduction in CVD-related mortality (97373,97374,103997,103998,104594,104595,104882,105308,105311,105313,105314); however not all research agrees (112735). However, in current smokers with a history of acute coronary syndrome, consuming more than 3 cups of coffee daily is associated with more than a two-fold increased risk of overall mortality (105313). Also, population research in patients with severe hypertension, but not mild hypertension, suggests that drinking at least two cups of coffee daily is associated with a 2-fold increase in CVD mortality compared with non-coffee drinkers (111027).
Caffeine intake may pose a greater cardiovascular risk to subjects who are not regular caffeine users. Population research suggests that drinking caffeinated coffee might trigger a myocardial infarction (MI) in some people. People who drink one or fewer cups of coffee daily and are sedentary and have multiple risk factors for heart disease have a significantly increased risk of MI within an hour after drinking coffee. However, this risk appears diminished in people who routinely consume greater amounts of coffee on a daily basis (14497). In another population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects who didn't regularly drink coffee (38102).
Boiled coffee that is prepared without a filter appears to increase serum cholesterol and triglyceride levels (1353,4200,8036,8539). Drinking one liter of strong, unfiltered coffee daily for two weeks can raise serum cholesterol by 10% and serum triglycerides by 36% (1353). Tell patients to use coffee filters since these effects do not seem to occur with filtered coffee (4200,8036,8539).
Coffee can adversely affect homocysteine levels. Higher homocysteine levels have been associated with CVD. One liter of unfiltered strong coffee daily for two weeks can increase plasma homocysteine levels by 10% (1353). The same amount of filtered strong coffee appears to raise plasma homocysteine levels by 20%, although there have been no head-to-head comparisons of filtered versus unfiltered coffee (3344).
Dermatologic ...Some researchers suggest symptoms such as flushed face occur during caffeine withdrawal. However, withdrawal symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Endocrine
...Orally, excessive doses of caffeine can cause massive catecholamine release and subsequent metabolic acidosis, hyperglycemia, and ketosis (13734).
Other symptoms include hypokalemia and respiratory alkalosis (11832,11838,13735).
Some evidence shows that caffeine, a constituent of coffee, is associated with fibrocystic breast disease, breast cancer, and endometriosis in females; however, this is controversial since findings are conflicting (8043). Restricting caffeine intake in patients with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). Population research suggests that exposure to caffeine is not associated with an increased risk of endometriosis (91035).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as coffee, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Gastrointestinal
...Orally, coffee containing caffeine can cause gastric distress and vomiting.
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). There is also some evidence that consumption of three or more cups of caffeinated coffee might increase the risk of Helicobacter pylori infection (8034).
Caffeine withdrawal symptoms such as nausea and vomiting have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Rectally, at least 5 cases of proctocolitis related to the use of coffee enemas have been reported (96868,103273).
Genitourinary ...The caffeine found in coffee is a known diuretic and may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In males with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily has been associated with increased severity of premenstrual syndrome (38177).
Hematologic
...There is evidence that coffee containing caffeine shortens whole blood fibrinolysis time (8030).
Rectally, coffee enemas have been linked to severe electrolyte abnormalities leading to death (3026,3347,3349,6652)
Hepatic ...Boiled coffee that is prepared without a filter appears to increase liver aminotransferase enzymes. Tell patients to use coffee filters since these effects do not seem to occur with filtered coffee (8539).
Immunologic
...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Rectally, coffee enemas have been linked to septicemia leading to death (3026,3347,3349,6652).
Musculoskeletal
...Orally, there is preliminary evidence that use of greater than four cups of coffee daily can increase the risk of rheumatoid factor positive rheumatoid arthritis, but this association has not been confirmed (6482).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg daily does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317,98806).
Caffeine withdrawal symptoms, such as muscle tension and muscle pains, have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Neurologic/CNS
...Orally, coffee containing caffeine can cause agitation, headache, insomnia, and nervousness, .
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,11832,11838,13734,13735).
Combining ephedra with coffee can increase the risk of adverse effects, due to the caffeine contained in coffee. Jitteriness, seizures, and temporary loss of consciousness have been associated with the combined use of ephedra and caffeine (2729).
Some researchers suggest that symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nervousness, and restlessness have also been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Ocular/Otic ...Orally, coffee containing caffeine can cause ringing in the ears. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). Coffee containing caffeine also increases intraocular pressure, starting about 30 minutes after consumption and persisting for at least 90 minutes. Decaffeinated coffee does not appear to affect intraocular pressure (8540).
Oncologic
...The association between consumption of coffee and pancreatic cancer is controversial.
Coffee may increase the incidence of some types of pancreatic cancers, but it may decrease other types (8535,8536,8537). Some studies do not support this association, especially in patients that have never smoked (8038,8040,93878,103999). Patients who are at risk of pancreatic cancer (pancreatitis) should limit their consumption of coffee.
People who consume 2-4 or more cups of caffeinated coffee dail might have a significantly increased risk of developing lung cancer (13191,90177). But drinking decaffeinated coffee seems to be associated with a decreased risk of lung cancer (13191).
Coffee consumption has also been associated at various times with an increased risk of breast cancer, bladder cancer, colon cancer, and other types of cancers, but there's no good evidence that coffee consumption increases cancer risk (8039,8040,8041). Most human studies that have examined caffeine or coffee intake have found that they do not play a role in the development of various cancers, including breast or most gastric cancers (91054,91076,98806). However, drinking caffeinated coffee might increase the risk of gastric cardia cancer (91076).
Psychiatric ...Orally, coffee containing caffeine can cause anxiety. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). With chronic use, especially in large amounts, habituation, tolerance, and psychological dependence can occur (3719). Other researchers suggest symptoms such as depressed mood are typical of caffeine withdrawal (13738). However, withdrawal symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...Caffeine withdrawal symptoms such as rhinorrhea have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Renal ...Orally, coffee containing caffeine can cause diuresis. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734).
General ...Orally, collagen peptides seem to be well tolerated.
Dermatologic ...Orally, a case of a mild skin rash has been reported for a patient who used a specific collagen peptide-containing product (BioCell Collagen) (28680).
Gastrointestinal ...Orally, collagen peptides may cause nausea, dyspepsia, diarrhea, and flatulence, but these adverse effects are rare (101622,104639).
General
...Orally, mangosteen is generally well tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Lactic acidosis.
Dermatologic ...Orally, mangosteen extract up to 560 mg daily has been reported to cause skin rash. It is not known if this side effect was related to mangosteen (97877).
Gastrointestinal ...Orally, mangosteen extract up to 560 mg daily has been reported to cause constipation, abnormal stool, abdominal discomfort, abdominal bloating, salivation, nausea and vomiting, and diarrhea. It is not known if these side effects were related to mangosteen (97877).
Neurologic/CNS ...Orally, mangosteen extract up to 560 mg daily has been reported to cause mild tiredness, headache, dizziness, and malaise. It is not known if these side effects were related to mangosteen (97877).
Pulmonary/Respiratory ...Orally, mangosteen extract up to 560 mg daily has been reported to cause dry throat, flu-like symptoms, cough, and nasal congestion. It is not known if these side effects were related to mangosteen (97877).
Renal ...Orally, mangosteen extract up to 560 mg daily has been reported to cause abnormal urination. It is not known if this side effect was related to mangosteen (97877). In one case report, a patient with chronic kidney disease and metabolic syndrome consumed mangosteen juice daily for 12 months and later presented with severe lactic acidosis. The juice was reported to contain 250 mg of mangosteen with 25 mg alpha-mangostin per ounce. Alpha-mangostin appears to inhibit mitochondrial function, disrupting the electron transport chain and adenosine triphosphate (ATP) production, causing accumulation of reactive oxygen species and inducing apoptosis. Researchers speculate that these effects might have led to lactic acidosis in this patient (16399).
Other ...Orally, mangosteen extract up to 560 mg daily has been reported to cause weight loss. It is not known if this side effect was related to mangosteen (97877).
General
...Orally, pagoda tree flower and fruit seem to be well tolerated.
No adverse effects have been reported; however, a thorough evaluation of safety outcomes has not been conducted. The pagoda tree seed is possibly unsafe when consumed long-term.
Serious Adverse Effects (Rare):
Orally: With use of the seed, death and edema.
Other ...Orally, using pagoda tree seed long-term may cause edema and death (18).
General
...Orally, pomegranate fruit juice is generally well tolerated.
Pomegranate fruit extract and seed oil seem to be well tolerated. Pomegranate root, stem, and peel should not be used orally in large amounts. Topically, pomegranate fruit extract seems to be well tolerated.
Most Common Adverse Effects:
Oral: Diarrhea, flatulence.
Cardiovascular ...In one clinical trial, 2% of patients experienced hyperlipidemia and hypertension after consumption of pomegranate juice (69175). However, most clinical research shows that pomegranate does not increase cholesterol or blood pressure and may actually improve these parameters in some patients (8310,13022,13023,69168,69373,69374).
Dermatologic ...Topically, pomegranate may cause urticaria (hives) in some patients (8445).
Gastrointestinal ...Orally, pomegranate may cause mild gastrointestinal adverse effects. In one clinical study, drinking pomegranate juice 8 ounces daily caused diarrhea and flatulence in 2% of patients (69175). In another clinical study, taking pomegranate extract (POMx, POM Wonderful LLC) 3000 mg daily caused diarrhea in 10% of patients. This dose of pomegranate extract also caused nausea, abdominal pain, constipation, gastrointestinal upset, and vomiting in a small number of patients (91695).
Immunologic
...Orally, pomegranate fruit or seeds may cause allergic reactions.
These allergic reactions occur more commonly in people who are allergic to other plants (7674). In rare cases, pomegranate fruit can cause angioedema. Angioedema seems to occur without warning and in people who have eaten pomegranate for many years. Patients should be told to stop eating pomegranate if swelling of the tongue or face develops (7673). In one report, a patient experienced pomegranate-dependent, exercise-induced anaphylaxis. The patient developed widespread urticaria (hives) and lip edema after eating pomegranate seeds and then exercising (17331). In another report, an atopic patient experienced an allergic reaction to pomegranate fruit. Symptoms included urticaria (hives), facial angioedema, and hypotension (91692).
Topically, pomegranate may cause contact hypersensitivity characterized by urticaria (hives), angioedema, rhinorrhea, red itchy eyes, and dyspnea arising within a few minutes of exposure (8445).
Pulmonary/Respiratory ...Orally, pomegranate juice may cause nasal congestion, but this event is rare. In one clinical study, pomegranate juice was associated with nasal congestion in 2% of patients (69175). There is also one case report of a 7-year-old asthmatic child who developed bronchospasm moments after ingesting several pomegranate seeds (69149).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).