Ingredients | Amount Per Serving |
---|---|
Organic Superfood Blend
|
3.2 Gram(s) |
(Spirulina )
(organic)
|
|
(root)
(organic)
|
|
(leaf)
(organic)
|
|
(Moringa )
(leaf)
(organic)
|
|
(floret)
(organic)
|
|
(leaf)
(organic)
|
|
(root)
(organic)
|
|
(Chlorella )
(organic)
|
|
(Cordyceps )
(organic)
|
|
(organic)
|
|
(fruit)
(organic)
|
|
(fruit)
(organic)
|
|
(fruit)
(organic)
|
|
(fruit)
(organic)
|
|
(fruit)
(organic)
|
|
(fruit)
(organic)
|
|
Organic Fermented Regenerative Superfood Blend
|
150 mg |
(fruit)
(organic)
|
|
(root)
(organic)
|
|
(root)
(organic)
|
|
(Psidium guajava )
(whole plant)
(organic)
|
|
(whole plant)
(organic)
|
|
(Raphanus raphanistrum )
(root)
(organic)
|
|
(Moringa oleifera )
(leaf)
(organic)
|
|
( papaya )
(whole plant)
(organic)
|
|
(whole plant)
(organic)
|
|
(Ficus religiosa )
(whole plant)
(organic)
|
|
(Ocimum tenuiflorum )
(leaf)
(organic)
|
|
(Persea americana )
(whole plant)
(organic)
|
|
(Annona muricata )
(whole plant)
(organic)
|
|
(whole plant)
(organic)
|
|
(Bacillus coagulans )
(2 billion CFU at time of manufacture)
|
14 mg |
organic Copernicia cerifera Wax Genus: Copernicia Species: cerifera, Gum Acacia, Inulin (Form: Agave Genus: Agave), organic Rice hull concentrate PlantPart: hull, Glycerin, Sunflower Lecithin, Guar Gum PlantPart: gum, Apple Cider Vinegar
Below is general information about the effectiveness of the known ingredients contained in the product Organic Super Greens. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Organic Super Greens. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Acai pulp, in a dose of up to 162.5 grams daily, has been used with apparent safety for up to 3 months in clinical research (17731,99400). There is insufficient reliable information available about the safety of acai when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the fruit is consumed in amounts commonly found in foods (668,669,670,671).
POSSIBLY SAFE ...when the oil is applied to the skin topically and appropriately, short-term. Avocado oil in combination with vitamin B12 appears to be safe when used for up to 12 weeks (14909). There is insufficient reliable information available about the safety of avocado for its other uses.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts exceeding those commonly found in foods.
POSSIBLY SAFE ...when taken orally and appropriately. Bacillus coagulans spores in doses up to 6 billion colony-forming units (CFUs) daily have been used with apparent safety in clinical studies for up to 3 months (92726,92730,92734,92735,92736,92739,92740,104231,105169)(107611,107612,107614). Lower doses of B. coagulans up to 100 million CFUs daily have been used with apparent safety in clinical studies for up to one year (92738). There is insufficient reliable information available about the safety of non-viable, heat-killed B. coagulans formulations when used orally.
CHILDREN: POSSIBLY SAFE
when taken orally and appropriately.
Bacillus coagulans spores in doses up to 100 million colony-forming units (CFUs) daily have been used with apparent safety in clinical studies in infants of most ages for up to one year (92729,92733,92738) and in doses of one billion CFUs in children aged 6-8 years for 3 months (107615). There is insufficient reliable information available about the safety of Bacillus coagulans in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Black pepper has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when black pepper oil is applied topically. Black pepper oil is nonirritating to the skin and is generally well tolerated (11). ...when black pepper oil is inhaled through the nose or as a vapor through the mouth, short-term. Black pepper oil as a vapor or as an olfactory stimulant has been used with apparent safety in clinical studies for up to 3 days and 30 days, respectively (29159,29160,29161,90502). There is insufficient reliable information available about the safety of black pepper when used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
CHILDREN: POSSIBLY UNSAFE
when used orally in large amounts.
Fatal cases of pepper aspiration have been reported in some patients (5619,5620). There is insufficient reliable information available about the safety of topical pepper oil when used in children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
PREGNANCY: LIKELY UNSAFE
when used orally in large amounts.
Black pepper might have abortifacient effects (11,19); contraindicated. There is insufficient reliable information available about the safety of topical pepper when used during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (11).
There is insufficient reliable information available about the safety of black pepper when used in medicinal amounts during breast-feeding.
LIKELY SAFE ...when used orally and appropriately. Blueberry, as the whole fruit, juice, or in a powder formulation, is safe when consumed in amounts commonly found in foods (13533,92387,92388,92394,96467,97181,99139). There is insufficient reliable information available about the safety of blueberry when used topically or when the leaves are used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts commonly found in foods (13533,96465).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (13533,107281).
There is insufficient reliable information available about the safety of blueberry for medicinal use; avoid using.
POSSIBLY SAFE ...when non-contaminated species of spirulina blue-green algae are used orally and appropriately (91713). The blue-green algae species Arthrospira platensis has been used with apparent safety in doses up to 19 grams daily for 2 months, or 10 grams daily for 6 months (18296,18300,18306,75944,91705,99703,104567,109965). The blue-green algae species Arthrospira fusiformis has been used with apparent safety in doses up to 4 grams daily for 3 months, or 1 gram daily for 12 months (15782,91717). Another blue-green algae species, Arthrospira maxima, has been used with apparent safety in a dose of 4.5 grams daily for up to 12 weeks (18297,99654,99655,102688). ...when non-contaminated, non-toxin producing strains of blue-green algae from the Aphanizomenon flos-aquae species are used orally and appropriately. Doses up to 1.6 grams daily have been used with apparent safety for up to 6 months (14842,18310). Some blue-green algae species can produce toxins called microcystins. According to the World Health Organization (WHO), the tolerable daily intake of microcystins in adults is 0.04 mcg/kg (96549).
POSSIBLY UNSAFE ...when contaminated blue-green algae are used orally. Blue-green algae can be contaminated with heavy metals (including mercury, cadmium, lead, or arsenic), neurotoxins, and toxic microcystin-producing cyanobacteria such as Microcystis aeruginosa (9171,75966,91704,91711,96550). Microcystins are most commonly reported in the blue-green algae species Aphanizomenon flos-aquae harvested from Upper Klamath Lake in Oregon. The Oregon Department of Health has set a limit of 1 mcg of microcystin-LR equivalents per gram dry weight of blue-green algae, assuming consumption of about 2 grams/day by adults (91704,91713). However, many samples of Aphanizomenon flos-aquae have been reported to contain higher levels than this (9171,91704). According to the World Health Organization (WHO), the tolerable daily intake of microcystins in adults is 0.04 mcg/kg (96549). When consumed orally, microcystins accumulate in the liver, binding to and inhibiting protein phosphatases, causing hepatocyte damage and possible tumor promotion (9171). Aphanizomenon flos-aquae can also produce neurotoxic compounds that may be present in supplements containing this organism (91704).
CHILDREN: POSSIBLY UNSAFE
when blue-green algae products are used orally.
Blue-green algae can accumulate heavy metals such as lead and mercury (91704,91711). They can also contain toxic microcystins produced by contaminating species of cyanobacteria such a Microcystis aeruginosa (91704). Children are more sensitive to poisoning by microcystins (3536). The Oregon Department of Health has set a limit for microcystins of 1 mcg per gram dry weight of blue-green algae, but some countries have set very low exposure limits of 0.2 mcg per day and 0.8 mcg per day for infants and children, respectively (91704).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Some blue-green algae products, specifically those of the species Aphanizomenon flos-aquae, have been found to contain low amounts of beta-methylamino-L-alanine (BMAA). BMAA is associated with neurodegenerative diseases, and breast milk has been shown to be a potential source of BMAA exposure in infants (96550).
LIKELY SAFE ...when used orally in food amounts (14145). There is insufficient reliable information available about the safety of broccoli when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts (14145).
There is insufficient reliable information available about the safety of broccoli when used in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Carrot has been used safely in doses of approximately 100 grams three times daily for up to 4 weeks (96308). There is insufficient reliable information available about the safety of carrot when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
CHILDREN: POSSIBLY UNSAFE
when carrot juices are used excessively in nursing bottles for small children.
Excessive use of carrot juice may cause carotenemia and dental caries (25817).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
There is insufficient reliable information available about the safety of carrot when used in medicinal amounts during pregnancy and lactation.
LIKELY SAFE ...when used orally and appropriately, short-term. Tablets and liquids containing chlorella 3-10 grams or 60-100 mL daily have been safely used in clinical studies lasting 2-3 months (5890,92130,92131). Also, chlorella extract 200-1800 mg daily has been safely used in clinical research for 4-6 weeks (10388,92132). There is insufficient reliable information available about the safety of chlorella when used topically.
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately in medicinal amounts for up to approximately 28 weeks.
A commercially available chlorella supplement (Sun Chlorella A, Sun Chlorella Corp.) has been safely used in doses of 6 grams daily, starting during the 12-18th week of gestation and continuing until delivery (95013).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in the amounts typically found in foods. Elderberry has generally recognized as safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when elderberry fruit extract is used orally, short-term. One specific elderberry fruit extract (Sambucol, Nature's Way) has been used with apparent safety for up to 5 days (5260,12235,103831); another (BerryPharma, Iprona AG) has been used with apparent safety for up to 15 days (91374). A specific elderberry fruit extract lozenge (ViraBLOC, HerbalScience) has been used with apparent safety for 2 days (17022). Other elderberry fruit extracts have been used with apparent safety for up to 12 weeks (21141,21142).
POSSIBLY UNSAFE ...when elder tree leaves and stems, or unripe or uncooked elderberries, are consumed. The unripe green fruit, as well as the leaves and stems of the elder tree, contain a cyanide-producing chemical, which can cause serious toxicity (17020,17021,21143,21144,91374). Cooking eliminates the toxin.
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally for up to 3 days.
A specific fruit extract (Sambucol, Nature's Way) has been used in doses of 15 mL twice daily for 3 days in children 5 years and older (5260,103831).
CHILDREN: POSSIBLY UNSAFE
when unripe or uncooked elderberries are consumed.
The unripe green fruit, as well as the leaves and stems of the elder tree, contain a cyanide-producing chemical , which can cause serious toxicity (17020,17021,21143,21144,91374). Cooking eliminates the toxin.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of elderberry when used for medicinal purposes; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when the fresh or dried fruit is used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when fig fruit paste is consumed orally in amounts of up to 300 grams daily for up to 8 weeks (99956).
POSSIBLY UNSAFE ...when fig leaf decoctions are used topically. Fig leaf contains psoralens (12579,12581). There have been reports of photodermatitis with burn-like lesions and rashes after fig decoctions were applied prior to sun exposure (49962,49968,49973,49975,49981). There is insufficient reliable information available about the safety of fig leaf when used orally.
PREGNANCY AND LACTATION: LIKELY SAFE
when the fresh or dried fruit is used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of fig leaf or fruit used in medicinal amounts during pregnancy and lactation; avoid use.
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
POSSIBLY SAFE ...when goji fruit preparations are used orally and appropriately, short-term. Goji berry whole fruit, boiled or steamed, has been used with apparent safety at a dose of 15 grams daily for 16 weeks (105489). Other goji berry products have also been used with apparent safety in clinical research, including a specific goji fruit juice (GoChi, FreeLife International) 120 mL daily for 30 days (52532), a goji fruit polysaccharide 300 mg daily for 3 months (92117), and a specific milk-based formulation of goji berry (Lacto-Wolfberry, Nestlé Research Center) for 3 months (52539). There has been some concern about the atropine content of goji; however, most analyses show that levels of atropine in goji berries from China and Thailand are far below potentially toxic levels (52524,94667). There is insufficient reliable information available about the safety of oral use of other parts of the goji plant.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Some animal research shows that goji fruit may stimulate the uterus (12). However, this has not been reported in humans. Until more is known, avoid using during pregnancy or lactation.
POSSIBLY UNSAFE ...when used orally. Some research has found that consumption of large amounts of graviola fruit and/or tea made from graviola leaves (e.g., daily) is associated with an increased odds of having movement disorders that resemble Parkinson disease (7854).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally (7854).
LIKELY SAFE ...when guava fruit is consumed as food. Guava fruit has Generally Recognized as Safe (GRAS) status (4912).
POSSIBLY SAFE ...when guava fruit or leaf extract is used orally for medicinal purposes, short-term. Guava fruit has been used with apparent safety at doses of 500-1000 grams daily for 12 weeks (95562). Guava leaf extract has been used with apparent safety at doses of 1 gram daily for 12 weeks or 1.5 grams daily for 3 days (101758,70318). ...when the leaf extract is used topically, short-term. Guava leaf extract has been used safely as a mouth rinse at a dose of 0.15% twice daily for 30 days (101754). Guava leaf extract has been safely used on the skin at a dose of 6% twice daily for 28 days (101757).
PREGNANCY AND LACTATION: LIKELY SAFE
when guava fruit is consumed as food.
There is insufficient reliable information available about the safety of guava fruit or leaf when used for medicinal purposes during pregnancy and lactation.
POSSIBLY SAFE ...when used orally, short-term. Holy basil leaf extract has been used with apparent safety at a dose of 500 mg daily for 60-90 days (12242,18107,19575,91571,96944). ...when used topically in the mouth, short-term. Holy basil has been used with apparent safety as a 4% mouthwash solution for up to 30 days (91570,103621).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used in high doses during pregnancy or when trying to conceive.
Animal research suggests that relatively high doses of holy basil extract (200 mg/kg) may reduce implantation rate when used for one week, while long-term use of higher doses (2-4 grams/kg) may decrease the number of full-term pregnancies (55040,91569). There is insufficient reliable information available regarding the safety of holy basil during lactation; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. There is insufficient reliable information available about the safety of kale when used orally in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of kale when used orally in medicinal amounts; avoid use.
LIKELY SAFE ...when used orally in food amounts. The leaves, fruit, and seeds are commonly used in foods (16341,16344,90573).
POSSIBLY SAFE ...when moringa leaf or seed is used orally and appropriately in medicinal amounts, short-term. Tablets and capsules containing up to 30 grams of moringa leaf powder have been used daily with apparent safety in clinical studies lasting up to 6 months (20578,90572,90572,97209,97210). A dried moringa seed kernel powder has also been used with apparent safety in doses of 3 grams twice daily for 3 weeks (19278). ...when moringa leaf extract is used topically and appropriately. Moringa leaf extract 2% has been used 3 times daily with apparent safety in a clinical trial lasting 3 months (112640).
POSSIBLY UNSAFE ...when moringa root or root bark are used orally. Moringa root contains spirochin, a potentially toxic alkaloid, while moringa root bark contains stimulant alkaloids similar to ephedrine. Although spirochin has not been studied in humans, animal data shows that it can cause nerve paralysis (63764).
CHILDREN: POSSIBLY SAFE
when moringa leaf is used orally and appropriately, short-term.
Powdered dried moringa leaf has been used with apparent safety in doses of 15 grams twice daily for up to 2 months (90576).
PREGNANCY: POSSIBLY SAFE
when the leaf is used orally during the second or third trimesters, short-term.
Moringa leaf powder or extract 500 mg daily for up to 4 months has been used with apparent safety during the second and third trimesters (105469,105471,105472,110645). There is insufficient reliable information available about the safety of using moringa leaf by mouth during the first trimester.
PREGNANCY: POSSIBLY UNSAFE
when the root, bark, or flower are used orally.
Traditionally, moringa root bark and gum from moringa trunk bark have been used to induce abortion. When taken orally along with black peppercorns to induce abortion, moringa root bark may cause fatality (63764). Animal research shows that moringa flower can cause uterine contractions (94634); however, this has not been assessed in humans.
There is insufficient reliable information about the safety of using moringa seed during pregnancy; avoid using.
LACTATION: POSSIBLY SAFE
when moringa leaf is used orally, short-term.
Moringa leaf powder or extract 2 grams daily has been used during lactation with apparent safety for up to 4 months (20578,90571,90573,105471,105472). There is insufficient reliable information available about the safety of using other parts of moringa during lactation; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Noni juice has been used in doses of up to 200 mL daily with apparent safely in small clinical studies for up to 3 months (11944,17169,65173). However, there have been several case reports of increased liver enzymes and hepatotoxicity in people taking some noni products (13107,14341,14468,17170,17171,17172). In three reports, hepatotoxicity was linked to a specific brand of noni juice (Tahitian Noni Juice, Tahitian Noni International) (14341,17171). It is unclear if potential contaminants or hypersensitivity reactions may be the cause of these events. More evidence is needed to determine if noni increases the risk for hepatotoxicity. There is insufficient reliable information available about the safety of noni fruit extract when used orally or the safety of noni when used topically.
PREGNANCY AND LACTATION:
While animal research is conflicting on the teratogenic effects of noni (65205,65206), there is insufficient reliable information available about the safety of noni in humans; avoid using.
LIKELY SAFE ...when the ripe fruit is used orally in amounts commonly found in foods. Papaya has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the leaf extract is used orally and appropriately in medicinal amounts, short term. The leaf extract has been used with apparent safety in doses of up to 3300 mg daily for up to 5 days (102799,102800). ...when the ripe fruit is used topically and appropriately, short term. The fruit has been applied with apparent safety to the gingiva or skin for up to 10 days (93090,93091).
POSSIBLY UNSAFE ...when the unripe fruit containing papaya latex and raw papain is used orally. Raw papain has been reported to cause esophageal perforation (6,93083). ...when papaya latex is used topically. Papaya latex, which contains raw papain, is a severe irritant and vesicant (6).
PREGNANCY: LIKELY SAFE
when the ripe fruit is consumed in amounts commonly found in foods.
PREGNANCY: POSSIBLY UNSAFE
when the unripe fruit containing papaya latex is used orally; avoid using.
There is some concern that crude papain, a constituent of papaya latex, is teratogenic and embryotoxic (6); however, this might be due to extraneous substances rather than papain (11). Some evidence also suggests that high doses of papaya seed extract have abortifacient activity and can adversely affect fetal development (67870). Theoretically, eating large amounts of papaya seeds may have similar effects.
LACTATION: LIKELY SAFE
when the ripe fruit is consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of using papaya medicinally; avoid using.
LIKELY SAFE ...when pomegranate fruit or fruit juice is used orally and appropriately. Pomegranate juice has been safely used in studies lasting up to 3 years (4912,8310,13022,13023,13690,14137,14388,17329,91693).
POSSIBLY SAFE ...when pomegranate extract is taken orally and appropriately. A specific pomegranate ellagitannin-enriched polyphenol extract (POMx, POM Wonderful) 1-3 grams daily has been safely used for up to 18 months (17729,69261,91686,91695,91697,99100,105269). ...when pomegranate seed oil is used orally and appropriately. Pomegranate seed oil 60 mg daily has been used with apparent safety for up to 12 weeks (91685). ...when a hot water extract of pomegranate seed powder is used orally and appropriately. Pomegranate seed powder 5 grams daily has been used with apparent safety for up to 8 weeks (105270). ...when pomegranate extract is used topically on oral mucosa (13689).
POSSIBLY UNSAFE ...when the pomegranate root, stem, and peel are used orally in large amounts. Bark of the pomegranate root and stem contains the piperidine alkaloids pelletierine, pseudopelletierine, isopelletierine, and methyl isopelletierine. These alkaloids have muscle relaxant properties that have been associated with paralysis and death in animals (13687,13694,13695). Dried pomegranate peel may contain aflatoxin, which is a potent hepatocarcinogen and toxin (92018).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when the fruit or fruit juice is consumed orally and appropriately (13686,105267).
There is insufficient reliable information available regarding the safety of using other forms of pomegranate or other parts of the plant during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally in moderate amounts (18). Large amounts may lead to gastrointestinal irritation (18).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid very large doses.
POSSIBLY SAFE ...when an extract of reishi mushroom is used orally and appropriately for up to one year (12,5485,70767,70774,70786,70799,70800,70801,70802). ...when whole powdered reishi mushroom is used orally and appropriately for up to 16 weeks (70776,70799,70800,70801,91433,91435,91436,91437,108309).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Spinach has been used with apparent safety at a dose of 5 grams daily for up to 12 weeks (96856).
CHILDREN: LIKELY SAFE
when consumed in the amounts commonly found in foods by children older than 4 months of age (18).
CHILDREN: LIKELY UNSAFE
when used orally in infants under 4 months old; the high nitrate content of spinach can cause methemoglobinemia (18).
There is insufficient reliable information available about the safety of spinach in children when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods; avoid medicinal amounts.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283). Turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
Below is general information about the interactions of the known ingredients contained in the product Organic Super Greens. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking acai with antidiabetes drugs might interfere with glycemic control.
Details
|
Avocado may antagonize the anticoagulant effects of warfarin.
Details
Avocado may antagonize the anticoagulant effects of warfarin; however, there has been only one case report of this interaction (667).
|
Theoretically, taking antibiotics with Bacillus coagulans might decrease the effectiveness of B. coagulans.
Details
B. coagulans preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms. Tell patients to separate administration of antibiotics and B. coagulans preparations by at least two hours.
|
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
Details
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Theoretically, black pepper might increase the effects and side effects of amoxicillin.
Details
Animal research shows that taking piperine, a constituent of black pepper, with amoxicillin increases plasma levels of amoxicillin (29269). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of bleeding when taken with antiplatelet or anticoagulant drugs.
Details
In vitro research shows that piperine, a constituent of black pepper, seems to inhibit platelet aggregation (29206). This has not been reported in humans.
|
Theoretically, black pepper might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal research shows that piperine, a constituent of black pepper, can reduce blood glucose levels (29225). Monitor blood glucose levels closely. Dose adjustments might be necessary.
|
Theoretically, black pepper might increase blood levels of atorvastatin.
Details
Animal research shows that taking piperine, a constituent of black pepper, 35 mg/kg can increase the maximum serum concentration of atorvastatin three-fold (104188). This has not been reported in humans.
|
Theoretically, black pepper might increase blood levels of carbamazepine, potentially increasing the effects and side effects of carbamazepine.
Details
One clinical study in patients taking carbamazepine 300 mg or 500 mg twice daily shows that taking a single 20 mg dose of purified piperine, a constituent of black pepper, increases carbamazepine levels. Piperine may increase carbamazepine absorption by increasing blood flow to the GI tract, increasing the surface area of the small intestine, or inhibiting cytochrome P450 3A4 (CYP3A4) in the gut wall. Absorption was significantly increased by 7-10 mcg/mL/hour. The time to eliminate carbamazepine was also increased by 4-8 hours. Although carbamazepine levels were increased, this did not appear to increase side effects (16833). In vitro research also shows that piperine can increase carbamazepine levels by 11% in a time-dependent manner (103819).
|
Theoretically, black pepper might increase the effects and side effects of cyclosporine.
Details
In vitro research shows that piperine, a constituent of black pepper, increases the bioavailability of cyclosporine (29282). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP1A1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP1A1 (29213). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2B1.
Details
In vitro research suggests that piperine, a constituent of black pepper, inhibits CYP2B1 (29332). This has not been reported in humans.
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP2D6.
Details
|
Theoretically, black pepper might increase levels of drugs metabolized by CYP3A4.
Details
|
Theoretically, black pepper might increase blood levels of lithium due to its diuretic effects. The dose of lithium might need to be reduced.
Details
Black pepper is thought to have diuretic properties (11).
|
Black pepper might increase blood levels of nevirapine.
Details
Clinical research shows that piperine, a constituent of black pepper, increases the plasma concentration of nevirapine. However, no adverse effects were observed in this study (29209).
|
Theoretically, black pepper might increase levels of P-glycoprotein substrates.
Details
|
Theoretically, black pepper might increase the sedative effects of pentobarbital.
Details
Animal research shows that piperine, a constituent of black pepper, increases pentobarbital-induced sleeping time (29214).
|
Black pepper might increase blood levels of phenytoin.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption, slow elimination, and increase levels of phenytoin (537,14442). Taking a single dose of black pepper 1 gram along with phenytoin seems to double the serum concentration of phenytoin (14375). Consuming a soup with black pepper providing piperine 44 mg/200 mL of soup along with phenytoin also seems to increase phenytoin levels when compared with consuming the same soup without black pepper (14442).
|
Black pepper might increase blood levels of propranolol.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of propranolol (538).
|
Black pepper might increase blood levels of rifampin.
Details
|
Black pepper might increase blood levels of theophylline.
Details
Clinical research shows that piperine, a constituent of black pepper, seems to increase absorption and slow elimination of theophylline (538).
|
Theoretically, blueberries or blueberry leaf extracts might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, blueberry juice might increase blood levels of buspirone.
Details
In vitro research shows that blueberry juice can inhibit the metabolism of buspirone, possibly by inhibiting cytochrome P450 3A (CYP3A) enzymes. However, pharmacokinetic research in humans shows that drinking 300 mL of blueberry juice 30 minutes before taking buspirone hydrochloride 10 mg does not significantly affect the concentration or clearance of buspirone (92385).
|
Theoretically, blueberry juice might increase blood levels of flurbiprofen.
Details
In vitro research shows that blueberry juice can inhibit the metabolism of flurbiprofen, possibly by inhibiting cytochrome P450 2C9 (CYP2C9) enzymes. However, pharmacokinetic research in humans shows that drinking 300 mL of blueberry juice 30 minutes before taking flurbiprofen 100 mg does not significantly affect the concentration or clearance of flurbiprofen (92385).
|
Theoretically, spirulina blue-green algae might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs. However, this is unlikely.
Details
Spirulina blue-green algae have shown antiplatelet and anticoagulant effects in vitro (18311,18312,75892,92162,92163). However, one preliminary study in 24 patients receiving spirulina blue-green algae 2.3 grams daily for 2 weeks showed no effect on platelet activation or measures of clotting time (97202).
|
Theoretically, taking blue-green algae with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Human research shows that spirulina blue-green algae can have hypoglycemic effects in patients with diabetes, at least some of whom were using antidiabetes drugs (18299). However, blue-green algae does not seem to improve glycated hemoglobin (HbA1c) levels in patients with diabetes (102689,109970). A meta-analysis of animal studies also suggests that spirulina blue-green algae have hypoglycemic effects (109970).
|
Theoretically, concurrent use of blue-green algae might interfere with immunosuppressive therapy.
Details
|
Theoretically, broccoli might reduce the levels and effects of drugs metabolized by CYP1A2.
Details
|
Theoretically, broccoli might reduce the levels and effects of drugs metabolized by CYP2A6.
Details
Pharmacokinetic research in humans shows that eating 500 grams of broccoli daily for 6 days increases CYP2A6 activity by 135% to 550%. Induction of CYP2A6 activity is attributed to its glucosinolate constituents (19608).
|
Theoretically, chlorella might have additive effects with photosensitizing drugs.
Details
Chlorella has been reported to cause photosensitization (3900,5852). In five case reports, patients who had ingested chlorella exhibited swelling followed by erythematopurpuric lesions on sun-exposed areas of the body (5852). Theoretically, concomitant use with photosensitizing drugs may exacerbate effects.
|
Theoretically, chlorella might reduce the clinical effects of warfarin.
Details
|
Theoretically, cordyceps may increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
Details
|
Theoretically, concurrent use of cordyceps might interfere with immunosuppressive therapy.
Details
Animal and in vitro research suggests that cordyceps stimulates the immune system (3403,3404,3414,3431,3432). However, limited clinical research suggests that taking cordyceps may lower the necessary therapeutic dose of the immunosuppressant cyclosporine (92828), which suggests that cordyceps may have an immunosuppressive effect.
|
Theoretically, concurrent use of cordyceps and testosterone might have additive effects.
Details
Animal research suggests that cordyceps can increase testosterone levels (46087). The clinical significance of this finding is unclear.
|
Theoretically, elderberry might interfere with immunosuppressant therapy due to its immunostimulant activity.
Details
Elderberry has immunostimulant activity, increasing the production of cytokines, including interleukin and tumor necrosis factor (10796).
|
Theoretically, elderberry might interact with pazopanib, potentially increasing the risk of adverse effects.
Details
|
Theoretically, fig leaf might enhance the blood glucose lowering effects of hypoglycemic drugs.
Details
A small clinical study in patients with type 1 diabetes shows that consuming a tea made from fig leaves modestly reduces postprandial glucose levels and insulin requirements (12578).
|
Fig leaf may enhance the blood glucose lowering effects of insulin.
Details
A small clinical study in patients with type 1 diabetes shows that consuming a tea made from fig leaves modestly reduces postprandial glucose levels and insulin requirements (12578).
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Details
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
Details
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
Details
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
Details
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
Details
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
Details
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Details
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
Details
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Details
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Details
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, concomitant use of goji fruit polysaccharides or goji root bark with antidiabetes drugs might have additive effects.
Details
Animal and in vitro research show that goji root bark and fruit polysaccharides might have hypoglycemic effects (7126,92118,94667). However, clinical research has only shown that taking goji fruit polysaccharides with or without antidiabetes drugs modestly reduces postprandial glucose when compared with control, with no reports of hypoglycemia (92117).
|
Theoretically, concomitant use of goji root bark, but not goji fruit, with antihypertensive drugs might have additive effects.
Details
|
Theoretically, goji berry might inhibit CYP2C19 and reduce metabolism of CYP2C19 substrates.
Details
In vitro research shows that goji berry tincture and juice inhibit CYP2C19 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2C19 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP2C9 and reduce metabolism of CYP2C9 substrates.
Details
In vitro research shows that goji berry tincture and juice inhibit CYP2C9 enzymes (105486). Additionally, multiple case reports suggest that goji berry concentrated tea and juice inhibit the metabolism of warfarin, a CYP2C9 substrate (7158,105462). Concomitant use with goji may decrease metabolism and increase levels of CYP2C9 substrates.
|
Theoretically, goji berry might inhibit CYP2D6 and reduce metabolism of CYP2D6 substrates.
Details
In vitro research shows that goji berry juice inhibits CYP2D6 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2D6 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP3A4 and reduce metabolism of CYP3A4 substrates.
Details
In vitro research shows that goji berry juice inhibits CYP3A4 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP3A4 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might increase the levels and clinical effects of flecainide.
Details
In one case report, a 75-year-old patient stable on flecainide and warfarin presented to the emergency room with fainting and pleomorphic arrhythmia caused by flecainide toxicity. Flecainide toxicity was attributed to drinking 1-2 glasses of concentrated goji tea daily for 2 weeks. Theoretically, goji may have inhibited the cytochrome P450 2D6 (CYP2D6) metabolism of flecainide (105462).
|
Goji can increase the effects of warfarin and possibly increase the risk of bleeding.
Details
There are at least 5 case reports of increased international normalized ratio (INR) in patients stabilized on warfarin who began drinking goji juice, concentrated goji tea, or goji wine (7158,16529,23896,105462,105487). Goji may inhibit the metabolism of warfarin by cytochrome P450 2C9 (CYP2C9) (7158).
|
Theoretically, graviola might decrease concentrations of carbamazepine when used concomitantly.
Details
A study in rats shows that graviola extract reduces the area under the curve of carbamazepine by 46% and maximum concentration by 35% when compared with carbamazepine alone (112852).
|
Theoretically, concomitant use with antidiabetes drugs might have additive effects and increase the risk of hypoglycemia. Animal research shows that guava leaf extract or guava fruit can have hypoglycemic effects (101781). Monitor blood glucose levels closely. Medication dose adjustments may be necessary. Some antidiabetes drugs include glimepiride (Amaryl), glyburide (Diabeta, Glynase PresTab, Micronase), insulin, metformin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Theoretically, holy basil seed oil might increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
Details
Animal research shows that holy basil seed oil can prolong bleeding time, possibly due to inhibition of platelet aggregation (13251). However, it is not known if this occurs in humans.
|
Theoretically, holy basil might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, holy basil seed oil might increase the sedative effects of pentobarbital.
Details
|
Theoretically, moringa might have additive effects when used with antidiabetes drugs; however, research is conflicting.
Details
|
Theoretically, moringa might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that moringa extract induces CYP1A2 enzymes (111404).
|
Theoretically, moringa might increase or decrease levels of CYP3A4 substrates.
Details
Some in vitro research suggests that moringa inhibits cytochrome P450 3A4 (CYP3A4) (20576). However, other in vitro research suggests that moringa extract induces CYP3A4 enzymes (111404). A pharmacokinetic study in patients with HIV shows no change in the pharmacokinetics of nevirapine, which is partially metabolized by CYP3A4, when administered concomitantly with moringa leaf powder 1.85 grams daily for 14 days (97209).
|
Theoretically, moringa leaf can antagonize the effects of levothyroxine.
Details
Animal research suggests that moringa aqueous leaf extract might reduce serum triiodothyronine (T3) concentrations by inhibiting the peripheral conversion of thyroxine (T4) to T3 (16348).
|
Moringa leaf is unlikely to have a clinically significant interaction with nevirapine.
Details
Nevirapine is partially metabolized by cytochrome P450 3A4 (CYP3A4). In vitro evidence suggests that moringa inhibits CYP3A4 (20576). However, a pharmacokinetic study in patients with HIV shows no change in nevirapine pharmacokinetics when administered concomitantly with moringa leaf powder 1.85 grams daily for 14 days (97209).
|
Theoretically, moringa leaf extract might increase the levels and clinical effects of P-glycoprotein substrates.
Details
In vitro research shows that moringa leaf extract inhibits renal P-glycoprotein transport activity (107850). So far, this reaction has not been reported in humans.
|
Theoretically, combining noni and ACE inhibitors might increase the risk of hyperkalemia.
Details
Noni juice contains significant amounts of potassium, about 6 mEq/100 mL juice (1298). This may increase the risk for hyperkalemia when used in conjunction with ACE inhibitors, which can also increase potassium levels.
|
Theoretically, combining noni and ARBs might increase the risk of hyperkalemia.
Details
Noni juice contains significant amounts of potassium, about 6 mEq/100 mL juice (1298). This may increase the risk for hyperkalemia when used in conjunction with ARBs, which can also increase potassium levels.
|
Theoretically, noni may increase the risk of hypotension when used in combination with antihypertensive drugs.
Details
Preliminary clinical research suggests that drinking noni juice can reduce blood pressure in individuals with hypertension (65231).
|
Theoretically, taking noni with hepatotoxic drugs might increase the risk of liver damage.
Details
|
Theoretically, taking noni fruit juice concomitantly with phenytoin may lower phenytoin levels and increase the risk of seizures.
Details
In one case report, an adult taking phenytoin for partial seizures experienced low serum phenytoin levels while taking noni juice 90-200 mL daily. Serum phenytoin levels increased after decreasing noni juice consumption; similarly, serum phenytoin levels decreased after increasing noni juice consumption. Some researchers believe noni juice may induce cytochrome P450 2C9 enzymes, which would decrease phenytoin levels, but this has not been well studied. Patients may need additional monitoring when starting or stopping noni juice supplementation (106057).
|
Theoretically, combing noni and a potassium-sparing diuretic might increase the risk of hyperkalemia.
Details
Noni juice contains significant amounts of potassium, about 6 mEq/100 mL juice (1298). This may increase the risk for hyperkalemia when used in conjunction with potassium-sparing diuretics, which can also increase potassium levels.
|
Taking noni fruit with ranitidine might increase the levels and clinical effects of ranitidine.
Details
Clinical evidence shows that taking an aqueous extract of noni fruit 30 minutes prior to taking a single oral dose of ranitidine can increase the rate of absorption and plasma concentration of ranitidine (23387).
|
Theoretically, taking noni juice concomitantly with warfarin might decrease the effectiveness of warfarin.
Details
In one case, a 41-year-old patient stabilized on warfarin had a decreased international normalized ratio (INR) following consumption of a specific commercial noni juice product (Noni juice 4 Everything). While the patient was still taking noni juice, an increase in warfarin dose did not produce an increase in INR (14434). However, it should be noted that this particular product contained extracts and derivatives from more than 115 components, many of which contained vitamin K. Furthermore, vitamin K was listed as a separate ingredient of the product, suggesting that the product was possibly fortified with vitamin K. It has not been verified that noni fruit alone contains a significant amount of vitamin K or interacts with warfarin.
|
Theoretically, papaya extract may increase the levels and clinical effects of amiodarone.
Details
Animal research in rats shows that a single oral dose of papaya extract, as well as multiple doses of papaya extract daily over 14 days, prior to a single dose of amiodarone delays the time to maximum amiodarone concentration. However, only the 14-day papaya extract regimen increases systemic amiodarone exposure by 60% to 70% (93093). This interaction has not been reported in humans.
|
Concomitant use of antidiabetic drugs with fermented papaya can produce additive effects. It is unclear if other forms of papaya have the same effect.
Details
A small low-quality clinical study in patients with type 2 diabetes who are taking glibenclamide shows that taking a fermented papaya preparation 3 grams daily for 2 months decreases fasting and postprandial blood glucose levels when compared to baseline. Additionally, of the 25 patients in the study, 9 required a reduction in glibenclamide dose (67902).
|
Theoretically, consuming large quantities of papaya fruit can reduce the clinical effects of levothyroxine.
Details
In one case-report, a 37-year-old male with a history of thyroidectomy who was stabilized on levothyroxine for 5 years presented with hypothyroidism after consuming 5-6 papaya fruits daily for 14 days during vacation. In a controlled re-challenge test involving 5-6 papayas daily, the patient remained euthyroid for 7 days, but developed mild hypothyroidism after 14 days. Both times, thyroid levels normalized 40-45 days after discontinuing papaya (93087).
|
Theoretically, concomitant use of warfarin with papain-containing papaya extract might increase the effects and side effects of warfarin.
Details
In one case report, a patient previously stable on warfarin was found to have an international normalization ratio (INR) of 7.4, which was attributed to ingestion of a supplement containing papain from papaya extract (613).
|
Theoretically, taking pomegranate with ACEIs might increase the risk of adverse effects.
Details
Pomegranate juice is thought to have ACE inhibitor-like effects (8310).
|
Theoretically, taking pomegranate with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, taking pomegranate with carbamazepine might increase the risk of adverse effects, although research suggests this interaction is unlikely to be clinically significant.
Details
Animal research shows that pomegranate juice may inhibit cytochrome P450 3A4 (CYP3A4) metabolism of carbamazepine and increase levels of carbamazepine by 1.5 times without prolonging the elimination half-life. This suggests that pomegranate juice inhibits intestinal CYP3A4, but might not inhibit hepatic CYP3A4 (13188). However, some human research suggests that pomegranate does not significantly inhibit CYP3A4 drug metabolism in humans (16711,16712,17326).
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP2C9.
Details
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP2D6.
Details
In vitro, pomegranate juice inhibits CYP2D6 (13703). However, the clinical significance of this potential interaction in humans is not known.
|
Theoretically, pomegranate might increase levels of drugs metabolized by CYP3A4, but most research suggests this interaction is unlikely to be clinically significant.
Details
Pomegranate contains several polyphenols that have individually been shown to inhibit CYP3A4. However, there is contradictory evidence about the effect of whole pomegranate juice on CYP3A4 activity. In vitro, pomegranate juice significantly inhibits the CYP3A4 enzyme, with comparable inhibition to grapefruit juice (13188,16711,17326). In an animal model, pomegranate juice inhibits CYP3A4 metabolism of carbamazepine and increases levels of carbamazepine by 1.5 times (13188); however, in human volunteers, drinking a single glass of pomegranate juice 240 mL or taking 200 mL daily for 2 weeks does not significantly affect levels of the CYP3A4 substrate midazolam after oral or intravenous administration (16711,17730). Another study in healthy volunteers shows that consuming pomegranate juice 300 mL three times daily for three days also does not significantly affect levels of simvastatin, a CYP3A4 substrate (16712,91696) This suggests that pomegranate is unlikely to significantly affect levels of CYP3A4 substrates in humans (17326).
|
Theoretically, taking pomegranate with rosuvastatin might increase the risk of adverse effects.
Details
In one case, a patient taking rosuvastatin 5 mg every other day in combination with ezetimibe 10 mg daily developed rhabdomyolysis after drinking pomegranate juice 200 mL twice weekly for 3 weeks. This patient had a history of elevated creatine kinase levels while not receiving any statin treatment. This suggests a possible underlying myopathy and predisposition to rhabdomyolysis (14465).
|
Theoretically, pomegranate might increase levels of tolbutamide, although research suggests this interaction is unlikely to be clinically significant.
Details
Animal research shows that pomegranate juice inhibits the cytochrome P450 2C9 (CYP2C9) metabolism of tolbutamide. Pomegranate juice increased tolbutamide levels by 1.2 times without prolonging the elimination half-life. This suggests that pomegranate juice inhibits intestinal CYP2C9, but might not inhibit hepatic CYP2C9 (17327). Despite this evidence, clinical research shows that neither pomegranate juice nor pomegranate extract have a significant effect on CYP2C9 activity in humans (91694). This interaction does not appear to be clinically significant in humans.
|
Theoretically, pomegranate might increase warfarin levels and increase the risk of bleeding. Also, discontinuing regular consumption of pomegranate juice might decrease warfarin levels.
Details
In one case report, a patient had a stable, therapeutic bleeding time, as measured by international normalized ratio (INR), while taking warfarin in combination with pomegranate juice 2-3 times per week. The patient became subtherapeutic within about 10 days after discontinuing pomegranate juice, which required a warfarin dose increase (17328). In another case report, a patient with a stable INR for over one year presented with an INR of 14. The patient noted no changes to medications or diet but did report consuming around 3 liters of pomegranate juice over the previous week. The patient's INR stabilized upon moderation of pomegranate juice consumption (24273). The mechanism of this potential interaction is unclear.
|
Theoretically, radish might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, high doses of reishi mushroom might increase the risk of bleeding.
Details
|
Theoretically, reishi mushroom might have additive effects with antidiabetes drugs.
Details
|
Theoretically, concurrent use of reishi mushroom with antihypertensive drugs might increase the risk of hypotension.
Details
|
Spinach contains vitamin K, which can interfere with the activity of warfarin.
Details
In human research, although eating spinach with one meal does not result in coagulation test results outside the therapeutic range, daily consumption for one week necessitates dose adjustment of warfarin (19600). Individuals using anticoagulants should consume a consistent daily amount of spinach to maintain the effect of anticoagulant therapy (19).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Details
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Another clinical study in patients with diabetes on hemodialysis shows that taking curcumin 80 mg daily for 12 weeks can reduce blood glucose levels when compared with placebo (104149).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
Details
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
Details
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
Details
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Details
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Details
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, turmeric might increase the effects of losartan.
Details
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
Details
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Details
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
Details
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
Details
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Details
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Details
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
Details
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Details
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
Details
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
Details
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Below is general information about the adverse effects of the known ingredients contained in the product Organic Super Greens. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, acai seems to be well tolerated.
Other ...Raw acai fruit and juice can be contaminated with a parasitic protozoan called Trypanosoma cruzi, which causes American trypanosomiasis or Chagas Disease. A Brazilian outbreak of this disease in 2006 was linked to consumption of acai juice (17194,30245).
General
...Orally, avocado has been generally well tolerated in clinical research.
Most Common Adverse Effects:
Topically: A cream containing avocado oil in combination with vitamin B12 can cause itching.
Serious Adverse Effects (Rare):
Orally: Avocado may lead to allergic cross-sensitivity in latex sensitive patients. While rare, avocado can cause acute food protein-induced enterocolitis syndrome (FPIES), a food hypersensitivity reaction characterized by excessive vomiting and diarrhea.
Dermatologic ...Topically, a cream containing avocado oil in combination with vitamin B12 can cause itching when applied initially, but itching appears to diminish with continued use (14909). Orally, avocado may cause skin rash (112436).
Gastrointestinal ...Orally, avocado can cause acute food protein-induced enterocolitis syndrome (FPIES). This is a rare, delayed, non-IgE-mediated gastrointestinal food hypersensitivity reaction most often reported in infants and young children. Symptoms of FPIES include excessive vomiting within 1-4 hours of avocado consumption and diarrhea. Treatment is generally supportive in nature, including oral or intravenous rehydration, along with avoidance of avocado (100938). There have also been reports of gastrointestinal upset including gas, bloating, and diarrhea due to daily avocado consumption, though it is possible that these symptoms were due to E. coli infection (112436).
Immunologic ...Orally, avocado may lead to type I hypersensitivity reactions in people who are allergic to latex (6197,7853,25216,33248,33253,33254). While rare, avocado can also cause acute food protein-induced enterocolitis syndrome (FPIES). This is a delayed, non-IgE-mediated gastrointestinal food hypersensitivity reaction most often reported in infants and young children. Symptoms of FPIES include excessive vomiting within 1-4 hours of avocado consumption and diarrhea. Many infants and children who experience FPIES after eating avocado will have the same reaction to other foods, such as milk, oat, and rice (100938).
General
...Orally, Bacillus coagulans is well tolerated.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Immunologic ...Since many probiotic preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. Bacteremia and sepsis have been reported in patients with indwelling or central venous catheters or patients who are severely ill and/or immunocompromised, including preterm infants, that were using probiotic products (4380,8561,13008,13070,90298,102416,103444,105138,105140,105141)(107543,107597,107599,111610,111612,111613,111850,111852,111853). However, reports of pathogenic colonization in relatively healthy patients with intact immune systems who do not have indwelling or central venous catheters are extremely rare (4380,4389,4390,4391,4393,4398,105139,107543,107545,107546,107547).
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, black pepper seems to be well tolerated when used in the amounts found in food or when taken as a medicine as a single dose.
Topically and as aromatherapy, black pepper oil seems to be well tolerated.
Most Common Adverse Effects:
Orally: Burning aftertaste, dyspepsia, and reduced taste perception.
Inhalation: Cough.
Serious Adverse Effects (Rare):
Orally: Allergic reaction in sensitive individuals.
Gastrointestinal ...Orally, black pepper can cause a burning aftertaste (5619) and dyspepsia (38061). Single and repeated application of piperine, the active constituent in black pepper, to the tongue and oral cavity can decrease taste perception (29267). By intragastric route, black pepper 1.5 grams has been reported to cause gastrointestinal microbleeds (29164). It is not clear if such an effect would occur with oral administration.
Immunologic ...In one case report, a 17-month-old male developed hives, red eyes, facial swelling, and a severe cough following consumption of a sauce containing multiple ingredients. Allergen skin tests were positive to both black pepper and cayenne, which were found in the sauce (93947).
Ocular/Otic ...Topically, ground black pepper can cause redness of the eyes and swelling of the eyelids (5619).
Pulmonary/Respiratory ...When inhaled through the nose as an olfactory stimulant, black pepper oil has been reported to cause cough in one clinical trial (29162).
General
...Orally, blueberry is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, nausea, and vomiting with freeze-dried blueberries.
Gastrointestinal ...Orally, freeze-dried blueberries may cause constipation, diarrhea, nausea, and vomiting. In one clinical trial, 26% of patients taking freeze-dried blueberries 50 grams daily dropped out in the first week of the study due to gastrointestinal complaints (107278).
General
...Orally, spirulina blue-green algae seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, bloating, diarrhea, dizziness, fatigue, flatulence, headache, nausea, and vomiting.
Dermatologic ...Orally, a severe rash has been reported in a 49-year-old woman after taking a spirulina blue-green algae supplement (species and dose unknown). After stopping the supplement, inflammatory myopathy with muscle weakness and elevated creatine kinase occurred. The condition resolved with corticosteroid and cyclophosphamide treatment (75936). In another case report, an 82 year-old woman developed a blistering skin condition over a 2-year period while taking spirulina blue-green algae (A. platensis, dose unknown). She had partly hemorrhagic bullae, secreting erosions and macerations. These symptoms resolved when the supplement was stopped and the patient was treated with oral prednisone, topical silver sulfadiazine, and topical triamcinolone / neomycin (75921).
Gastrointestinal ...Orally, gastrointestinal complaints are amongst the most common adverse effects associated with spirulina blue-green algae, including nausea, vomiting, diarrhea, and abdominal cramps (19272,75924,91713,109969). Similarly, common adverse effects associated with the blue-green algae species Aphanizomenon flos-aquae are stomach upset, flatulence, diarrhea, and bloating (14842).
Hematologic ...Orally, three cases of mild gum bleeding and one case of mild bruising have been reported in patients taking spirulina blue-green algae (Cyactiv, Cerule LLC) 2. 3 grams daily (containing approximately 1 gram of phycocanin) for 2 weeks (97202).
Hepatic ...Orally, significant elevations of liver function tests within 2 weeks of starting a spirulina blue-green algae supplement (species and dose unknown) have been reported in a 52-year-old man stabilized on amlodipine, simvastatin, and acarbose. A biopsy showed feathery degeneration and ballooning of hepatic cells. Cholestasis was present, and an ex-vivo lymphocyte stimulation test for spirulina blue-green algae was positive. All drugs and the spirulina blue-green algae supplement were stopped, with return of the LFTs to normal (9172).
Immunologic
...Orally, urticarial rashes and pruritus have occurred as part of generalized allergic reactions to blue-green algae (91706,91711,91712).
In one case report, a 14-year-old male experienced anaphylaxis with urticaria, lip edema, and asthma 6 hours after taking five tablets of spirulina blue-green algae (A. platensis, strength unknown). He had a positive skin prick test. Oral challenge to an extract of the tablets, and IgE from his serum, reacted with the beta chain of C-phycocyanin from A. platensis (91712).
In another case report, a 17-year-old male with a history of multiple allergies developed rash, pruritus, angioedema, wheezing, and dyspnea within 10 minutes of taking spirulina blue-green algae (A. platensis) 300 mg. He had a positive skin test to A. platensis but no other ingredients of the tablets (91706).
Musculoskeletal ...Orally, after a 49-year-old woman stopped taking a spirulina blue-green algae supplement (species and dose unknown), the patient experienced inflammatory myopathy with muscle weakness and elevated creatine kinase. The condition resolved with corticosteroid and cyclophosphamide treatment (75936). Another case report describes acute rhabdomyolysis that occurred after consumption of spirulina (Arthrospira platensis, Hawaiian spirulina, Solgar Inc., Leonia, NJ) 3 grams daily for 1 month. The 24-year old man presented with weakness, myalgias, elevated creatine kinase and liver function tests, and myoglobinuria (75922).
General ...Broccoli is well tolerated when consumed as food. A thorough evaluation of safety outcomes when broccoli is taken as medicine has not been conducted.
Dermatologic ...Topically, allergic reactions to broccoli have caused contact dermatitis (14158).
Gastrointestinal ...Orally, loose stools, diarrhea, abdominal pain, and abdominal cramping have been reported following intake of broccoli seed and sprout extracts, particularly at high doses (114753).
Hepatic ...In one case report, a 56-year-old adult developed elevated transaminases, with alanine aminotransferase (ALT) 5. 8 times above normal, aspartate aminotransferase (AST) 2.4 times above normal, and gamma-glutamyl transpeptidase (GGT) 5.1 times above normal. This was thought to be related to the consumption of 800 mL of broccoli juice daily over a 4-week period. Values returned to normal 15 days after cessation of juice consumption (96191).
Immunologic ...Topically, allergic reactions to broccoli have caused contact dermatitis (14158).
General
...Orally, carrot is well tolerated when consumed as a food.
It also seems to be generally well-tolerated when consumed as a medicine. Some people are allergic to carrot; allergic symptoms include anaphylactic, cutaneous, respiratory, and gastrointestinal reactions such as hives, swelling of the larynx, asthma, or diarrhea (25820,93606,106560). In infants, excessive consumption of carrot products in nursing bottles has been reported to cause extensive caries in the primary teeth (25817).
Topically, carrot has been associated with a case of phytophotodermatitis (101716).
Dental ...Orally, feeding carrot juice to infants, with or without sugar- or acid-containing beverages, has been reported to damage teeth and cause dental caries (25817).
Dermatologic ...Orally, excessive consumption of carrots or carrot-containing products can cause yellowing of the skin, which results from increased beta-carotene levels in the blood (25817). Carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306).
Gastrointestinal ...Orally, carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods can include gastrointestinal symptoms, such as diarrhea (25820).
Immunologic
...Orally, carrots may cause allergic reactions in some patients (25820,96306,106560).
Allergic responses to carrot-containing foods can include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306). For one patient, treatment of skin lesions resolved after a month of oral antihistamines and topical steroids, and avoiding further contact with carrot (96306). Allergic responses to carrot-containing foods can also include gastrointestinal symptoms, such as diarrhea, and respiratory symptoms, such as swelling of the larynx or asthma (25820). In one case, a patient with a history of allergic rhinitis and asthma who had been successfully treated with subcutaneous immunotherapy and was tolerant of consumption of raw and cooked carrots developed rhinoconjunctivitis when handling carrots. Inhalation of dust particles and aerosols produced by food processing activities and containing allergens from the peel and pulp of carrots is thought to have sensitized the airway, producing a distinct form of respiratory food allergy in which there are typically no symptoms with ingestion (106560).
Topically, a female runner developed phytophotodermatitis, which was considered possibly associated with the inclusion of carrot in a sunscreen (Yes To Carrots Daily Facial Moisturizer with SPF 15; Yes to, Inc.) (101716).
Psychiatric ...Compulsive carrot eating is a rare condition in which the patient craves carrots. According to one case report, withdrawal symptoms include nervousness, cravings, insomnia, water brash, and irritability (25821).
General
...Orally, chlorella is generally well-tolerated.
Most Common Adverse Effects:
Orally: Allergic reactions, abdominal cramping, constipation, diarrhea, fatigue, flatus, nausea, photosensitivity, and stool discoloration.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Dermatologic ...Orally, photosensitivity reactions have occurred following ingestion of chlorella (3900,5852). According to case reports, five patients who had ingested chlorella exhibited swelling followed by erythematopurpuric lesions on sun-exposed areas of the body (5852). The photosensitizing agent in the chlorella tablets was identified as pheophorbide-a and its ester.
Gastrointestinal
...Orally, chlorella can cause diarrhea, abdominal cramping, flatus, and nausea, especially during the first two weeks of treatment (5890,6804,92130,92132).
In one clinical trial, one out of 42 patients reported nausea and one reported diarrhea (92132). In another trial, taking chlorella tablets (Sun Chlorella A, Sun Chlorella Corp) and a chlorella extract (Wakasa Gold, Sun Chlorella Corp) resulted in transient worsening of constipation in 4 of 13 patients and transient mild diarrhea in 2 of 13 patients (92130).
Green discoloration of the feces has also been reported, due to the chlorophyll content of chlorella (6804,95013).
Hematologic ...Orally, chlorella has been linked to one case of thrombocytopenia; however, causality has not been determined. A 49-year-old female living in Turkey presented with thrombocytopenia (a platelet count of 27,000/mm3) after taking chlorella 1080 mg daily for 20 days. Platelet counts had been normal one month earlier, and returned to normal two weeks after discontinuing the chlorella supplement (99879).
Immunologic ...Allergic reactions, including asthma and anaphylaxis, have been reported in people taking chlorella and in those preparing chlorella tablets (3900,5847,41827,105645).
Neurologic/CNS
...Orally, manganese (Mn)-induced parkinsonism has been reported after long-term consumption of chlorella extract.
In this case, a patient on maintenance hemodialysis reported gait disturbance, dysarthria, elevated serum and cerebrospinal fluid manganese levels, and abnormal magnetic resonance imaging (MRI) findings of the brain. The authors identified the condition as a rare case of Mn-induced parkinsonism, which may have been due to long-term ingestion of a chlorella extract containing 1.7 mg of Mn in the usual daily dose. The patient underwent edetic acid infusion therapy, which improved the MRI abnormalities and the other symptoms improved four months later (41817).
In one study, fatigue was reported in 18 of 41 patients receiving chlorella 200 mg (10388).
General
...Orally, cordyceps seems to be generally well tolerated when used for up to 1 year.
Most Common Adverse Effects:
Orally: Abdominal discomfort, constipation, diarrhea.
Gastrointestinal ...Orally, cordyceps has been associated with diarrhea, constipation, abdominal discomfort, dry mouth, and throat discomfort in clinical research. However, these events were uncommon, and in some cases symptoms could be reduced by taking cordyceps after eating (92829,105076,109705).
Hematologic ...Two cases of lead poisoning, characterized by loss of appetite and other symptoms, have been reported for patients taking cordyceps powder. After discontinuing cordyceps supplementation, both patients were treated with chelating agents (46135).
Hepatic ...There is a case report of acute cholestatic hepatitis probably associated with the use of a product containing cordyceps. The 64-year-old male was asymptomatic except for jaundice and laboratory markers and recovered once the supplement was stopped. However, it is unclear whether the hepatitis is associated with the cordyceps or with an unknown contaminant (109704).
Renal ...One case of a mild increase in serum creatinine level (< 30%) has been reported (95905).
General
...Orally, elderberry extracts prepared from ripe fruit seem to be well tolerated.
Most Common Adverse Effects:
Orally: When adverse effects occur, they are likely due to ingestion of raw and unripe elderberries, or seeds, leaves, and other plant parts. Due to cyanogenic glycosides, these may cause nausea, vomiting, severe diarrhea, weakness, dizziness, numbness, and stupor. Cooking eliminates the toxin.
Gastrointestinal
...Orally, nausea and vomiting have been reported after consuming a specific elderberry and echinacea product
Vogel Bioforce AG) (95650). However, it is unclear if this was due to the elderberry or Echinacea contained in the product.
Raw and unripe elderberries, and the seeds, leaves, and other elder tree parts might cause nausea, vomiting, or severe diarrhea due to cyanogenic glycosides (17020,17021). Cooking eliminates the toxin.
Hepatic ...In one case report, a 60-year-old female with underlying autoimmune disease presented with autoimmune hepatitis after taking elderberry at an unknown dose for several years. The patient presented with nausea, jaundice, abdominal pain, and abdominal distention. Liver function tests returned to baseline 4 weeks after initiating treatment with prednisone 40 mg daily and discontinuing elderberry (110123).
Immunologic ...Elder tree pollen might cause an allergic reaction characterized by rhinitis and dyspnea in some patients who are allergic to grass pollen. These patients might also experience an allergic reaction to elderberry extracts (11095).
Neurologic/CNS ...Raw and unripe elderberries might cause weakness, dizziness, numbness, and stupor due to cyanogenic glycosides (17020,17021). Cooking eliminates the toxin.
General
...Orally, the fresh or dried fig fruit is well tolerated in amounts commonly found in foods.
A thorough evaluation of safety outcomes has not been conducted when fig fruit is used orally as medicine.
Topically, fig leaf may cause photodermatitis. There is limited reliable information available about the safety of fig fruit or latex when applied topically.
Serious Adverse Effects (Rare):
Orally: Allergy and, in rare cases, anaphylaxis.
Topically: The fig leaf may cause photodermatitis.
Dermatologic
...Topically, fig leaf might cause photodermatitis.
The leaf contains psoralens (12579,12581). Many cases of photodermatitis from fig leaf have been reported (49962,49968,49973,49975,49981). In at least two cases, the burns were serious enough to require hospitalization. Severe anemia and sepsis developed in one patient (49962). Avoid excessive sunlight or ultraviolet light exposure while using products containing fig leaf.
Orally, fig fruit is unlikely to cause photodermatitis (12581).
Immunologic ...Orally, fig fruit can cause allergy and, in rare cases, anaphylaxis (8815,12580). Topically, exposure to fig fruit and leaves can cause contact dermatitis. In some cases, sun exposure can make contact dermatitis worse (12689,99961).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General
...Orally, goji fruit seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions including anaphylaxis.
Dermatologic ...A case of photosensitivity secondary to consumption of goji berries has been reported. The patient presented with a pruriginous eruption that had lasted for 2 weeks. The patient had been taking goji berries for 5 months and cat's claw for 3 months. Upon testing, it was revealed that the patient tested positive to goji berries in a photoprovocation test, but not to cat's claw (40263).
Hepatic ...Orally, consumption of goji berries has been associated with a single case report of autoimmune hepatitis (52541). A case of acute hepatitis has also been reported in a female who consumed 2 ounces of a specific combination product (Euforia, Nuverus International) containing goji berry, pomegranate, curcumin, green tea, noni, acai berry, aloe vera, blueberry, resveratrol, mangosteen, and black seed, daily for one month. It is unclear whether the liver injury was caused by goji berry, other ingredients, or the combination (90125).
Immunologic ...Several cases of allergic reactions secondary to consumption of goji berries have been reported. Symptoms included facial angioedema with dyspnea, pharyngeal itching, itching in the mouth, ears, and axilla, labial angioedema, and perioral skin rash (92116). Anaphylaxis has also been reported (52538).
General
...Orally, regular consumption of graviola may be unsafe.
Most Common Adverse Effects:
Orally: Epigastrium pain, nausea.
Serious Adverse Effects (Rare):
Orally: Movement disorders, myeloneuropathy.
Gastrointestinal ...In one clinical study, some patients reported nausea and burning pain in the epigastrium after taking graviola leaf extract 300 mg daily (95045).
Neurologic/CNS ...Orally, regular consumption of graviola fruit may cause movement disorders and myeloneuropathy. The symptoms of these disorders are similar to Parkinson disease (7854). In addition, a large observational study in patients with Parkinson disease suggests that even low cumulative consumption of graviola fruit, juice, or any amount of herbal tea containing graviola is associated with worsened motor and cognitive symptoms (112854).
General ...Orally, guava leaf extract may cause transient abdominal pain or nausea (101782). Topically, guava leaf extract may cause contact dermatitis (95560).
Dermatologic ...Topically, guava leaf extract may cause contact dermatitis and worsen atopic dermatitis. Exacerbation of atopic dermatitis has been reported for a 17-year-old male who added tea bags containing guava leaf 30 grams to his bath to help treat his condition. His eczema worsened after bathing with the guava tea bags and improved after discontinuation of use. Based on laboratory testing, the exacerbation of eczema was attributed to positive skin reactions of the patient to a protein and tannins found in guava leaf extract (95560).
Gastrointestinal ...Orally, transient abdominal pain or nausea has been reported in a clinical trial (101782).
General
...Orally and topically, holy basil extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Loose stools and nausea.
Topically: Bitter taste with oral application.
Gastrointestinal
...Orally, two out of 24 participants taking capsules containing holy basil extract in one clinical study experienced nausea or loose stools (55037).
Topically, holy basil mouthwash has been reported to cause a bitter taste in clinical trials (55038).
General ...Orally, kale is generally well tolerated when consumed in amounts commonly found in foods. No adverse effects have been reported with medicinal use. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally and topically, moringa leaf and seed seem to be well tolerated.
Orally, moringa root and root bark might be unsafe. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Transient diarrhea.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis, have been reported.
Cardiovascular ...Orally, a case of bilateral pulmonary embolism after a 5-month history of taking moringa leaf extract is reported in a 63-year-old female without other risks for venous thromboembolism. The patient recovered with standard anticoagulant treatment. Researchers speculate that possible procoagulant effects of moringa may have played a role in this event (110644).
Dermatologic ...Orally, Stevens-Johnson syndrome has been linked to the consumption of moringa leaves. A 53-year-old male presented with fever and generalized maculopapular rash 14 hours after eating food containing moringa leaves. Painful oral ulcers developed by the next day. The patient also reported a similar episode of oral ulcers after eating food containing moringa leaves three months earlier. The patient was treated with oral prednisolone and omeprazole and recovered within two weeks. Researchers speculate that the immunomodulatory effects of moringa may have played a role in this reaction (99876). There are also cases of fixed food eruption to moringa. In one case, suspected fixed food eruption occurred on the trunk and face of a 60-year-old female, reoccurring 8 hours after self reintroduction (112641).
Gastrointestinal ...Orally, moringa leaf powder can cause diarrhea. In a clinical trial, taking moringa leaf powder 8 grams daily resulted in transient diarrhea in 4 of 16 patients (25%) (105470).
Immunologic ...Orally, cases of anaphylaxis are reported after ingestion of young moringa leaves and seedpods. In these cases, positive skin-prick testing confirmed moringa as the causative allergen. The patients recovered after standard treatment (110597,110643). There are also cases of fixed food eruption to moringa. In one case, suspected fixed food eruption occurred on the trunk and face of a 60-year-old female, reoccurring 8 hours after self reintroduction (112641).
General
...Orally and topically, noni seems to be generally well tolerated; however, high quality studies of adverse effects have not been conducted.
Most Common Adverse Effects:
Orally: Abdominal discomfort, nausea.
Serious Adverse Effects (Rare)::
Orally: Hepatotoxicity, including liver failure. However, studies have not conclusively identified whether noni, or contaminants in noni products, were responsible for this toxicity.
Gastrointestinal ...Orally, dehydrated noni fruit has been reported to cause nausea and abdominal discomfort (65173).
Hepatic
...Noni has been associated with several cases of hepatotoxicity in previously healthy patients ranging in age from 14 to 62 years (13107,14341,14468,17170,17171,17172).
In two cases, the patients had used a tea or other herbal products containing noni (13107,17172); five had consumed noni juice, specifically Tahitian Noni Juice (Tahitian Noni International) (14341,16648,17171); and two cases involved energy drinks containing several herbal ingredients including noni (17170,90125). Symptoms of liver dysfunction and elevated liver function tests (LFTs) were seen between 2 weeks and 4 months after starting noni. The LFTs started to improve within 2 days of stopping noni and generally normalized within 1 month (13107,14468,17171). Biopsy findings included acute hepatitis, inflammation, hepatocyte necrosis, and hepatocellular cholestasis (14341,17170). One patient, who had a history of prior mild acetaminophen toxicity, had rapidly progressive liver failure after noni ingestion and required transplantation (14341).
Potential product contamination was not ruled out in these case reports. Some researchers theorize that anthraquinones contained in noni could potentially cause hepatotoxicity. Other products containing anthraquinones, such as senna, have been linked to cases of hepatotoxicity. However, analyses of a noni juice product associated with reports of liver damage (Tahitian Noni Juice, Tahitian Noni International) have not detected anthraquinone content (14444). Another analysis of noni fruit puree from which the seeds and skin had been removed had no detectable anthraquinones (92201). However, products containing seed or leaf material had detectable amounts of anthraquinones (92201). The part of the noni plant used might affect hepatotoxicity risk. More evidence is needed to determine if noni causes hepatotoxicity.
General
...Orally, papaya fruit is well tolerated when consumed in food amounts.
Papaya leaf extract seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Nausea and vomiting from papaya leaf extract.
Topically: Burning sensation from unripe papaya.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions.
Dermatologic
...Orally, high doses of papaya might cause yellow skin discoloration.
A case of carotenemia has been reported for a 42-year-old female who consumed 1.5-2 papayas daily for 6 months. The condition resolved when she stopped eating papayas (67929).
Topically, unripe papaya fruit may cause occasional burning sensation when applied to skin ulcers (67856).
Gastrointestinal ...Orally, the leaf extract has been reported to cause nausea and vomiting in clinical research (102799). A case of esophageal perforation has been reported for a previously healthy 27-year-old female who used papain, a constituent of papaya latex, to digest a piece of meat stuck in her esophagus (93083).
Immunologic ...Orally, papain, a constituent of raw, unripe papaya, has been reported to cause allergic reactions in sensitive individuals, including itchy watery eyes, runny nose, sneezing, abdominal cramps, sweating, and diarrhea (6,967). Papaya may also cause hypersensitivity reactions such as systemic contact dermatitis, which occur more commonly in people who are allergic to latex (6197,7853,57635). A case of systemic contact dermatitis has been reported for a 55-year-old female with no prior history of atopic disease or drug allergy after ingesting a throat lozenge containing papaya juice (67942).
Other ...In regions with arsenic-contaminated soil, papaya fruits contain a higher mean concentration of arsenic compared with many other forms of vegetation grown in the regions. Eating papaya from these regions is thought to contribute to higher dietary levels of arsenic (32461,67879).
General
...Orally, pomegranate fruit juice is generally well tolerated.
Pomegranate fruit extract and seed oil seem to be well tolerated. Pomegranate root, stem, and peel should not be used orally in large amounts. Topically, pomegranate fruit extract seems to be well tolerated.
Most Common Adverse Effects:
Oral: Diarrhea, flatulence.
Cardiovascular ...In one clinical trial, 2% of patients experienced hyperlipidemia and hypertension after consumption of pomegranate juice (69175). However, most clinical research shows that pomegranate does not increase cholesterol or blood pressure and may actually improve these parameters in some patients (8310,13022,13023,69168,69373,69374).
Dermatologic ...Topically, pomegranate may cause urticaria (hives) in some patients (8445).
Gastrointestinal ...Orally, pomegranate may cause mild gastrointestinal adverse effects. In one clinical study, drinking pomegranate juice 8 ounces daily caused diarrhea and flatulence in 2% of patients (69175). In another clinical study, taking pomegranate extract (POMx, POM Wonderful LLC) 3000 mg daily caused diarrhea in 10% of patients. This dose of pomegranate extract also caused nausea, abdominal pain, constipation, gastrointestinal upset, and vomiting in a small number of patients (91695).
Immunologic
...Orally, pomegranate fruit or seeds may cause allergic reactions.
These allergic reactions occur more commonly in people who are allergic to other plants (7674). In rare cases, pomegranate fruit can cause angioedema. Angioedema seems to occur without warning and in people who have eaten pomegranate for many years. Patients should be told to stop eating pomegranate if swelling of the tongue or face develops (7673). In one report, a patient experienced pomegranate-dependent, exercise-induced anaphylaxis. The patient developed widespread urticaria (hives) and lip edema after eating pomegranate seeds and then exercising (17331). In another report, an atopic patient experienced an allergic reaction to pomegranate fruit. Symptoms included urticaria (hives), facial angioedema, and hypotension (91692).
Topically, pomegranate may cause contact hypersensitivity characterized by urticaria (hives), angioedema, rhinorrhea, red itchy eyes, and dyspnea arising within a few minutes of exposure (8445).
Pulmonary/Respiratory ...Orally, pomegranate juice may cause nasal congestion, but this event is rare. In one clinical study, pomegranate juice was associated with nasal congestion in 2% of patients (69175). There is also one case report of a 7-year-old asthmatic child who developed bronchospasm moments after ingesting several pomegranate seeds (69149).
General ...Orally, radish seems to be well tolerated when used in moderate amounts.
Gastrointestinal ...Large amounts of radish may cause irritation of the gastrointestinal mucus membrane (18). Mild indigestion has also been associated with use of a specific product containing radish, camu camu, acerola, honey, and tapioca in clinical research. However, it is unclear if this adverse event is due to radish, other ingredients in the product, or the combination (94290).
Immunologic ...A case of allergy to oral intake of radish has been reported. Symptoms included throat tightness and generalized urticaria (94289).
General
...Orally, reishi mushroom is generally well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, dry mouth, itching, nausea, rash, and stomach upset.
Dermatologic ...Orally, reishi mushroom can cause itching, rash, and other skin reactions (12,5479).
Gastrointestinal ...Orally, reishi mushroom can cause dryness of the mouth, throat, or nasal cavity, nausea, stomach upset, and, more rarely, diarrhea (12,70779,91438,108309).
Hematologic ...Orally, reishi mushroom can cause nosebleed and bloody stools (12,91438).
Hepatic ...One case of hepatotoxicity and one case of fatal fulminant hepatitis have been reported in patients who had used reishi mushroom powder for 1-2 months (70766). There is a case report of a 61-year-old male with hypereosinophilia associated with hepatic nodules following the use of reishi mushroom powder for about 2 months. Symptoms resolved after discontinuation of the product. Although these side effects were thought to be associated with the use of reishi mushroom powder, it is unclear if other factors played a role. The patient had been taking tegafur, gimeracil, and oteracil potassium for about 4 months following anterior resection for rectal adenocarcinoma but discontinued these agents and initiated reishi mushroom due to liver injury (108312).
Neurologic/CNS ...Orally, reishi mushroom can cause dizziness (91438). Other rare symptoms include insomnia and headache (70776,70779).
Pulmonary/Respiratory ...Respiratory allergy to reishi spores can occur (12,5479). Sore throat and runny nose have also been reported (70776,91438).
General
...Orally, spinach is well tolerated when consumed as a food.
Serious Adverse Effects (Rare):
Orally: In infants under 4 months of age, methemoglobinemia has been reported.
All routes of administration: Allergies in sensitive individuals.
Dermatologic ...Topically, contact dermatitis has been reported from spinach in a 54-year-old female farmer (41757).
Gastrointestinal ...Bagged spinach has been linked to Escherichia coli outbreaks, sometimes causing severe gastrointestinal symptoms and even death (75846,75847,75849,75851,96858).
Hematologic ...Orally, spinach ingestion by infants under 4 months of age can cause methemoglobinemia, due to its high nitrate content (75802,75858,75860,75861,75862).
Immunologic ...Orally, topically, and via inhalation, spinach has been reported to cause allergic reactions in sensitive individuals (75870,96859).
Pulmonary/Respiratory ...Lung inflammation associated with allergic alveolitis has been reported after inhalation of spinach powder (75871). The powder has also been reported to induce occupational asthma in a spinach factory worker (75833).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, the turmeric constituent curcumin can cause vertigo, but this effect seems to be uncommon (81163).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).