Ingredients | Amount Per Serving |
---|---|
(Pyridoxal 5-Phosphate)
|
10 mg |
(Nicotinic Acid)
|
25 mg NE |
(5-Hydroxytryptophan)
(Griffonia simplicifolia)
|
50 mg |
350 mg | |
Safr' Inside
(Saffron Stigma Extract)
|
30 mg |
(Turmeric Rhizome Extract)
|
100 mg |
Hypromellose, Water, Ascorbyl Palmitate, L-Leucine, Silica
Below is general information about the effectiveness of the known ingredients contained in the product Serotonin Nutrients. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Serotonin Nutrients. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately. 5-HTP has been used safely in doses up to 400 mg daily for up to one year (913,30007,30130). Doses up to 1.2 grams daily have been used with apparent safety for up to 10 months (914,30018,30125,30164,30165). Doses of 3 grams daily have been used safely for 3 weeks (30138). There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
POSSIBLY UNSAFE ...when used orally in large doses. Doses of 6-10 grams daily have been associated with severe gastrointestinal effects and hyperkinesis (30139,30183). The risk may be reduced if the dose is increased gradually.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Doses of 5-HTP up to 5 mg/kg daily have been used safely for up to 3 years in infants and children up to 12 years old (30128,30153,88173).
There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Inositol has been used with apparent safety in doses up to 18 grams daily for up to 6 weeks or 6 grams daily for 10 weeks (2184,2185,2187,95089). Myo-inositol 4 grams daily has also been used with apparent safety for 6 months (95085). There is insufficient reliable information available about the safety of inositol when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Inositol 80 mg/kg (maximum 2 grams) has been taken daily for up to 12 weeks in children aged 5-12 years (95092). ...when used enterally or intravenously and appropriately in premature infants for treating acute respiratory distress syndrome for up to 10 days (2191,2192,91546,91551).
CHILDREN: POSSIBLY UNSAFE
when used enterally or intravenously for extended durations in premature infants.
A large clinical study in infants born at less than 28 weeks' gestation found that myo-inositol 40 mg/kg, given intravenously and then enterally every 12 hours for up to 10 weeks, was associated with a small increased risk of death (98946). Long-term follow-up until 24 months corrected age confirms that the initial increase in mortality rate in the myo-inositol group remained stable; however, there was no difference in a composite outcome of death or survival with moderate or severe neurodevelopmental impairment, as well as no difference in the risk of retinopathy of prematurity, between those who received myo-inositol or control (108819).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Myo-inositol has been used with apparent safety in amounts up to 4000 mg daily during pregnancy (91548,95082,104688).
LACTATION:
Insufficient reliable information available; avoid using.
Breast milk is rich in endogenous inositol (2138); however, the effects of exogenously administered inositol are not known.
LIKELY SAFE ...when niacin is taken in food or as a supplement in amounts below the tolerable upper intake level (UL) of 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243). ...when prescription products are used orally and appropriately in doses of up to 2 grams daily (12033). CHILDREN:
LIKELY SAFE ...when used orally in amounts that do not exceed the tolerable upper intake level (UL). The ULs of niacin for children are: 1-3 years of age, 10 mg daily; 4-8 years of age, 15 mg daily; 9-13 years of age, 20 mg daily; 14-18 years of age, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL of niacin during pregnancy and lactation is 30 mg daily for 14-18 years of age and 35 mg daily for 19 years and older (6243).
There is insufficient reliable information available about the safety of larger oral doses of niacin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Turmeric products providing up to 8 grams of curcumin have been safely used for up to 2 months (10453,11144,11150,17953,79085,89720,89721,89724,89728,101347)(81036,101349,107110,107116,107117,107118,107121,109278,109283). Turmeric in doses up to 3 grams daily has been used with apparent safety for up to 3 months (102350,104146,104148,113357). ...when used topically and appropriately (11148).
POSSIBLY SAFE ...when used as an enema, short-term. Turmeric extract in water has been used as a daily enema for up to 8 weeks (89729). ...when used topically as a mouthwash, short-term. A mouthwash containing 0.05% turmeric extract and 0.05% eugenol has been used safely twice daily for up to 21 days (89723).
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in food.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts; turmeric might stimulate the uterus and increase menstrual flow (12).
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food.
There is insufficient reliable information available about the safety of using turmeric in medicinal amounts during lactation.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily for adults (15). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately (3094).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (3094).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the recommended dietary allowance (RDA) (3094).
The RDA in lactating women is 2 mg daily. There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
Below is general information about the interactions of the known ingredients contained in the product Serotonin Nutrients. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Combining 5-HTP and carbidopa can increase the risk of serotonergic side effects.
Details
Carbidopa is sometimes used with 5-HTP to minimize peripheral 5-HTP metabolism and boost the amount that reaches the brain. However, this combination might also increase the risk of some side effects including hypomania, restlessness, rapid speech, anxiety, insomnia, and aggressiveness (30076,30132,30158). Combining carbidopa and 5-HTP might also increase the risk of scleroderma-like skin changes due to elevated serotonin levels (1403).
|
Theoretically, concomitant use of 5-HTP with medications that cause sedation might have additive effects.
Details
|
Combining serotonergic drugs with 5-HTP might cause additive serotonergic effects.
Details
5-HTP can increase serotonin levels and cause serotonergic effects (901). Theoretically, combining serotonergic drugs with 5-HTP might increase the risk of serotonergic side effects, including serotonin syndrome and cerebral vasoconstrictive disorders (8056). However, serotonin syndrome with 5-HTP has not yet been reported in humans (104941). Monitor patients for signs of serotonin syndrome and other serotonergic side effects if using 5-HTP with serotonergic drugs.
|
Theoretically, taking inositol with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Concomitant use of alcohol and niacin might increase the risk of flushing and hepatotoxicity.
Details
Alcohol can exacerbate the flushing and pruritus associated with niacin (4458,11689). Large doses of niacin might also exacerbate liver dysfunction associated with chronic alcohol use. A case report describes delirium and lactic acidosis in a patient taking niacin 3 grams daily who ingested 1 liter of wine (14510). Advise patients to avoid large amounts of alcohol while taking niacin.
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as allopurinol.
Details
Large doses of niacin can reduce urinary excretion of uric acid, potentially resulting in hyperuricemia (4860,4863,12033). Doses of uricosurics such as allopurinol might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin may have additive effects when used with anticoagulant or antiplatelet drugs.
Details
|
Niacin can increase blood glucose levels and may diminish the effects of antidiabetes drugs.
Details
Niacin impairs glucose tolerance in a dose-dependent manner, probably by causing or aggravating insulin resistance and increasing hepatic production of glucose (4860,4863,11692,11693). In diabetes patients, niacin 4.5 grams daily for 5 weeks can increase plasma glucose by an average of 16% and glycated hemoglobin (HbA1c) by 21% (4860). However, lower doses of 1.5 grams daily or less appear to have minimal effects on blood glucose (12033). In some patients, glucose levels increase when niacin is started, but then return to baseline when a stable dose is reached (12033,93344). Up to 35% of patients with diabetes may need adjustments in hypoglycemic therapy when niacin is added (4458,4860,4863,11689,12033).
|
Theoretically, niacin may increase the risk of hypotension when used with antihypertensive drugs.
Details
The vasodilating effects of niacin can cause hypotension (4863,12033,93341). Furthermore, some clinical evidence suggests that a one-hour infusion of niacin can reduce systolic, diastolic, and mean blood pressure in hypertensive patients. This effect is not observed in normotensive patients (25917).
|
Large doses of aspirin might alter the clearance of niacin.
Details
Aspirin is often used with niacin to reduce niacin-induced flushing (4458,11689). Doses of 80-975 mg aspirin have been used, but 325 mg appears to be optimal (4458,4852,4853,11689). Aspirin also seems to reduce the clearance of niacin by competing for glycine conjugation. Taking aspirin 1 gram seems to reduce niacin clearance by 45% (14524). This is probably a dose-related effect and not clinically significant with the more common aspirin dose of 325 mg (11689,14524).
|
Bile acid sequestrants can bind niacin and decrease absorption. Separate administration by 4-6 hours to avoid an interaction.
Details
In vitro studies show that colestipol (Colestid) binds about 98% of available niacin and cholestyramine (Questran) binds 10% to 30% (14511).
|
Theoretically, concomitant use of niacin and gemfibrozil might increase the risk of myopathy in some patients.
Details
|
Theoretically, concomitant use of niacin and hepatotoxic drugs might increase the risk of hepatotoxicity.
Details
|
Theoretically, concomitant use of niacin and statins might increase the risk of myopathy and rhabdomyolysis in some patients.
Details
Some case reports have raised concerns that niacin might increase the risk of myopathy and rhabdomyolysis when combined with statins (14508,25918). However, a significantly increased risk of myopathy has not been demonstrated in clinical trials, including those using an FDA-approved combination of lovastatin and niacin (Advicor) (7388,11689,12033,14509).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as probenecid.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as probenecid might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as sulfinpyrazone.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as sulfinpyrazone might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of thyroid hormones.
Details
Clinical research and case reports suggests that taking niacin can reduce serum levels of thyroxine-binding globulin by up to 25% and moderately reduce levels of thyroxine (T4) (25916,25925,25926,25928). Patients taking thyroid hormone for hypothyroidism might need dose adjustments when using niacin.
|
Theoretically, concomitant use of niacin and transdermal nicotine might increase the risk of flushing and dizziness.
Details
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research suggests that curcumin, a constituent of turmeric, inhibits mechlorethamine-induced apoptosis of breast cancer cells by up to 70%. Also, animal research shows that curcumin inhibits cyclophosphamide-induced tumor regression (96126). However, some in vitro research shows that curcumin does not affect the apoptosis capacity of etoposide. Also, other laboratory research suggests that curcumin might augment the cytotoxic effects of alkylating agents. Reasons for the discrepancies may relate to the dose of curcumin and the specific chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have on alkylating agents.
|
Taking turmeric with amlodipine may increase levels of amlodipine.
Details
Animal research shows that giving amlodipine 1 mg/kg as a single dose following the use of turmeric extract 200 mg/kg daily for 2 weeks increases the maximum concentration and area under the curve by 53% and 56%, respectively, when compared with amlodipine alone (107113). Additional animal research shows that taking amlodipine 1 mg/kg with a curcumin 2 mg/kg pretreatment for 10 days increases the maximum concentration and area under the curve by about 2-fold when compared with amlodipine alone (103099).
|
Turmeric may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Curcumin, a constituent of turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271). Furthermore, two case reports have found that taking turmeric along with warfarin or fluindione was associated with an increased international normalized ratio (INR) (89718,100906). However, one clinical study in healthy volunteers shows that taking curcumin 500 mg daily for 3 weeks, alone or with aspirin 100 mg, does not increase antiplatelet effects or bleeding risk (96137). It is possible that the dose of turmeric used in this study was too low to produce a notable effect.
|
Theoretically, taking turmeric with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Animal research and case reports suggest that curcumin, a turmeric constituent, can reduce blood glucose levels in patients with diabetes (79692,79984,80155,80313,80315,80476,80553,81048,81219). Furthermore, clinical research in adults with type 2 diabetes shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg decreased postprandial glucose levels for up to 24 hours when compared with glyburide alone, despite the lack of a significant pharmacokinetic interaction (96133). Another clinical study in patients with diabetes on hemodialysis shows that taking curcumin 80 mg daily for 12 weeks can reduce blood glucose levels when compared with placebo (104149).
|
Turmeric has antioxidant effects. Theoretically, this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro and animal research shows that curcumin, a constituent of turmeric, inhibits doxorubicin-induced apoptosis of breast cancer cells by up to 65% (96126). However, curcumin does not seem to affect the apoptosis capacity of daunorubicin. In fact, some research shows that curcumin might augment the cytotoxic effects of antitumor antibiotics, increasing their effectiveness. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agent. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effects, if any, antioxidants such as turmeric have on antitumor antibiotics.
|
Theoretically, turmeric might increase or decrease levels of drugs metabolized by CYP1A1. However, research is conflicting.
Details
|
Theoretically, turmeric might increase levels of drugs metabolized by CYP1A2. However, research is conflicting.
Details
|
Turmeric might increase levels of drugs metabolized by CYP3A4.
Details
In vitro and animal research show that turmeric and its constituents curcumin and curcuminoids inhibit CYP3A4 (21497,21498,21499). Also, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking turmeric and cancer medications that are CYP3A4 substrates, including everolimus, ruxolitinib, ibrutinib, and palbociclib, and bortezomib (111644). In another case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels after consuming turmeric powder at a dose of 15 or more spoonfuls daily for ten days prior. It was thought that turmeric increased levels of tacrolimus due to CYP3A4 inhibition (93544).
|
Theoretically, turmeric might increase blood levels of oral docetaxel.
Details
Animal research suggests that the turmeric constituent, curcumin, enhances the oral bioavailability of docetaxel (80999). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Theoretically, large amounts of turmeric might interfere with hormone replacement therapy through competition for estrogen receptors.
Details
In vitro research shows that curcumin, a constituent of turmeric, displaces the binding of estrogen to its receptors (21486).
|
Theoretically, taking turmeric and glyburide in combination might increase the risk of hypoglycemia.
Details
Clinical research shows that taking curcumin 475 mg daily for 10 days prior to taking glyburide 5 mg increases blood levels of glyburide by 12% at 2 hours after the dose in patients with type 2 diabetes. While maximal blood concentrations of glyburide were not affected, turmeric modestly decreased postprandial glucose levels for up to 24 hours when compared to glyburide alone, possibly due to the hypoglycemic effect of turmeric demonstrated in animal research (96133).
|
Theoretically, turmeric might increase the risk of liver damage when taken with hepatotoxic drugs.
Details
|
Theoretically, turmeric might increase the effects of losartan.
Details
Research in hypertensive rats shows that taking turmeric can increase the hypotensive effects of losartan (110897).
|
Theoretically, turmeric might have additive effects when used with hepatotoxic drugs such as methotrexate.
Details
In one case report, a 39-year-old female taking methotrexate, turmeric, and linseed oil developed hepatotoxicity (111644).
|
Theoretically, turmeric might increase the effects and adverse effects of norfloxacin.
Details
Animal research shows that taking curcumin, a turmeric constituent, can increase blood levels of orally administered norfloxacin (80863).
|
Theoretically, turmeric might increase blood levels of OATP4C1 substrates.
Details
In vitro research shows that the turmeric constituent curcumin competitively inhibits OATP4C1 transport. This transporter is expressed in the kidney and facilitates the renal excretion of certain drugs (113337). Theoretically, taking turmeric might decrease renal excretion of OATP substrates.
|
Theoretically, turmeric might increase the absorption of P-glycoprotein substrates.
Details
|
Theoretically, turmeric might alter blood levels of paclitaxel, although any effect may not be clinically relevant.
Details
Clinical research in adults with breast cancer receiving intravenous paclitaxel suggests that taking turmeric may modestly alter paclitaxel pharmacokinetics. Patients received paclitaxel on day 1, followed by either no treatment or turmeric 2 grams daily from days 2-22. Pharmacokinetic modeling suggests that turmeric reduces the maximum concentration and area under the curve of paclitaxel by 12.1% and 7.7%, respectively. However, these changes are not likely to be considered clinically relevant (108876). Conversely, animal research suggests that curcumin, a constituent of turmeric, enhances the oral bioavailability of paclitaxel (22005). However, the significance of this interaction is unclear, as this drug is typically administered intravenously in clinical settings.
|
Turmeric might increase the effects and adverse effects of sulfasalazine.
Details
Clinical research shows that taking the turmeric constituent, curcumin, can increase blood levels of sulfasalazine by 3.2-fold (81131).
|
Turmeric might increase the effects and adverse effects of tacrolimus.
Details
In one case report, a transplant patient presented with acute nephrotoxicity and elevated tacrolimus levels of 29 ng/mL. The patient previously had tacrolimus levels within the therapeutic range at 9.7 ng/mL. Ten days prior to presenting at the emergency room the patient started consumption of turmeric powder at a dose of 15 or more spoonfuls daily. It was thought that turmeric increased levels of tacrolimus due to cytochrome P450 3A4 (CYP3A4) inhibition (93544). In vitro and animal research show that turmeric and its constituent curcumin inhibit CYP3A4 (21497,21498,21499).
|
Turmeric may reduce the absorption of talinolol in some situations.
Details
Clinical research shows that taking curcumin for 6 days decreases the bioavailability of talinolol when taken together on the seventh day (80079). The clinical significance of this effect is unclear.
|
Theoretically, turmeric might reduce the levels and clinical effects of tamoxifen.
Details
In a small clinical trial in patients with breast cancer taking tamoxifen 20-30 mg daily, adding curcumin 1200 mg plus piperine 10 mg three times daily reduces the 24-hour area under the curve of tamoxifen and the active metabolite endoxifen by 12.8% and 12.4%, respectively, as well as the maximum concentrations of tamoxifen, when compared with tamoxifen alone. However, in the absence of piperine, the area under the curve for endoxifen and the maximum concentration of tamoxifen were not significantly reduced. Effects were most pronounced in patients who were extensive cytochrome P450 (CYP) 2D6 metabolizers (107123).
|
Turmeric has antioxidant effects. There is some concern that this may reduce the activity of chemotherapy drugs that generate free radicals. However, research is conflicting.
Details
In vitro research shows that curcumin, a constituent of turmeric, inhibits camptothecin-induced apoptosis of breast cancer cells by up to 71% (96126). However, other in vitro research shows that curcumin augments the cytotoxic effects of camptothecin. Reasons for the discrepancies may relate to the dose of curcumin and the chemotherapeutic agents. Lower doses of curcumin might have antioxidant effects while higher doses might have pro-oxidant effects (96125). More evidence is needed to determine what effect, if any, turmeric might have.
|
Turmeric might increase the risk of bleeding with warfarin.
Details
One case of increased international normalized ratio (INR) has been reported for a patient taking warfarin who began taking turmeric. Prior to taking turmeric, the patient had stable INR measurements. Within a few weeks of starting turmeric supplementation, the patient's INR increased to 10 (100906). Additionally, curcumin, the active constituent in turmeric, has demonstrated antiplatelet effects in vitro (11143,81204,81271), which may produce additive effects when taken with warfarin.
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
Details
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Details
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Details
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
Details
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product Serotonin Nutrients. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, 5-HTP is generally well tolerated, short-term.
Most Common Adverse Effects:
Orally: Abdominal pain, anorexia, dizziness, diarrhea, drowsiness, fatigue, headache, insomnia, nausea, and vomiting. Severity appears to be dose-dependent.
Serious Adverse Effects (Rare):
Orally: Aggression, hallucinations, mania, severe gastrointestinal complaints.
Cardiovascular ...Orally, palpitations have been reported with 5-HTP (30076,30130,30167). Conversely, bradycardia has been reported in patients taking 5-HTP 0.4-2 grams daily in combination with carbidopa 100-300 mg daily (30132). In patients with schizophrenia, a combination of 5-HTP in doses up to 6 grams daily and carbidopa 150 mg daily was associated with diaphoresis and mild diastolic hypotension, especially when doses were increased at a rate faster than 200 mg per day (30183).
Dermatologic ...Orally, 5-HTP has been reported to cause urticaria, other allergic-type skin reactions, and flushing (2204,30000,30140). A scleroderma-like illness was reported in a 70-year-old man who had been taking 5-HTP 1400 mg daily and carbidopa 150 mg daily for 20 months. Elevated serotonin levels may be linked to this condition (1403).
Gastrointestinal ...Orally, 5-HTP has been reported to cause gastrointestinal side effects such as nausea, vomiting, abdominal or epigastric pain, heartburn, constipation, diarrhea, flatulence, anorexia, and taste alteration at any dose (2203,2204,30000,30112,30114,30125,30132,30139,30140)(30165,30183,104250). Severity may be dose-dependent and also related to how quickly doses are increased (30183). Some data suggests that these effects may diminish or disappear with continued use of 5-HTP (30132).
Hematologic ...Symptoms suggestive of eosinophilia myalgia syndrome (EMS) have been reported in some patients using 5-HTP (902,10084,30178,88174,90927). In one case, a woman was exposed to 5-HTP, tetrahydrobiopterin, carbidopa, and levodopa while administering them to her children for 2 years (90927). Her diagnosis was not confirmed, and the validity of the tests performed on the 5-HTP product has been questioned (88174). Other cases of eosinophilia or EMS in patients taking 5-HTP have been attributed to impurities that resemble previously identified contaminants found in L-tryptophan products (902,919,7067,10084). The L-tryptophan contaminants associated with EMS were linked to a specific manufacturer's production method that is not used in the preparation of 5-HTP (88174). Although 5-HTP supplements have been associated with EMS, it seems that this adverse effect is likely due to the presence of contaminants in the 5-HTP products, not 5-HTP itself.
Musculoskeletal ...Orally, rhabdomyolysis was noted in one patient with progressive myoclonus epilepsy who was treated with 5-HTP 300 mg daily for 21 days (30162).
Neurologic/CNS ...Orally, 5-HTP has been reported to cause drowsiness, dizziness, insomnia, fatigue, and headache (30076,30112,30132).
Psychiatric ...Orally, 5-HTP has been associated with euphoria, hypomania and mania, anxiety, insomnia, and aggressiveness (30076,30132,30158,88179). In patients with schizophrenia, a combination of high-dose 5-HTP, up to 6 grams daily, and carbidopa 150 mg daily was associated with transient increases in hallucinations, delusions, marked confusion, looseness of associations, flight of ideas, and a hyperkinetic syndrome consisting of restlessness, hand wringing, pacing, and an inability to sit quietly in a chair (30183).
General
...Orally and intravenously, inositol seems to be well tolerated.
Topically, no adverse effects have been reported, although a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gas, and nausea.
Gastrointestinal ...Orally, inositol may cause nausea, diarrhea, gas, and gastrointestinal discomfort (10387,11972,91547,91549,95089,95090,95092).
Immunologic ...Orally, inositol in combination with omega-3 fatty acids has been associated with reports of cold and allergy symptoms in children in clinical research (95092).
Musculoskeletal ...Orally, inositol in combination with omega-3 fatty acids has been associated with reports of tics and other musculoskeletal side effects in children in clinical research (95092).
Neurologic/CNS ...Orally, inositol may cause dizziness, tiredness, insomnia, agitation, and headache (10387,11972,95089,95092). In combination with omega-3 fatty acids, inositol has been associated with reports of feelings of thirst in children in clinical research (95092).
Psychiatric ...In one case report, a 36-year-old male with adequately controlled bipolar disorder was hospitalized with symptoms of mania after consuming several cans of an energy drink containing inositol, caffeine, taurine, and other ingredients (Red Bull Energy Drink) over a period of 4 days (14302). It is not known if this is related to inositol, caffeine, taurine, a different ingredient, or a combination of the ingredients.
General
...Orally, niacin is well tolerated in the amounts found in foods.
It is also generally well tolerated in prescription doses when monitored by a healthcare provider.
Most Common Adverse Effects:
Orally: Flushing, gastrointestinal complaints (abdominal pain, constipation, diarrhea, heartburn, nausea, vomiting), and elevated liver enzymes.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, myopathy, thrombocytopenia, and vision changes.
Cardiovascular
...Orally, flushing is a common dose-related adverse reaction to niacin.
A large meta-analysis of clinical studies shows that up to 70% of patients may experience flushing (96211). Although flushing can occur with doses of niacin as low as 30 mg daily, it is more common with the larger doses used for treatment of dyslipidemia. The flushing reaction is due to prostaglandin-induced blood vessel dilation and can also include symptoms of burning, tingling, urticaria, erythema, pain, and itching of the face, arms, and chest. There may also be increased intracranial blood flow and headache (4889,26089,93341,104933). Onset is highly variable and ranges from within 30 minutes to as long as 6 weeks after the initial dose (6243). Flushing can be minimized via various strategies, including taking doses with meals, slow dose titration, using extended release formulations, pretreating with non-steroidal anti-inflammatory drugs, taking regular-release niacin with meals, or taking the sustained-release product at bedtime (4852,4853,4854,4857,4858,25922,26073,26084). Flushing often diminishes with continued use but can recur when niacin is restarted after missed doses (4863,6243,26081). The vasodilating effects of niacin can also cause hypotension, dizziness, tachycardia, arrhythmias, syncope, and vasovagal attacks, especially in patients who are already taking antihypertensive drugs (4863,12033,93341,110494).
High doses of niacin can raise homocysteine levels. A 17% increase has been reported with 1 gram daily and a 55% increased has been reported with 3 grams daily. Elevated homocysteine levels are an independent risk factor for cardiovascular disease (490); however, the clinical significance of this effect is unknown. A large-scale study (AIM-HIGH) found that patients receiving extended-release niacin (Niaspan) 1500-2000 mg daily with a statin had an over two-fold increased risk of ischemic stroke (1.6%) when compared with those receiving only simvastatin (0.7%). However, when the risk was adjusted for confounding factors, niacin was not found to be associated with increased stroke risk (17627,93354). A meta-analysis of three clinical trials conducted in approximately 29,000 patients showed a higher risk of mortality in patients taking niacin in addition to a statin when compared with a statin alone. However, with a p-value of 0.05 and confidence interval including 1, the validity of this finding remains unclear (97308).
Endocrine
...Orally, niacin can impair glucose tolerance in a dose-dependent manner.
Dosages of 3-4 grams daily appear to increase blood glucose in patients with or without diabetes, while dosages of 1.5 grams daily or less have minimal effects (12033). Niacin is thought to impair glucose tolerance by increasing insulin resistance or increasing hepatic output of glucose (4863,11692,11693). In patients with diabetes, niacin 4.5 grams daily for 5 weeks has been associated with an average 16% increase in plasma glucose and 21% increase in glycated hemoglobin (HbA1C) (4860). Up to 35% of patients with diabetes may need to increase the dose or number of hypoglycemic agents when niacin is started (4458,4860,4863,11689,12033). Occasionally, severe hyperglycemia requiring hospitalization can occur (11693). In patients with impaired fasting glucose levels, niacin may also increase fasting blood glucose, and adding colesevelam might attenuate this effect (93343).
Although patients without diabetes seem to only experience small and clinically insignificant increases in glucose (4458), niacin might increase their risk of developing diabetes. A meta-analysis of clinical research involving over 26,000 patients shows that using niacin over 5 years is associated with increased prevalence of new onset type 2 diabetes at a rate of 1 additional case of diabetes for every 43 patients treated with niacin (96207). This finding is limited because the individual trials were not designed to assess diabetes risk and the analysis could not be adjusted for confounding factors like obesity. One small clinical study shows that taking extended-release niacin with ezetimibe/simvastatin does not increase the risk of a new diagnosis of diabetes or need for antidiabetic medication when compared with ezetimibe/simvastatin alone after 16 months (93344). This may indicate that the increased risk of developing diabetes is associated with niacin use for more than 16 months.
Niacin therapy has also been linked with hypothyroidism and its associated alterations in thyroid hormone and binding globulin tests (such as decreased total serum thyroxine, increased triiodothyronine, decreased thyroxine-binding globulin levels, and increased triiodothyronine uptake) (25916,25925,25926,25928).
Gastrointestinal ...Orally, large doses of niacin can cause gastrointestinal disturbances including nausea, vomiting, bloating, heartburn, abdominal pain, anorexia, diarrhea, constipation, and activation of peptic ulcers (4458,4863,12033,26083,93341,96211). These effects may be reduced by taking the drug with meals or antacid, and usually disappear within two weeks of continued therapy (4851,26094). Gastrointestinal effects may be more common with time-release preparations of niacin (11691).
Hematologic ...Orally, sustained-release niacin has been associated with cases of reversible coagulopathy, mild eosinophilia, and decreased platelet counts (4818,25915,26097,93340). Also, there have been reports of patients who developed leukopenia while taking niacin for the treatment of hypercholesterolemia (25916).
Hepatic ...Orally, niacin is associated with elevated liver function tests and jaundice, especially with doses of 3 grams/day or more, and when doses are rapidly increased (4458,4863,6243). The risk of hepatotoxicity appears to be higher with slow-release and extended-release products (4855,4856,4863,6243,11691,12026,12033,93342). Niacin should be discontinued if liver function tests rise to three times the upper limit of normal (4863). There are rare cases of severe hepatotoxicity with fulminant hepatitis and encephalopathy due to niacin (4863,6243,11691). Also, there is at least one case of niacin-induced coagulopathy resulting from liver injury without liver enzyme changes (93340).
Musculoskeletal ...Orally, niacin has been associated with elevated creatine kinase levels (4818,4888). Also, several cases of niacin-induced myopathy have been reported (26100,26111). Concomitant administration of niacin and HMG-CoA reductase inhibitors may increase the risk of myopathy and rhabdomyolysis (14508,25918,26111); patients should be monitored closely.
Neurologic/CNS ...Orally, high-dose niacin has been associated with cases of neuropsychiatric adverse events such as extreme pain and psychosis. Two 65-year-old males taking niacin orally for 5 months for the treatment of dyslipidemias developed severe dental and gingival pain. The pain was relieved by the discontinuation of niacin. The pain was thought to be due to inflammation and pain referral to the teeth (4862). In one case report, a 52-year-old male with no history of psychiatric illness who initially complained of hot flushes when taking niacin 500 mg daily, presented with an acute psychotic episode involving mania after niacin was increased to 1000 mg daily (93350).
Ocular/Otic ...Orally, chronic use of large amounts of niacin has been associated with dry eyes, toxic amblyopia, blurred vision, eyelid swelling, eyelid discoloration, loss of eyebrows and eyelashes, proptosis, keratitis, macular edema, and cystic maculopathy, which appear to be dose-dependent and reversible (4863,6243,26112).
General
...Orally and topically, turmeric is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, dyspepsia, diarrhea, distension, gastroesophageal reflux, nausea, and vomiting.
Topically: Curcumin, a constituent of turmeric, can cause contact urticaria and pruritus.
Cardiovascular ...Orally, a higher dose of turmeric in combination with other ingredients has been linked to atrioventricular heart block in one case report. It is unclear if turmeric caused this adverse event or if other ingredients or a contaminant were the cause. The patient had taken a combination supplement containing turmeric 1500-2250 mg, black soybean 600-900 mg, mulberry leaves, garlic, and arrowroot each about 300-450 mg, twice daily for one month before experiencing atrioventricular heart block. Heart rhythm normalized three days after discontinuation of the product. Re-administration of the product resulted in the same adverse effect (17720).
Dermatologic ...Following occupational and/or topical exposure, turmeric or its constituents curcumin, tetrahydrocurcumin, or turmeric oil, can cause allergic contact dermatitis (11146,79270,79470,79934,81410,81195). Topically, curcumin can also cause rash or contact urticaria (79985,97432,112117). In one case, a 60-year-old female, with no prior reactivity to regular oral consumption of turmeric products, developed urticaria after topical application of turmeric massage oil (97432). A case of pruritus has been reported following topical application of curcumin ointment to the scalp for the treatment of melanoma (11148). Yellow discoloration of the skin has been reported rarely in clinical research (113356). Orally, curcumin may cause pruritus, but this appears to be relatively uncommon (81163,97427,104148). Pitting edema may also occur following oral intake of turmeric extract, but the frequency of this adverse event is less common with turmeric than with ibuprofen (89720). A combination of curcumin plus fluoxetine may cause photosensitivity (89728).
Gastrointestinal ...Orally, turmeric can cause gastrointestinal adverse effects (107110,107112,112118), including constipation (81149,81163,96135,113355), flatulence and yellow, hard stools (81106,96135), nausea and vomiting (10453,17952,89720,89728,96127,96131,96135,97430,112117,112118), diarrhea or loose stool (10453,17952,18204,89720,96135,110223,112117,112118), dyspepsia (17952,89720,89721,96161,112118), gastritis (89728), distension and gastroesophageal reflux disease (18204,89720), abdominal fullness and pain (81036,89720,96161,97430), epigastric burning (81444), and tongue staining (89723).
Hepatic
...Orally, turmeric has been associated with liver damage, including non-infectious hepatitis, cholestasis, and hepatocellular liver injury.
There have been at least 70 reports of liver damage associated with taking turmeric supplements for at least 2 weeks and for up to 14 months. Most cases of liver damage resolved upon discontinuation of the turmeric supplement. Sometimes, turmeric was used concomitantly with other supplements and medications (99304,102346,103094,103631,103633,103634,107122,109288,110221). The Drug-Induced Liver Injury Network (DILIN) has identified 10 cases of liver injury which were considered to be either definitely, highly likely, or probably associated with turmeric; none of these cases were associated with the use of turmeric in combination with other potentially hepatotoxic supplements. Most patients (90%) presented with hepatocellular pattern of liver injury. The median age of these case reports was 56 years and 90% identified as White. In these case reports, the carrier frequency on HLAB*35:01 was 70%, which is higher than the carrier frequency found in the general population. Of the ten patients, 5 were hospitalized and 1 died from liver injury (109288).
It is not clear if concomitant use with other supplements or medications contributes to the risk for liver damage. Many case reports did not report turmeric formulation, dosing, or duration of use (99304,103094,103631,103634,109288). However, at least 10 cases involved high doses of curcumin (250-1812.5 mg daily) and the use of highly bioavailable formulations such as phytosomal curcumin and formulations containing piperine (102346,103633,107122,109288,110221).
Neurologic/CNS ...Orally, the turmeric constituent curcumin can cause vertigo, but this effect seems to be uncommon (81163).
Psychiatric ...Orally, the turmeric constituent curcumin or a combination of curcumin and fluoxetine can cause giddiness, although this event seems to be uncommon (81206,89728).
Renal ...Orally, turmeric has been linked to one report of kidney failure, although the role of turmeric in this case is unclear. A 69-year-old male developed kidney failure related to calcium oxalate deposits in the renal tubules following supplementation with turmeric 2 grams daily for 2 years as an anti-inflammatory for pelvic pain. While turmeric is a source of dietary oxalates, pre-existing health conditions and/or chronic use of antibiotics may have contributed to the course of disease (113343).
Other ...There is a single case report of death associated with intravenous use of turmeric. However, analysis of the treatment vial suggests that the vial contained only 0.023% of the amount of curcumin listed on the label. Also, the vial had been diluted in a solution of ungraded polyethylene glycol (PEG) 40 castor oil that was contaminated with 1.25% diethylene glycol. Therefore the cause of death is unknown but is unlikely to be related to the turmeric (96136).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Tell patients daily doses of 100 mg or less are unlikely to cause problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).