Ingredients | Amount Per Serving |
---|---|
(L-Arginine HCl)
|
900 mg |
(L-Ornithine HCl)
|
440 mg |
300 mg | |
Special Factors Blend
|
420 mg |
Hydroxypropyl Methylcellulose, Stearic Acid (Alt. Name: C18:0), Magnesium Stearate, Silicon Dioxide (Alt. Name: SiO2), Food Glaze, Magnesium Silicate
Below is general information about the effectiveness of the known ingredients contained in the product Bio-Tone. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Bio-Tone. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally and appropriately. Choline is safe in adults when taken in doses below the tolerable upper intake level (UL) of 3.5 grams daily (3094) ...when used intravenously and appropriately. Intravenous choline 1-4 grams daily for up to 24 weeks has been used with apparent safety (5173,5174).
POSSIBLY UNSAFE ...when used orally in doses above the tolerable upper intake level (UL) of 3. 5 grams daily. Higher doses can increase the risk of adverse effects (3094).
CHILDREN: LIKELY SAFE
when used orally and appropriately (3094).
Choline is safe in children when taken in doses below the tolerable upper intake level (UL), which is 1 gram daily for children 1-8 years of age, 2 grams daily for children 9-13 years of age, and 3 grams daily for children 14-18 years of age (3094).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL.
High doses can increase the risk of adverse effects (3094).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Choline is safe when taken in doses below the tolerable upper intake level (UL), which is 3 grams daily during pregnancy and lactation in those up to 18 years of age and 3.5 grams daily for those 19 years and older (3094,92114). There is insufficient reliable information available about the safety of choline used in higher doses during pregnancy and lactation.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Inositol has been used with apparent safety in doses up to 18 grams daily for up to 6 weeks or 6 grams daily for 10 weeks (2184,2185,2187,95089). Myo-inositol 4 grams daily has also been used with apparent safety for 6 months (95085). There is insufficient reliable information available about the safety of inositol when used topically.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Inositol 80 mg/kg (maximum 2 grams) has been taken daily for up to 12 weeks in children aged 5-12 years (95092). ...when used enterally or intravenously and appropriately in premature infants for treating acute respiratory distress syndrome for up to 10 days (2191,2192,91546,91551).
CHILDREN: POSSIBLY UNSAFE
when used enterally or intravenously for extended durations in premature infants.
A large clinical study in infants born at less than 28 weeks' gestation found that myo-inositol 40 mg/kg, given intravenously and then enterally every 12 hours for up to 10 weeks, was associated with a small increased risk of death (98946). Long-term follow-up until 24 months corrected age confirms that the initial increase in mortality rate in the myo-inositol group remained stable; however, there was no difference in a composite outcome of death or survival with moderate or severe neurodevelopmental impairment, as well as no difference in the risk of retinopathy of prematurity, between those who received myo-inositol or control (108819).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Myo-inositol has been used with apparent safety in amounts up to 4000 mg daily during pregnancy (91548,95082,104688).
LACTATION:
Insufficient reliable information available; avoid using.
Breast milk is rich in endogenous inositol (2138); however, the effects of exogenously administered inositol are not known.
POSSIBLY SAFE ...when used orally and appropriately. L-arginine has been used safely in clinical studies at doses of up to 24 grams daily for up to 18 months (3331,3460,3595,3596,5531,5532,5533,6028,7815,7816)(8014,8473,13709,31943,91195,91196,91963,99264,99267,110380)(110387). A tolerable upper intake level (UL) for arginine has not been established, but the observed safe level (OSL) of arginine intake established in clinical research is 20 grams (31996). ...when used intravenously and appropriately. Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically and appropriately. L-arginine appears to be safe when 5 grams is applied as a topical cream twice daily for 2 weeks or when a dentifrice is used at a dose of 1.5% w/w for up to 2 years (14913,96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks (96807).
CHILDREN: POSSIBLY SAFE
when used orally in premature infants and children (8474,32286,96803,97392,110391).
...when used intravenously and appropriately (97392). Parenteral L-arginine is an FDA-approved prescription product (15). ...when used topically, short-term. A dentifrice containing L-arginine appears to be safe when used at a dose of 1.5% w/w for up to 2 years in children at least 3.7 years of age (96806). ...when inhaled, short-term. L-arginine appears to be safe when inhaled twice daily at a dose of 500 mg for up to 2 weeks in children at least 13 years of age (96807).
CHILDREN: POSSIBLY UNSAFE
when used intravenously in high doses.
Parenteral L-arginine is an FDA-approved prescription product (15). However, when higher than recommended doses are used, injection site reactions, hypersensitivity reactions, hematuria, and death have occurred in children (16817).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
L-arginine 12 grams daily for 2 days has been used with apparent safety in pregnancy during the third trimester (11828). L-arginine 3 grams daily has been taken safely during the second and/or third trimesters (31938,110379,110382). ...when used intravenously and appropriately, short-term. Intravenous L-arginine 20-30 grams daily has been used safely in pregnancy for up to 5 days (31847,31933,31961,31978).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Ornithine hydrochloride has been used with apparent safety at doses up to 500 mg daily for up to 8 weeks and at doses up to 12 grams daily for up to 4 weeks (95226,110717).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately short-term (15). ...when sodium phosphate is used rectally and appropriately, no more than once every 24 hours, short-term (104471). Long-term use or high doses used orally or rectally require monitoring of serum electrolytes (2494,2495,2496,2497,2498,3092,112922). ...when used intravenously. Potassium phosphate is an FDA-approved prescription drug (15).
POSSIBLY UNSAFE ...when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL) of 4 grams daily for adults under 70 years and 3 grams daily for adults older than 70. Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur (7555). ...when used rectally more frequently than once every 24 hours, in excessive doses, with longer retention enema time, or in older patients with comorbidity or renal impairment (112922). The US Food and Drug Administration (FDA) warns that this may increase the risk of hyperphosphatemia, dehydration, and electrolyte imbalances leading to kidney and heart damage (104471).
CHILDREN: LIKELY SAFE
when used orally and appropriately at recommended dietary allowances (RDAs).
The daily RDAs are: children 1-3 years, 460 mg; children 4-8 years, 500 mg; males and females 9-18 years, 1250 mg (7555). ...when sodium phosphate is used rectally and appropriately, no more than once every 24 hours, short-term in children 2 years and older (104471). ...when used intravenously. Intravenous potassium phosphate is an FDA-approved prescription drug (15).
CHILDREN: POSSIBLY UNSAFE
when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL) of 3 grams daily for children 1-8 years of age and 4 grams daily for children 9 years and older.
Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur (7555). ...when sodium phosphate is used rectally more frequently than once every 24 hours, or in children under 2 years of age or with Hirchsprung disease (112922). The US Food and Drug Administration (FDA) warns that these uses may increase the risk of hyperphosphatemia, dehydration, and electrolyte imbalances leading to kidney and heart damage (104471).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately at the recommended dietary allowance (RDA) of 1250 mg daily for individuals 14-18 years of age and 700 mg daily for those over 18 years of age (7555).
...when sodium phosphate is used rectally and appropriately short-term (15). ...when used intravenously. Intravenous potassium phosphate is an FDA-approved prescription drug (15).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when phosphate (expressed as phosphorus) intake exceeds the tolerable upper intake level (UL).
Hyperphosphatemia, resulting in electrolyte disturbances, alterations in calcium homeostasis, and calcification of nonskeletal tissues, may occur. The UL during pregnancy is 3.5 grams daily. During lactation, the UL is 4 grams daily (7555).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Tyrosine has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Tyrosine has been used safely in doses up to 150 mg/kg daily for up to 3 months (7210,7211,7215). ...when used topically and appropriately (6155).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of tyrosine during pregnancy and lactation when used in medicinal amounts.
Some pharmacokinetic research shows that taking a single dose of tyrosine 2-10 grams orally can modestly increase levels of free tyrosine in breast milk. However, total levels are not affected, and levels remain within the range found in infant formulas. Therefore, it is not clear if the increase in free tyrosine is a concern (91467).
Below is general information about the interactions of the known ingredients contained in the product Bio-Tone. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, choline might decrease the effects of atropine in the brain.
Animal research shows that administering choline one hour before administering atropine can attenuate atropine-induced decreases in brain levels of acetylcholine (42240). Theoretically, concomitant use of choline and atropine may decrease the effects of atropine.
|
Theoretically, taking inositol with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, concomitant use of L-arginine and ACE inhibitors may increase the risk for hypotension and hyperkalemia.
Combining L-arginine with some antihypertensive drugs, especially ACE inhibitors, seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916). Furthermore, ACE inhibitors can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ACE inhibitors with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine and ARBs may increase the risk of hypotension and hyperkalemia.
L-arginine increases nitric oxide, which causes vasodilation (7822). Combining L-arginine with ARBs seems to increase L-arginine-induced vasodilation (31854). Furthermore, ARBs can increase potassium levels. Use of L-arginine has been associated with hyperkalemia in some patients (32213,32218). Theoretically, concomitant use of ARBs with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concomitant use of L-arginine with anticoagulant and antiplatelet drugs might have additive effects and increase the risk of bleeding.
|
Theoretically, concomitant use of L-arginine might have additive effects with antidiabetes drugs.
|
Theoretically, concomitant use of L-arginine and antihypertensive drugs may increase the risk of hypotension.
L-arginine increases nitric oxide, which causes vasodilation (7822). Clinical evidence shows that L-arginine can reduce blood pressure in some individuals with hypertension (7818,10636,31871,32201,32167,32225,31923,32232,110383,110384). Furthermore, combining L-arginine with some antihypertensive drugs seems to have additive vasodilating and blood pressure-lowering effects (7822,20192,31854,31916).
|
Theoretically, concurrent use of isoproterenol and L-arginine might result in additive effects and hypotension.
Preliminary clinical evidence suggests that L-arginine enhances isoproterenol-induced vasodilation in patients with essential hypertension or a family history of essential hypertension (31932).
|
Theoretically concomitant use of potassium-sparing diuretics with L-arginine may increases the risk of hyperkalemia.
|
Theoretically, concurrent use of sildenafil and L-arginine might increase the risk for hypotension.
In vivo, concurrent use of L-arginine and sildenafil has resulted in increased vasodilation (7822,8015,10636). Theoretically, concurrent use might have additive vasodilatory and hypotensive effects. However, in studies evaluating the combined use of L-arginine and sildenafil for erectile dysfunction, hypotension was not reported (105065).
|
Theoretically, concomitant use of L-arginine and testosterone might have additive effects.
|
Theoretically, taking phosphate salts with bisphosphonates might increase the risk of hypocalcemia.
Combining bisphosphonates and phosphate can cause hypocalcemia. In one report, hypocalcemic tetany developed in a patient taking alendronate (Fosamax) who received a large dose of phosphate salts as a pre-operative laxative (14589).
|
Taking erdafitinib with phosphate salts increases the risk of hyperphosphatemia.
Erdafitinib increases phosphate levels. It is recommended that patients taking erdafitinib restrict phosphate intake to no more than 600-800 mg daily (104470).
|
Taking futibatinib with phosphate salts increases the risk of hyperphosphatemia.
Futibatinib can cause hyperphosphatemia, as reported in 88% of patients in clinical studies. In addition, 77% of patients in clinical studies required use of a phosphate binder to manage hyperphosphatemia. Phosphate salts should generally be avoided by people taking this medication (112912).
|
Theoretically, tyrosine might decrease the effectiveness of levodopa.
Tyrosine and levodopa compete for absorption in the proximal duodenum by the large neutral amino acid (LNAA) transport system (2719). Advise patients to separate doses of tyrosine and levodopa by at least 2 hours.
|
Theoretically, tyrosine might have additive effects with thyroid hormone medications.
Tyrosine is a precursor to thyroxine and might increase levels of thyroid hormones (7212).
|
Below is general information about the adverse effects of the known ingredients contained in the product Bio-Tone. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, choline is well tolerated when used appropriately.
Adverse effects have been reported with doses exceeding the tolerable upper intake level (UL) of 3.5 grams daily.
Most Common Adverse Effects:
Orally: Fishy body odor. At high doses of at least 9 grams daily, choline has been reported to cause diarrhea, nausea, salivation, sweating, and vomiting.
Cardiovascular ...Orally, doses of choline greater than 7. 5 grams daily may cause low blood pressure (94648).
Gastrointestinal ...Orally, large doses of choline can cause nausea, vomiting, salivation, and anorexia (42275,91231). Gastrointestinal discomfort has reportedly occurred with doses of 9 grams daily, while gastroenteritis has reportedly occurred with doses of 32 grams daily (42291,42310). Doses of lecithin 100 grams standardized to 3.5% choline have reportedly caused diarrhea and fecal incontinence (42312).
Genitourinary ...Orally, large doses of choline greater than 9 grams daily have been reported to cause urinary incontinence (42291).
Neurologic/CNS ...Orally, high intake of choline may cause sweating due to peripheral cholinergic effects (42275).
Oncologic ...In one population study, consuming large amounts of choline was associated with an increased risk of colorectal cancer in females, even after adjusting for red meat intake (14845). However, more research is needed to confirm this finding.
Psychiatric ...Orally, large doses of choline (9 grams daily) have been associated with onset of depression in patients taking neuroleptics. Further research is needed to clarify this finding (42270).
Other ...Orally, choline intake may cause a fishy body odor due to intestinal metabolism of choline to trimethylamine (42285,42275,42310,92111,92112).
General
...Orally and intravenously, inositol seems to be well tolerated.
Topically, no adverse effects have been reported, although a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Diarrhea, gas, and nausea.
Gastrointestinal ...Orally, inositol may cause nausea, diarrhea, gas, and gastrointestinal discomfort (10387,11972,91547,91549,95089,95090,95092).
Immunologic ...Orally, inositol in combination with omega-3 fatty acids has been associated with reports of cold and allergy symptoms in children in clinical research (95092).
Musculoskeletal ...Orally, inositol in combination with omega-3 fatty acids has been associated with reports of tics and other musculoskeletal side effects in children in clinical research (95092).
Neurologic/CNS ...Orally, inositol may cause dizziness, tiredness, insomnia, agitation, and headache (10387,11972,95089,95092). In combination with omega-3 fatty acids, inositol has been associated with reports of feelings of thirst in children in clinical research (95092).
Psychiatric ...In one case report, a 36-year-old male with adequately controlled bipolar disorder was hospitalized with symptoms of mania after consuming several cans of an energy drink containing inositol, caffeine, taurine, and other ingredients (Red Bull Energy Drink) over a period of 4 days (14302). It is not known if this is related to inositol, caffeine, taurine, a different ingredient, or a combination of the ingredients.
General
...Oral, intravenous, and topical L-arginine are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, nausea, diarrhea, headache, insomnia, flushing.
Intravenously: Excessively rapid infusion can cause flushing, headache, nausea and vomiting, numbness, and venous irritation.
Cardiovascular ...L-arginine taken orally by pregnant patients in a nutrition bar containing other antioxidants was associated with a 36% greater risk of palpitations when compared with a placebo bar (91197). It is unclear if this effect was due to L-arginine, other ingredients, or other factors.
Dermatologic ...Orally, arginine can cause flushing, rash, and hives (3460,32138,102587,104223). The skin reactions were likely of allergic etiology as oral L-arginine has been associated with eosinophilia (32138). In one case report, intravenous administration caused allergic reactions including urticaria, periorbital edema, and pruritus (11830). Excessively rapid infusion of L-arginine has caused flushing, local venous irritation, numbness. Extravasation has caused necrosis and superficial phlebitis (3330,16817).
Gastrointestinal
...Orally, L-arginine has been reported to cause nausea, diarrhea, vomiting, dyspepsia, gastrointestinal discomfort, and bloating (1363,31855,31871,31972,31978,32261,90198,91197,96811,99243)(102587,102592).
Orally, L-arginine has been reported to cause esophagitis in at least six adolescents. Symptoms, which included pain and dysphagia, occurred within 1-3 months of treatment in most cases (102588). There are at least two cases of acute pancreatitis possibly associated with oral L-arginine. In one case, a 28-year-old male developed pancreatitis after consuming a shake containing 1.2 grams of L-arginine daily as arginine alpha-ketoglutarate. The shake also contained plant extracts, caffeine, vitamins, and other amino acids. Although there is a known relationship between L-arginine and pancreatitis in animal models, it is not clear if L-arginine was directly responsible for the occurrence of pancreatitis in this case (99266).
Intravenously, excessively rapid infusion of L-arginine has been reported to cause nausea and vomiting (3330,16817).
Musculoskeletal ...Intravenous L-arginine has been associated with lower back pain and leg restlessness (32273). Orally, L-arginine has been associated with asthenia (32138).
Neurologic/CNS ...Orally, L-arginine has been associated with headache (31855,31955,32261,91197,102587,102592), insomnia, fatigue (102587,102592), and vertigo (32150,102592).
Oncologic ...In breast cancer patients, L-arginine stimulated tumor protein synthesis, which suggests stimulated tumor growth (31917).
Pulmonary/Respiratory ...When inhaled, L-arginine can cause airway inflammation and exacerbation of airway inflammation in asthma (121). However, two studies assessing oral L-arginine in patients with asthma did not detect any adverse airway effects (31849,104223).
Renal ...Intravenously, L-arginine has been associated with natriuresis, kaliuresis, chloruresis, and systemic acidosis (32225). Orally, L-arginine can cause gout (3331,3595).
Other ...Orally, L-arginine has been associated with delayed menses, night sweats, and flushing (31855).
General
...Orally, ornithine seems to be well-tolerated.
However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Gastrointestinal symptoms (unspecified)
Gastrointestinal ...Orally, ornithine might cause adverse gastrointestinal effects. In a small, uncontrolled trial, gastrointestinal symptoms were reported in around 22% of individuals taking ornithine 3.2-12 grams daily (110717).
Genitourinary ...Orally, ornithine has been associated with one case of hematuria. In a small, uncontrolled trial, hematuria was reported in one individual taking ornithine, which resolved quickly without treatment when ornithine was discontinued. While the researchers suspected the hematuria was not related to ornithine supplementation, no cause could be determined (110717).
General
...Orally, intravenously, and rectally, phosphate salts are generally well tolerated when used appropriately and/or as prescribed.
Most Common Adverse Effects:
Orally: Abdominal pain, anal irritation, bloating, diarrhea, headache, gastrointestinal irritation, hyperphosphatemia, hypocalcemia, malaise, nausea, sleep disturbance, and vomiting.
Rectally: Hyperphosphatemia and hypocalcemia.
Serious Adverse Effects (Rare):
Orally: Extraskeletal calcification.
Cardiovascular ...Orally, a case of allergic acute coronary syndrome e., Kounis syndrome) is reported in a 43-year-old female after ingesting a specific sodium phosphate laxative product (Travad oral). She presented with maculopapular rash that progressed to anaphylaxis and a non-ST elevation acute coronary syndrome. The patient recovered after hospitalization for 3 days with medical management (112894).
Gastrointestinal ...Orally, phosphate salts can cause gastrointestinal irritation, nausea, abdominal pain, bloating, anal irritation, and vomiting (15,2494,2495,2496,2497,93846,93848,93850,93851,93853,107008). Sodium and potassium phosphates can cause diarrhea (15). Aluminum phosphate can cause constipation (15). A large comparative study shows that, when taken orally as a bowel preparation for colonoscopy, sodium phosphate is associated with gastric mucosal lesions in about 4% of patients (93868).
Neurologic/CNS ...Orally, phosphate salts can commonly cause malaise (93846). Headaches and sleep disturbance may also occur (93848,93851).
Renal ...Orally, use of sodium phosphate for bowel cleansing has been associated with an increased risk of acute kidney injury in some patients (93863). However, a pooled analysis of clinical research suggests that results are not consistent for all patients (93864). Some evidence suggests that female gender, probably due to lower body weight, iron-deficiency anemia, dehydration, and chronic kidney disease are all associated with an increased risk of sodium phosphate-induced kidney dysfunction (93865).
Other
...Orally, phosphate salts can cause fluid and electrolyte disturbances including hyperphosphatemia and hypocalcemia, and extraskeletal calcification.
Potassium phosphates can cause hyperkalemia. Sodium phosphates can cause hypernatremia and hypokalemia (15,2494,2495,2496,2497,107008).
Rectally, phosphate salts can cause fluid and electrolyte disturbances including hyperphosphatemia and hypocalcemia (15,112922).
Deaths related to intake of oral or rectal phosphate salts are rare and most have occurred in infants and are related to overdose (93866). However, death has also been reported in elderly patients using sodium phosphate enemas, mainly at standard doses of 250 mL (93867).
General
...Orally, tyrosine seems to be well tolerated.
No serious adverse effects have been documented; however, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Fatigue, headache, heartburn, and nausea.
Gastrointestinal ...Orally, tyrosine can cause nausea and heartburn when taken at a dose of 150 mg/kg (7211). Taking tyrosine 4 grams daily in combination with 5-hydroxytryptophan 800 mg and carbidopa 100 mg can cause diarrhea, nausea, and vomiting. These effects can be mitigated by lowering the dosage (918).
Musculoskeletal ...Orally, larger doses of tyrosine (150 mg/kg) can cause arthralgia, but this is uncommon (7211).
Neurologic/CNS ...Orally, larger doses of tyrosine (150 mg/kg) can cause headache and fatigue (7211). Taking a combination of tyrosine 4 grams, 5-hydroxytryptophan 800 mg, and carbidopa 100 mg can cause drowsiness and agitation. These effects can be mitigated by lowering the dosage (918).