Ingredients | Amount Per Serving |
---|---|
Total Calories
|
5 NP |
Total Carbohydrates
|
1.5 Gram(s) |
Dietary Fiber
|
1.5 Gram(s) |
(from Magnesium Citrate)
(Magnesium (Form: from Magnesium Citrate) )
|
150 mg |
Proprietary Blend (Combination)
|
1800 mg |
Psyllium
(seed husks)
(milled)
(Psyllium PlantPart: seed husks Note: milled )
|
|
Cellulose
|
|
(Lactobacillus acidophilus )
|
|
(Lactobacillus bifidus )
|
|
(leaf)
|
Gelatin Note: capsule, Vegetable Stearate
Below is general information about the effectiveness of the known ingredients contained in the product Week One: Preparation. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Week One: Preparation. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Artichoke has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Artichoke extract has been used with apparent safety at doses up to 3200 mg daily for up to 12 weeks (6282,15204,52235,91475,91478,100934). Artichoke leaf powder has been used with apparent safety at a dose of 1000 mg daily for up to 8 weeks (104133). Cynarin, a constituent in artichoke extract, has been used with apparent safety at daily doses of 750 mg daily for up to 3 months or 60 mg daily for up to 7 months (1423,1424,52222,52223,52236).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of artichoke when used in medicinal amounts during pregnancy or lactation; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium lactis has been safely used alone or in combination with other probiotics in clinical trials lasting up to 12 weeks (92255,98502,105158,107572,107581,107586,110979,110985,110986,110992)(110993,110998,110999).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium lactis has been safely used alone or in combination with other probiotics in infants and children for up to 15 months (3169,3458,92265,95381,95382,98736,105149,107582,107583,107585)(107587,107590,110984,110987,110988,110991,110994,110995). A combination probiotic containing B. lactis and Lactobacillus acidophilus (HOWARU Protect, Danisco) has been used safely for up to 6 months in children aged 3-5 years (16847). A specific combination of B. lactis, Bifidobacterium bifidum, and L. acidophilus (Complete Probiotic Platinum) has also been used safely for up to 18 months in children aged 4 months to 5 years (103436). In addition, in children ages 4-17 years, 1 billion CFUs of a 1:1:1 combination of B. lactis CECT 8145, Lacticasebacillus casei CECT 9104, and Bifidobacterium longum CECT 7347 has been used safely for 12 weeks (107531). There is insufficient reliable information available about the safety of B. lactis in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available.
A meta-analysis of four clinical trials shows that taking probiotics during pregnancy increases the relative risk of pre-eclampsia by 85% when compared with placebo. Although the specific effects of Bifidobacterium lactis are unclear from this analysis, three of the included studies used B. lactis in combination with Lacticaseibacillus rhamnosus (105185). More information is needed to determine if certain patients are at increased risk.
LIKELY SAFE ...when used orally and appropriately. Lactobacillus acidophilus has been safely used as part of multi-ingredient probiotic products in studies lasting up to nine months (1731,6087,14370,14371,90231,90296,92255,103438,12775,107581)(110950,110970,110979,110998,111785,111793). ...when used intravaginally and appropriately. L. acidophilus has been used safely in studies lasting up to 12 weeks (12108,13176,13177,90265). There is insufficient reliable information available about the safety of non-viable, heat-killed L. acidophilus formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lactobacillus acidophilus has been safely used for up to 5 days (96887). Also, combination probiotics containing L. acidophilus have been used with apparent safety in various doses and durations. L. acidophilus has been combined with Bifidobacterium animalis (HOWARU Protect, Danisco) for up to 6 months in children 3-5 years old (16847), with Bifidobacterium bifidum for 6 weeks (90602,96890), with Bifidobacterium bifidum and Bifidobacterium animalis subsp. lactis (Complete Probiotic Platinum) for 18 months in children 4 months to 5 years of age (103436), and in a specific product (Visbiome, ExeGi Pharma) containing a total of 8 species for 3 months in children 2-12 years old (107497). There is insufficient reliable information available about the safety of L. acidophilus in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lactobacillus acidophilus during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used in amounts commonly found in foods. Pectin has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in amounts greater than those typically found in food. Pectin 4.8 grams three times daily has been used for up to one year without serious adverse effects (12547,15019,15020,92481,108525).
CHILDREN: POSSIBLY SAFE
when used orally in amounts greater than those found in food, short-term.
Pectin 4 grams/kg has been used daily for up to 7 days without reports of serious adverse effects (12575,19705).
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods.
Pectin has Generally Recognized as Safe (GRAS) status in the US (4912).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when used orally in medicinal amounts (12577).
Below is general information about the interactions of the known ingredients contained in the product Week One: Preparation. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, artichoke leaf extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
A meta-analysis of small clinical studies shows that taking artichoke leaf extract for 8-12 weeks can modestly reduce fasting plasma glucose when compared with placebo (105768).
|
Theoretically, artichoke leaf extract may increase the risk of hypotension when taken with antihypertensive drugs.
Details
A meta-analysis of small clinical studies in patients with hypertension shows that taking artichoke can reduce systolic blood pressure by around 3 mmHg and diastolic blood pressure by around 2 mmHg when compared with placebo (105767).
|
Theoretically, artichoke might increase serum levels of drugs metabolized by CYP2B6.
Details
In vitro research shows that artichoke leaf extract inhibits CYP2B6 activity (97717). However, this interaction has not been reported in humans.
|
Theoretically, artichoke might increase serum levels of drugs metabolized by CYP2C19.
Details
In vitro research shows that artichoke leaf extract inhibits CYP2C19 activity (97717). However, this interaction has not been reported in humans.
|
Theoretically, taking Bifidobacterium lactis with antibiotic drugs might decrease the effectiveness of B. lactis.
Details
|
Theoretically, taking Lactobacillus acidophilus with antibiotic drugs might decrease the effectiveness of L. acidophilus.
Details
L. acidophilus preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. acidophilus preparations by at least two hours.
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, pectin might reduce the absorption of digoxin, potentially decreasing its effectiveness.
Details
A small clinical study shows that taking digoxin with a kaolin-pectin suspension reduces the absorption of digoxin by about 62% (2212). It is unclear if these effects are due to pectin, kaolin, or the combination.
|
Theoretically, pectin might reduce the absorption of lovastatin, potentially decreasing its effectiveness.
Details
Case reports suggest that concomitant use of pectin and lovastatin might reduce the cholesterol-lowering effect of lovastatin, possibly due to reduced intestinal absorption of lovastatin (615).
|
Theoretically, pectin might reduce the absorption of tetracycline antibiotics, potentially decreasing their effectiveness.
Details
A small clinical study shows that taking tetracycline with bismuth subsalicylate in a kaolin-pectin suspension reduces the absorption of tetracycline by about 34% (2213). It is unclear if these effects are due to pectin, kaolin, bismuth subsalicylate, or the combination.
|
Below is general information about the adverse effects of the known ingredients contained in the product Week One: Preparation. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, artichoke extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, flatulence, hunger, and nausea.
Topically: Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to artichoke inulin has been reported in individuals sensitive to inulin.
Topically: Chest tightness, cough, and dyspnea after occupational exposure in sensitive individuals.
Dermatologic
...Artichoke can cause an allergic reaction in some patients.
Patients sensitive to the Asteraceae/Compositae family may be at the greatest risk. Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs. Topically, allergic contact dermatitis can occur with the use of artichoke. This has been attributed to the constituent cynaropicrin (11,52206,52226,52230). Redness in the face (11774) and sweating (91475) have been reported rarely following oral use of artichoke extract.
Occupational or airborne exposure to artichoke may also cause allergic reactions. In one case, a 52-year-old male presented with severe spongiotic dermatitis in exposed areas that was recurrent over the past 8 years. A patch test confirmed allergies to artichokes and sesquiterpene lactones, a group of allergens from the Compositae family, and the patient confirmed occupational and airborne exposure to artichokes during the time of his symptoms. The patient improved considerably after treatment with dupilumab (111565).
Gastrointestinal
...Orally, artichoke extract might increase abdominal discomfort, flatulence, diarrhea, hunger, and nausea in some patients (2562,52238,91475).
Abdominal pain and a bitter taste in the mouth were reported by a single person following oral use of a dietary supplement containing artichoke extract, as well as red yeast rice, pine bark extract, and garlic extract (89452). It is not clear if this adverse effect was due to artichoke, other ingredients, or the combination.
In one case report, the autopsy of an 84-year-old female revealed a colonic bezoar comprised of artichoke fiber and fragments. This bezoar caused complete intestinal obstruction, leading to fatal acute peritonitis. Although rare, patients who lack adequate teeth and/or who have a history of gastric surgery are at increased risk for fibrous bezoar formation (97716).
Pulmonary/Respiratory
...Following occupational exposure, allergic symptoms including dyspnea, cough, chest tightness, and asthma symptoms or exacerbation have been reported.
The effects were attributed to sensitization to artichoke. Subsequent nasal challenge with artichoke extract caused reduced nasal patency in these patients (52210,52230).
Orally, severe anaphylactic shock in response to artichoke inulin as an ingredient in commercially available products has been reported (52217). Individuals with a noted sensitivity to artichokes should consume inulin with caution. While rare, individuals with a known inulin allergy should avoid artichoke and artichoke extract.
General
...Orally, Bifidobacterium lactis seems to be well tolerated by most patients.
Most Common Adverse Effects:
Orally: Diarrhea.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Dermatologic ...In clinical research, two cases of rash, one with itching, were reported by patients taking a combination of Bifidobacterium lactis BB-12, Lacticaseibacillus paracasei F19, and Lactobacillus acidophilus La5. However, it is not clear if these adverse effects were due to B. lactis, other probiotics, or the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Bloating and flatulence have been reported with probiotic use; however, these adverse effects have not been reported from ingestion of Bifidobacterium lactis in particular. When taken orally, B. lactis can cause diarrhea and other gastrointestinal complaints in children (3169,95381,105149). Gastrointestinal complaints including worsening diarrhea, abdominal pain, constipation, stomach burn, and flatulence have been reported rarely (110986,110999).
Immunologic
...There have been cases of Bifidobacterium bacteremia in critically ill patients (102416,107599).
These cases are rare and none seem to be due to Bifidobacterium lactis alone.
A specific preparation (NBL probiotic ATP, Nobel) containing B. lactis, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, fructo-oligosaccharides, galacto-oligosaccharides, colostrum, and lactoferrin was found to be a significant risk factor for vancomycin-resistant Enterococcus colonization in premature infants. Although there was no direct link to determine causation, it was hypothesized that the probiotic mixture helped to mediate the acquisition and transfer of antibiotic resistance genes (96890).
General
...Orally and intravaginally, Lactobacillus acidophilus is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Intravaginally: Vaginal discharge.
Serious Adverse Effects (Rare):
Orally: There is concern that L. acidophilus may cause infections in some people.
Dermatologic ...Orally, in one clinical trial, a combination of Lactobacillus acidophilus La-5, Lacticaseibacillus paracasei subsp. paracasei F19, and Bifidobacterium animalis subsp. lacltis BB-12 was associated with two cases of rash, one with itching. However, it is not clear if these adverse effects were due to L. acidophilus, other ingredients, the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Orally, taking Lactobacillus acidophilus in combination with other probiotics may cause gastrointestinal side effects including epigastric discomfort (90239), abdominal pain (90239,90291,111785), dyspepsia (90239), flatulence (107497,107520), bloating (107497,111785), diarrhea (111785), vomiting (107537), and burping (90239); however, these events are uncommon.
Genitourinary ...Intravaginally, cream containing Lactobacillus acidophilus has been shown to cause increased vaginal discharge in about 5% of patients, compared to about 1% of patients receiving placebo cream (90237). Vaginal burning was reported by one person using intravaginal L. acidophilus and Limosilactobacillus fermentum in a clinical trial (111781).
Immunologic ...Since Lactobacillus acidophilus preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. L. acidophilus has been isolated in some cases of bacteremia, sepsis, splenic abscess, liver abscess, endocarditis, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract (107543,111782,111792). L. acidophilus endophthalmitis has been reported rarely (111787,111795). In one case, it was related to intravitreal injections for age-related macular degeneration in a 90-year-old female with an intraocular lens (111787). In another, it occurred following cataract surgery (111795).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally, pectin seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, gas, loose stools, and mild cramps.
Serious Adverse Effects (Rare):
All routes of administration: Allergic reactions, including anaphylaxis, in sensitive individuals.
Gastrointestinal ...Orally, pectin alone or in combination with guar gum and insoluble fiber can cause gastrointestinal adverse effects such as mild cramps, diarrhea, gas, and loose stools (12547,15020,92473).
Immunologic ...Orally and topically, pectin may cause allergic reactions in sensitive individuals. In one case, a 7-year-old boy with a history of oral allergy syndrome after consuming a pectin-containing beverage experienced anaphylaxis after taking a citrus bath containing pectin. Allergy testing confirmed sensitivity to pectin (106928).
Pulmonary/Respiratory ...The occupational inhalation of pectin dust can cause asthma (580,581,582,583,584).