Ingredients | Amount Per Serving |
---|---|
(as Beta-Carotene, from Organic Food Blend)
(Vitamin A (Form: as Beta Carotene, from Organic Food Blend) )
|
6250 IU |
(from Organic Food Blend)
(Vitamin C (Form: from Organic Food Blend) )
|
75 mg |
(D3)
|
1000 IU |
(from Organic Food Blend)
(Vitamin E (Form: from Organic Food Blend) )
|
38 IU |
(K Complex)
|
80 mcg |
(Vitamin B1)
(from Organic Food Blend)
(Thiamin (Form: from Organic Food Blend) (Alt. Name: Vitamin B1) )
|
2 mg |
(Vitamin B2)
(from Organic Food Blend)
(Riboflavin (Form: from Organic Food Blend) (Alt. Name: Vitamin B2) )
|
2 mg |
(from Organic Food Blend)
(Niacin (Form: from Organic Food Blend) )
|
25 mg |
(from Organic Food Blend)
(Vitamin B6 (Form: from Organic Food Blend) )
|
13 mg |
(from Organic Food Blend)
(Folate (Form: from Organic Food Blend) )
|
500 mcg |
(as Methylcobalamin, from Saccharomyces cerevisiae)
(Vitamin B12 (Form: as Methylcobalamin, from Saccharomyces cerevisiae Genus: Saccharomyces Species: cerevisiae) )
|
30 mcg |
(Biotin (Form: from Organic Food Blend) )
|
375 mcg |
(from Organic Food Blend)
(Pantothenic Acid (Form: from Organic Food Blend) )
|
13 mg |
(Ca)
(Calcium (Form: from Organic Food Blend) )
|
7 mg |
(Fe)
(Iron (Form: from Organic Food Blend) )
|
10 mg |
(Iodine (Form: from Organic Food Blend) )
|
150 mcg |
(Mg)
(Magnesium (Form: from Organic Food Blend) )
|
3 mg |
(Zn)
(Zinc (Form: from Organic Food Blend) )
|
7 mg |
(Se)
(Selenium (Form: from Organic Food Blend) )
|
90 mcg |
(from Organic Food Blend)
(Manganese (Form: from Organic Food Blend) )
|
1.5 mg |
(Cr)
(Chromium (Form: from Organic Food Blend) )
|
150 mcg |
Certified Organic Food Blend (Combination)
|
1 Gram(s) |
organic Sesbania grandiflora
(Sesbania grandiflora )
(leaf)
|
|
organic Curry
(Murraya koenigii )
(leaf)
|
|
(fruit)
|
|
(fruit & leaf)
|
|
(fruit)
|
|
(leaf)
|
|
(fruit & seed)
|
|
(leaf)
|
|
(peel)
|
|
(root)
|
|
(stalk & flower)
|
|
(root)
|
|
(leaf)
|
|
(fruit)
|
|
(fruit)
|
|
organic Lantana camara
(Lantana camara )
(aerial)
|
|
organic Wrightia tinctoria
(Wrightia tinctoria )
(aerial)
|
|
(fruit)
|
|
(fruit)
|
|
(fruit)
|
|
(leaf)
|
|
(root)
|
|
(fruit)
|
|
(bulb)
|
|
(bulb)
|
|
(fruit)
|
|
(leaf)
|
|
(flower & stem)
|
|
(leaf)
|
|
(leaf)
|
|
(gourd)
|
|
(stalk)
|
|
(flower & stem)
|
Clean Tablet Technology Blend (Form: organic Brown Rice Note: concentrate & extract blend, Organic Coating (Form: Guar Gum, Palm Oil, Sunflower Lecithin, Tapioca Maltodextrin), organic Gum Arabic, Potato Starch, Tapioca Dextrose) Note: patent pending
Below is general information about the effectiveness of the known ingredients contained in the product Women's Multi. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of blackberry.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Women's Multi. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when annatto seed extract is used orally in amounts commonly found in foods. Annatto has Generally Recognized As Safe (GRAS) status for use as a color in foods in the US, with an acceptable daily intake of 2.5 mg/kg (4912,109549).
POSSIBLY SAFE ...when annatto leaf powder is used orally and appropriately. Annatto leaf powder 750 mg daily has been used with apparent safety in clinical trials for up to 1 year (31612). There is insufficient reliable information available about the safety of annatto seed extract when used orally in medicinal amounts or annatto plant parts when used topically.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of annatto during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally in food amounts. Eating apples and consuming apple juice is safe for most people. Apples are a common food source (3470,3472). However, eating apple seeds should be avoided because they can be toxic (6).
CHILDREN: LIKELY SAFE
when used orally in food amounts.
Eating apples and consuming apple juice is safe for most people. Apples are a common food source (3470,3472).
CHILDREN: POSSIBLY SAFE
when apple pectin is used orally and appropriately, short-term.
Preliminary clinical research suggests that combination products containing apple pectin and German chamomile (Diarrhoesan) are safe when used in infants for up to one week (19705,19706).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of apple in amounts greater than those found in foods during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Asparagus seed and root extract have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of asparagus when used orally in medicinal amounts or when applied topically.
PREGNANCY: LIKELY SAFE
when used in amounts commonly found in foods (4912).
PREGNANCY: POSSIBLY UNSAFE
when used in larger amounts for medicinal purposes.
Asparagus extracts may have contraceptive effects (6); avoid using.
LACTATION: LIKELY SAFE
when used in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of asparagus when used in medicinal amounts during lactation.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally and appropriately. Beta-carotene supplements are appropriate for certain specific conditions; however, beta-carotene supplementation is not recommended for the general population (4844,6393). There is no tolerable upper intake level (UL) set for beta-carotene. However, doses as low as 20 mg/day have been associated with increased risk of lung and prostate cancer in people who smoke (1371,3359,3937,3959,6393,11786). There is also concern that taking high doses of antioxidants such as beta-carotene might do more harm than good. In several analyses of clinical studies involving smokers and healthy non-smokers, taking beta-carotene supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,34514,90775).
POSSIBLY UNSAFE ...when used orally in high doses or in people who smoke or have a history of asbestos exposure. Supplemental beta-carotene 20 mg daily for 5-8 years seems to increase the risk of lung cancer, prostate cancer, intracerebral hemorrhage, and cardiovascular and total mortality in people who smoke cigarettes or have a history of high-level exposure to asbestos (1371,3359,3937,3959,6393,11786,34591). There is also concern that taking high doses of antioxidants such as beta-carotene might do more harm than good in the general population. In several analyses of clinical studies involving smokers and healthy non-smokers, taking beta-carotene supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,34514,90775). Beta-carotene from foods does not seem to have this effect.
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844).
High doses (greater than 60 mg per day) have been used with apparent safety for specific conditions such as erythropoietic protoporphyria (11793).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844,6393).
There is insufficient reliable information available about the safety of large doses of beta-carotene in pregnancy and lactation.
LIKELY SAFE ...when used orally and appropriately. Biotin has been safely used in doses up to 300 mg daily for up to 6 months. A tolerable upper intake level (UL) has not been established (1900,6243,95662,102965). ...when applied topically as cosmetic products at concentrations of 0.0001% to 0.6% biotin (19344).
POSSIBLY SAFE ...when used intramuscularly and appropriately (8468,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at adequate intake doses of 5-25 mcg daily for up to 6 months (173,6243,19347,19348,111365). A tolerable upper intake level (UL) has not been established.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at the adequate intake (AI) dose of 30 mcg daily during pregnancy and 35 mcg daily during lactation. It has also been used in supplemental doses of up to 300 mcg daily (6243,7878). A tolerable upper intake level (UL) has not been established.
LIKELY SAFE ...when the fruit is used orally in amounts commonly found in foods (4912). There is insufficient reliable information available about the safety of blackberry fruit or leaf when used in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately. Blueberry, as the whole fruit, juice, or in a powder formulation, is safe when consumed in amounts commonly found in foods (13533,92387,92388,92394,96467,97181,99139). There is insufficient reliable information available about the safety of blueberry when used topically or when the leaves are used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts commonly found in foods (13533,96465).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (13533,107281).
There is insufficient reliable information available about the safety of blueberry for medicinal use; avoid using.
LIKELY SAFE ...when used orally in food amounts (14145). There is insufficient reliable information available about the safety of broccoli when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts (14145).
There is insufficient reliable information available about the safety of broccoli when used in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. There is insufficient reliable information available about the safety of Brussels sprout when used in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid amounts in excess of those found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (18). ...when used topically and appropriately, short-term. Topical application of cabbage leaves has been general well-tolerated in short-term studies (6781,6782,6783,6784,93671,110558). However, pain, itching, and burning with topical use of cabbage leaves have been reported in some patients leaving cabbage leaf wraps in place for 2-4 hours (93671,93675).
PREGNANCY:
There is insufficient reliable information available about using cabbage in medicinal amounts during pregnancy; avoid using.
LACTATION: LIKELY SAFE
when used topically and appropriately, short-term.
Significant adverse effects have not been reported in short-term studies (6781,6782,6783,6784,93673,93677). There is insufficient reliable information available about using cabbage orally in medicinal amounts during lactation; avoid using.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day and to consider total calcium intake from both dietary and supplemental sources (17484). Also, advise patients taking calcium supplements to take calcium along with vitamin D (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day and to consider total calcium intake from both dietary and supplemental sources (17484). Also, advise patients taking calcium supplements to take calcium along with vitamin D (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally in amounts typically found in food. Capsicum has Generally Recognized as Safe (GRAS) status in the US (4912). ...when used topically and appropriately (7038,10650,105345). The active capsicum constituent capsaicin is an FDA-approved ingredient used in certain over-the-counter, topical preparations (272).
POSSIBLY SAFE ...when used orally and appropriately, short-term in medicinal amounts. A specific sustained-release chili extract (Capsifen) has been used safely in doses of up to 200 mg daily, for up to 28 days (105196). ...when used intranasally and appropriately, short-term. Capsicum-containing nasal sprays, suspensions, and swabs seem to be safe when applied multiple times over 24 hours or when applied daily or every other day for up to 14 days. Although no serious side effects have been reported in clinical trials, intranasal application of capsicum-containing products can be very painful (14322,14324,14328,14329,14351,14352,14353,14356,14357) (14358,14359,14360,15016,105204). POSSIBLY UNSAFE when used orally, long-term or in high doses. There is concern that long-term use or use of excessive doses might be linked to hepatic or kidney damage, as well as hypertensive crisis (12404,40569,40606). There is insufficient reliable information available about the safety of capsicum when injected.
CHILDREN: POSSIBLY UNSAFE
when used topically in children under 2 years old (272).
There is insufficient reliable information available about the safety of capsicum when used orally in children.
PREGNANCY: LIKELY SAFE
when used topically and appropriately (272).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately, short-term.
Capsicum 5 mg daily has been used for up to 28 days during the latter half of the second trimester and the third trimester (96457).
LACTATION: LIKELY SAFE
when used topically and appropriately (272).
LACTATION: POSSIBLY UNSAFE
when used orally.
Dermatitis can sometimes occur in infants when foods heavily spiced with capsicum peppers are ingested during lactation (739). Also, observational research suggests that intake of raw capsicum peppers during pregnancy is associated with an increased risk of sensitization to inhalant allergens in children by the age of 2 years (41021).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Carrot has been used safely in doses of approximately 100 grams three times daily for up to 4 weeks (96308). There is insufficient reliable information available about the safety of carrot when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
CHILDREN: POSSIBLY UNSAFE
when carrot juices are used excessively in nursing bottles for small children.
Excessive use of carrot juice may cause carotenemia and dental caries (25817).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
There is insufficient reliable information available about the safety of carrot when used in medicinal amounts during pregnancy and lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. There is insufficient reliable information available about the safety of cauliflower when used in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in greater amounts than found in foods.
LIKELY SAFE ...when celery stems are consumed as food. ...when celery oil or seeds are consumed in amounts commonly found in foods. Celery seed has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when celery seed is used orally and appropriately in medicinal amounts, short-term (12). Celery seed powder has been safely used at doses up to 1500 mg daily for up to 6 weeks and 750 mg daily for up to 12 weeks. Celery seed extract has been safely used at doses up to 1340 mg daily for up to 4 weeks (106486,110755,112409,112411). ...when celery seed extract is used topically and appropriately, short-term (40988,41049,41052).
PREGNANCY: LIKELY UNSAFE
when celery oil or seeds are used orally in larger amounts; celery might have uterine stimulant or abortifacient effects (4,19,19104).
LACTATION:
There is insufficient reliable information available about the safety of medicinal amounts of celery during lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chromium has been safely used in doses up to 1000 mcg daily for up to 6 months (1934,5039,5040,6858,6859,6860,6861,6862,6867,6868)(7135,7137,10309,13053,14325,14440,17224,90057,90061)(90063,94234,95095,95096,95097,98687); however, most of these studies have used chromium doses in a range of 150-600 mcg. The Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, long-term. Chromium has been safely used in a small number of studies at doses of 200-1000 mcg daily for up to 2 years (7060,7135,42618,42628,42666,110605,110607,110609). However, the Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts not exceeding the daily adequate intake (AI) levels by age: 0-6 months, 0.
2 mcg; 7-12 months, 5.5 mcg; 1-3 years, 11 mcg; 4-8 years, 15 mcg; males 9-13 years, 25 mcg; males 14-18 years, 35 mcg; females 9-13 years, 21 mcg; females 14-18 years, 24 mcg (7135). POSSIBLY SAFE...when used orally and appropriately in amounts exceeding AI levels. Chromium 400 mcg daily has been used safely for up to 6 weeks (42680).
PREGNANCY: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for pregnancy is 28 mcg daily for those 14-18 years of age and 30 mcg daily for those 19-50 years of age (7135).
PREGNANCY: POSSIBLY SAFE
when used orally in amounts exceeding the adequate intake (AI) levels.
There is some evidence that patients with gestational diabetes can safely use chromium in doses of 4-8 mcg/kg (1953); however, patients should not take chromium supplements during pregnancy without medical supervision.
LACTATION: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for lactation is 44 mcg daily for those 14-18 years of age and 45 mcg daily for those 19-50 years of age (7135). Chromium supplements do not seem to increase normal chromium concentration in human breast milk (1937). There is insufficient reliable information available about the safety of chromium when used in higher amounts while breast-feeding.
LIKELY SAFE ...when used in food amounts. Cucumbers are a common food source (103382,103385). ...when the extract, fruit, fruit extract, fruit water, juice, seed extract, and seed oil are used topically and appropriately. These ingredients have been shown to be safely used in cosmetic products in levels of 0.4% to 3% (103382,103395).
POSSIBLY SAFE ...when cucumber extract or cucumber seed extract is used orally and appropriately. A specific cucumber extract (Q-Actin) has been used with apparent safety in doses of up to 10 mg twice daily for 6 months (103385). Cucumber seed extract has been used with apparent safety in doses of up to 500 mg daily for 6 weeks (103386). There isn't enough reliable information to know if other cucumber products are safe to use in amounts greater than those found in food.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of cucumber in amounts greater than those found in foods; avoid using.
LIKELY SAFE ...when used orally or parenterally and appropriately. Folic acid has been safely used in amounts below the tolerable upper intake level (UL). The UL for folic acid is based only on supplemental folic acid and is expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for folic acid in adults is 1000 mcg (6241). In cases of megaloblastic anemia resulting from folate deficiency or malabsorption disorders such as sprue, oral doses of 1-5 mg per day can also be used safely until hematologic recovery is documented, as long as vitamin B12 levels are routinely measured (6241,7725,8739).
POSSIBLY SAFE ...when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term. L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks (104913,104914) and a dose of 113 mcg daily for 24 weeks (104920). A specific L-5-MTHF product (Metafolin, Eprova) has been used with apparent safety at a dose of 1.3 mg daily for 12 weeks (104912).
POSSIBLY UNSAFE ...when used orally in large doses, long-term. Clinical research shows that taking folic acid daily in doses of 800 mcg to 1200 mcg for 3-10 years significantly increases the risk of developing cancer and adverse cardiovascular effects compared to placebo (12150,13482,16822,17041). Doses above 1 mg per day should also be avoided if possible to prevent precipitation or exacerbation of neuropathy related to vitamin B12 deficiency (6241,6242,6245). However, there is contradictory evidence suggesting that higher doses may not be harmful. There is some evidence that doses of 5 mg per day orally for up to 4 months can be used safely if vitamin B12 levels are routinely measured (7725). Also, other clinical research suggests that folic acid supplementation at doses up to 5 mg, usually in combination with vitamin B12, does not increase the risk of cancer when taken for 2-7 years (91312). Very high doses of 15 mg per day can cause significant central nervous system (CNS) and gastrointestinal side effects (505).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Folic acid has been safely used in children in amounts below the tolerable upper intake level (UL). The ULs for folic acid are based only on supplemental folic acid and are expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for children is: 1-3 years of age, 300 mcg; 4-8 years of age, 400 mcg; 9-13 years of age, 600 mcg; 14-18 years of age, 800 mcg (6241).
CHILDREN: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately.
One clinical study in infants aged 27 days and younger shows that consuming a formula containing L-5-MTHF (Metafolin, Merck & Cie) 10.4 mcg/100 mL daily has been used with apparent safety for up to 12 weeks (104918).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Folic acid 300-400 mcg is commonly used during pregnancy for prevention of neural tube defects (8739). Miscarriage rates and negative impacts on fetal growth have not been shown to increase with peri-conception supplemental folic acid intakes of 4 mg per day (91320,91322). However, other research shows that taking more than 5 mg per day during pregnancy may reduce development of cognitive, emotional, and motor skills in infants (91318). Also, the tolerable upper intake level (UL) of folic acid for pregnant or lactating women is 800 mcg daily for those 14-18 years of age and 1000 mcg daily for those 19 years and older (6241).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term.
L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks during lactation. Compared to folic acid, this form seems to further increase the folate concentration of red blood cells, but not breast milk (104913,104914).
LIKELY SAFE ...when used orally and appropriately. Garlic has been used safely in clinical studies lasting up to 7 years without reports of significant toxicity (1873,4782,4783,4784,4785,4786,4787,4789,4790,4797)(4798,6457,6897,14447,96008,96009,96014,102016,102670,103479)(107238,107239,107352,108607,110722,111763,114892).
POSSIBLY SAFE ...when used topically. Garlic-containing gels, lipid-soluble garlic extracts, garlic pastes, and garlic mouthwashes have been safely used in clinical research for up to 3 months (4766,4767,8019,15030,51330,51386). ...when used intravaginally. A vaginal cream containing garlic and thyme has been safely used nightly for 7 nights (88387).
POSSIBLY UNSAFE ...when raw garlic is used topically (585). Raw garlic might cause severe skin irritation when applied topically.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (3319).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Garlic is reported to have abortifacient activity (11020). One study also suggests that garlic constituents are distributed to the amniotic fluid after a single dose of garlic (4828). However, there are no published reports of garlic adversely affecting pregnancy. In clinical research, garlic 800 mg daily was used during the third trimester of pregnancy with no reported adverse outcomes (9201,51626). There is insufficient reliable information available about the safety of topical garlic during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (3319).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts greater than those found in foods.
Several small studies suggest that garlic constituents are secreted in breast milk, and that nursing infants of mothers consuming garlic are prone to extended nursing (3319,4829,4830). There is insufficient reliable information available about the safety of topical garlic during lactation.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately for up to 8 weeks.
Garlic extract 300 mg three times daily has been used with apparent safety for up 8 weeks in children ages 8-18 years (4796). There is insufficient reliable information available about the safety of garlic when used over longer durations or in higher doses.
CHILDREN: POSSIBLY UNSAFE
when raw garlic is used topically.
Raw garlic might cause severe skin irritation when applied topically (585,51210).
LIKELY SAFE ...when used orally and appropriately. Ginger has been safely used in multiple clinical trials (721,722,723,5343,7048,7084,7085,7400,7623,11346)(12472,13080,13237,13244,17369,17928,17929,89889,89890,89894)(89895,89898,89899,90102,96252,96253,96259,96260,96669) (101760,101761,101762,103359,107903).
POSSIBLY SAFE ...when used topically and appropriately, short-term (89893,89897).
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Ginger powder has been used with apparent safety at a dose of up to 750 mg daily for 4 days in girls aged 14-18 years (96255).
PREGNANCY: LIKELY SAFE
when consumed in the amounts typically found in foods.
Ginger is considered a first-line nonpharmacological treatment option for nausea in pregnancy by the American College of Obstetrics and Gynecology (ACOG) (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY SAFE
when used for medicinal purposes.
Despite some early reports of adverse effects (721,7083) and one observational study suggesting that taking dried ginger and other herbal supplements during the first 20 weeks of pregnancy marginally increased the chance of stillbirth (96254), most research shows that ginger is unlikely to cause harm to the baby. The risk for major malformations in infants of parents who took ginger when pregnant does not appear to be higher than the baseline rate of 1% to 3% (721,1922,5343,11346,13071,13080,96254). Also, other research suggests that ginger intake during various trimesters does not significantly affect the risk of spontaneous abortion, congenital malformations, stillbirth, perinatal death, preterm birth, low birth weight, or low Apgar scores (18211,90103). Ginger use has been associated with an increase in non-severe vaginal bleeding, including spotting, after week 17 of pregnancy (18211).
LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of ginger when used for medicinal purposes; avoid amounts greater than those found in foods.
LIKELY SAFE ...when guava fruit is consumed as food. Guava fruit has Generally Recognized as Safe (GRAS) status (4912).
POSSIBLY SAFE ...when guava fruit or leaf extract is used orally for medicinal purposes, short-term. Guava fruit has been used with apparent safety at doses of 500-1000 grams daily for 12 weeks (95562). Guava leaf extract has been used with apparent safety at doses of 1 gram daily for 12 weeks or 1.5 grams daily for 3 days (101758,70318). ...when the leaf extract is used topically, short-term. Guava leaf extract has been used safely as a mouth rinse at a dose of 0.15% twice daily for 30 days (101754). Guava leaf extract has been safely used on the skin at a dose of 6% twice daily for 28 days (101757).
PREGNANCY AND LACTATION: LIKELY SAFE
when guava fruit is consumed as food.
There is insufficient reliable information available about the safety of guava fruit or leaf when used for medicinal purposes during pregnancy and lactation.
POSSIBLY SAFE ...when used orally, short-term. Holy basil leaf extract has been used with apparent safety at a dose of 500 mg daily for 60-90 days (12242,18107,19575,91571,96944). ...when used topically in the mouth, short-term. Holy basil has been used with apparent safety as a 4% mouthwash solution for up to 30 days (91570,103621).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used in high doses during pregnancy or when trying to conceive.
Animal research suggests that relatively high doses of holy basil extract (200 mg/kg) may reduce implantation rate when used for one week, while long-term use of higher doses (2-4 grams/kg) may decrease the number of full-term pregnancies (55040,91569). There is insufficient reliable information available regarding the safety of holy basil during lactation; avoid using.
LIKELY SAFE ...when consumed in amounts commonly found in foods (6,2076).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Indian gooseberry fruit extract has been used safely in doses of up to 1000 mg daily for up to 6 months, 1500 mg daily for up to 8 weeks, or 2000 mg daily for up to 4 weeks (92515,99238,99240,99241,102855,102857,105352,105354,105356). Indian gooseberry leaf extract has been used with apparent safety at a dose of 750 mg daily for 10 days (99846). ...when used topically and appropriately. An emulsion containing Indian gooseberry extract 3% and other ingredients has been applied safely to the skin twice daily for up to 60 days (111571).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Iodine is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1100 mcg daily (7135,103070). Higher doses can be safely used with appropriate medical monitoring (2197,7080). In some regions of the world, such as Japan, daily dietary intake is estimated to be as high as 5,280-13,800 mcg without adverse outcomes (16747). ...when used topically and appropriately, as a 2% solution. A 2% iodine solution is an FDA-approved prescription product (15).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid prolonged use of doses exceeding the UL of 1100 mcg daily without proper medical supervision. There is concern that higher intake can increase the risk of side effects such as thyroid dysfunction, as well as thyroiditis, thyroid papillary cancer, thyrotoxicosis, and atrial fibrillation (7135,55962,56013). However, in some regions of the world such as Japan, daily dietary intake is estimated to be as high as 5,280-13,800 mcg without adverse outcomes (16747).
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Iodine is safe in amounts that do not exceed the tolerable upper intake level (UL) of 200 mcg daily for children 1-3 years, 300 mcg daily for children 4-8 years, 600 mcg daily for children 9-13 years, and 900 mcg daily for adolescents (7135). ...when used topically as a 2% solution (15). Iodine is an FDA-approved prescription product.
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the UL (7135,108709).
Higher intake can cause thyroid dysfunction (7135) and may be associated with a modest reduction in intelligence (108709).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Iodine is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1100 mcg daily in those 18 years and older or 900 mcg daily in those 14-18 years of age (7135,103070). Iodine needs increase during pregnancy and lactation and adequate intakes should begin as soon as a patient is aware of the pregnancy, or earlier in areas of potential deficiency (17920). ...when used topically as a 2% solution (15). Iodine is an FDA-approved prescription product.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause thyroid dysfunction (7135). Also, higher intakes during pregnancy cause increased iodine levels in breast milk and infant blood samples. Higher iodine intake during pregnancy has also been associated with an increased risk of congenital hypothyroidism and reduced mental and physical development in the offspring (56089,91390,91394,91395).
LIKELY SAFE ...when used orally and appropriately. For people age 14 and older with adequate iron stores, iron supplements are safe when used in doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron. The UL is not meant to apply to those who receive iron under medical supervision (7135,96621). To treat iron deficiency, most people can safely take up to 300 mg elemental iron per day (15). ...when used intravenously and appropriately. Ferric carboxymaltose 200 mg and iron sucrose 200 mg have been given intravenously for up to 10 doses with no reported serious adverse effects (91179). A meta-analysis of clinical studies of hemodialysis patients shows that administering high-dose intravenous (IV) iron does not increase the risk of hospitalization, infection, cardiovascular events, or death when compared with low-dose IV iron, oral iron, or no iron treatment (102861). A more recent meta-analysis of clinical studies of all patient populations shows that administering IV iron does not increase the risk of hospital length of stay or mortality, although the risk of infection is increased by 16% when compared with oral iron or no iron (110186). Despite these findings, there are rare reports of hypophosphatemia and/or osteomalacia (112603,112608,112609,112610).
LIKELY UNSAFE ...when used orally in excessive doses. Doses of 30 mg/kg are associated with acute toxicity. Long-term use of high doses of iron can cause hemosiderosis and multiple organ damage. The estimated lethal dose of iron is 180-300 mg/kg; however, doses as low as 60 mg/kg have also been lethal (15).
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135,91183,112601).
CHILDREN: LIKELY UNSAFE
when used orally in excessive amounts.
Tell patients who are not iron-deficient not to use doses above the tolerable upper intake level (UL) of 40 mg per day of elemental iron for infants and children. Higher doses frequently cause gastrointestinal side effects such as constipation and nausea (7135,20097). Iron is the most common cause of pediatric poisoning deaths. Doses as low as 60 mg/kg can be fatal (15).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Iron is safe during pregnancy and breast-feeding in patients with adequate iron stores when used in doses below the tolerable upper intake level (UL) of 45 mg daily of elemental iron (7135,96625,110180).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally in high doses.
Tell patients who are not iron deficient to avoid exceeding the tolerable upper intake level (UL) of 45 mg daily of elemental iron. Higher doses frequently cause gastrointestinal side effects such as nausea and vomiting (7135) and might increase the risk of preterm labor (100969). High hemoglobin concentrations at the time of delivery are associated with adverse pregnancy outcomes (7135,20109).
LIKELY SAFE ...when used in amounts commonly found in foods. There is insufficient reliable information available about the safety of kale when used orally in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of kale when used orally in medicinal amounts; avoid use.
LIKELY SAFE ...when used in amounts found in foods. Laminaria has Generally Recognized as Safe (GRAS) status in the US (94048).
POSSIBLY SAFE ...when iodine-reduced laminaria supplements are used, short-term. Iodine-reduced laminaria powder has been safely used at doses up to 6 grams daily for up to 8 weeks (109572).
POSSIBLY UNSAFE ...when used orally in medicinal amounts. The average laminaria-based supplement might contain as much as 1000 mcg of iodine. Ingesting more than 1100 mcg iodine daily (the tolerable upper intake level) can cause hypothyroidism, hyperthyroidism, or exacerbate existing hyperthyroidism (9556,94046). In addition, some laminaria supplements may contain arsenic (645,10275,15588). There is insufficient reliable information available about the safety of laminaria for its other uses.
PREGNANCY: POSSIBLY UNSAFE
when used intravaginally for cervical ripening; there is an increased risk of parental and neonatal infection (8945).
PREGNANCY: LIKELY UNSAFE
when used intravaginally to induce labor; use has been associated with endometriosis, neonatal sepsis, fetal hypoxia, and intrauterine death (6).
PREGNANCY: UNSAFE
when used orally due to potential hormonal effects (19); avoid using.
LACTATION: LIKELY UNSAFE
when used orally because of potential toxicity (19).
LIKELY SAFE ...when used in amounts commonly found in foods. Lemon has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when inhaled in amounts used for aromatherapy, short-term. Lemon essential oil has been used with apparent safety as aromatherapy for up to 2 weeks in clinical research (93475,98128,98129). There is insufficient reliable information available about the safety of lemon when used topically, or when used orally or intranasally in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Avoid using in amounts greater than those typically found in foods.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used orally and appropriately. Oral manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily for adults 19 years and older (1994,7135). ...when used parenterally and appropriately. Parenteral manganese chloride and manganese sulfate are FDA-approved prescription products.
POSSIBLY UNSAFE ...when used orally in high doses. Doses exceeding 11 mg daily can cause significant adverse effects (7135). ...when used parenterally in moderate or high doses, long-term. Reports of neurotoxicity and Parkinson-like symptoms have been reported with parenteral nutrition manganese doses above 60 mcg daily. It is recommended that adults on long-term parenteral nutrition receive manganese in doses of no more than 55 mcg daily (99302).
LIKELY UNSAFE ...when inhaled in moderate doses, long-term. According to the US Occupational Safety and Health Administration (OSHA), the permissible exposure limit (PEL) for manganese is 5 mg/m3. Exposure to higher amounts of manganese dust or fumes has been associated with central nervous system toxicity, Parkinson-like symptoms, and poor bone health (61296,102516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Manganese is safe in children when used in daily doses less than the tolerable upper intake level (UL) of 2 mg in children 1-3 years, 3 mg in children 4-8 years, 6 mg in children 9-13 years, and 9 mg in children 14-18 years (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
Daily doses greater than the UL are associated with a greater risk of toxicity (7135).
CHILDREN: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Exposure to high amounts of manganese dust has been associated with central nervous system toxicity and Parkinson-like symptoms (61296).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily during pregnancy or lactation in those aged 19 or older. However, those under 19 years of age should limit doses to less than 9 mg daily (7135).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses over the UL are associated with a greater risk of toxicity (7135). Additionally, observational research shows that adults with higher blood manganese levels have greater odds of delivering low birth weight or small for gestational age (SGA) male, but not female, infants (102515).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Manganese salts can cross the placenta, and animal research suggests that large amounts of manganese may be teratogenic (61296).
LIKELY SAFE ...when used orally in food amounts. The leaves, fruit, and seeds are commonly used in foods (16341,16344,90573).
POSSIBLY SAFE ...when moringa leaf or seed is used orally and appropriately in medicinal amounts, short-term. Tablets and capsules containing up to 30 grams of moringa leaf powder have been used daily with apparent safety in clinical studies lasting up to 6 months (20578,90572,90572,97209,97210). A dried moringa seed kernel powder has also been used with apparent safety in doses of 3 grams twice daily for 3 weeks (19278). ...when moringa leaf extract is used topically and appropriately. Moringa leaf extract 2% has been used 3 times daily with apparent safety in a clinical trial lasting 3 months (112640).
POSSIBLY UNSAFE ...when moringa root or root bark are used orally. Moringa root contains spirochin, a potentially toxic alkaloid, while moringa root bark contains stimulant alkaloids similar to ephedrine. Although spirochin has not been studied in humans, animal data shows that it can cause nerve paralysis (63764).
CHILDREN: POSSIBLY SAFE
when moringa leaf is used orally and appropriately, short-term.
Powdered dried moringa leaf has been used with apparent safety in doses of 15 grams twice daily for up to 2 months (90576).
PREGNANCY: POSSIBLY SAFE
when the leaf is used orally during the second or third trimesters, short-term.
Moringa leaf powder or extract 500 mg daily for up to 4 months has been used with apparent safety during the second and third trimesters (105469,105471,105472,110645). There is insufficient reliable information available about the safety of using moringa leaf by mouth during the first trimester.
PREGNANCY: POSSIBLY UNSAFE
when the root, bark, or flower are used orally.
Traditionally, moringa root bark and gum from moringa trunk bark have been used to induce abortion. When taken orally along with black peppercorns to induce abortion, moringa root bark may cause fatality (63764). Animal research shows that moringa flower can cause uterine contractions (94634); however, this has not been assessed in humans.
There is insufficient reliable information about the safety of using moringa seed during pregnancy; avoid using.
LACTATION: POSSIBLY SAFE
when moringa leaf is used orally, short-term.
Moringa leaf powder or extract 2 grams daily has been used during lactation with apparent safety for up to 4 months (20578,90571,90573,105471,105472). There is insufficient reliable information available about the safety of using other parts of moringa during lactation; avoid using.
LIKELY SAFE ...when niacin is taken in food or as a supplement in amounts below the tolerable upper intake level (UL) of 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243). ...when prescription products are used orally and appropriately in doses of up to 2 grams daily (12033). CHILDREN:
LIKELY SAFE ...when used orally in amounts that do not exceed the tolerable upper intake level (UL). The ULs of niacin for children are: 1-3 years of age, 10 mg daily; 4-8 years of age, 15 mg daily; 9-13 years of age, 20 mg daily; 14-18 years of age, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL of niacin during pregnancy and lactation is 30 mg daily for 14-18 years of age and 35 mg daily for 19 years and older (6243).
There is insufficient reliable information available about the safety of larger oral doses of niacin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when consumed in amounts commonly found in foods. Onion has Generally Recognized as Safe (GRAS) status in the US (4912). ...when onion extract is used topically (66742,66883,66895,66903,67089,95151,95154,95156).
POSSIBLY SAFE ...when onion extract is used orally and appropriately (2). Onion extract has been used safely in doses of 300 mg three times daily for up to 12 weeks (95149,101747).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than used in foods.
LIKELY SAFE ...when used orally and appropriately. The pantothenic acid derivative calcium pantothenate has a generally recognized as safe (GRAS) status for use in food products (111258). While a tolerable upper intake level (UL) has not been established, pantothenic has been used in doses of 10-20 grams daily with apparent safety (15,6243,111258) ...when applied topically and appropriately, short-term. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and its derivatives are safe for use in cosmetic products in concentrations up to 5.3% (111258). Gels or ointments containing a derivative of pantothenic acid, dexpanthenol, at concentrations of up to 5%, have been used safely for up to 30 days (67802,67806,67817).
POSSIBLY SAFE ...when applied intranasally and appropriately, short-term. A dexpanthenol nasal spray has been used with apparent safety up to four times daily for 4 weeks (67826). ...when applied in the eyes appropriately, short-term. Dexpanthenol 5% eyedrops have been used with apparent safety for up to 28 days (67783). ...when injected intramuscularly and appropriately, short-term. Intramuscular injections of dexpanthenol 500 mg daily for up to 5 days or 250 mg weekly for up to 6 weeks have been used with apparent safety (67822,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately (15,6243).
Calcium pantothenate is generally recognized as safe (GRAS) when used as a food additive and in infant formula (111258). However, a tolerable upper intake level (UL) has not been established (15,6243). ...when applied topically and appropriately (67795,105190,111262). Infant products containing pantothenic acid and its derivatives have been used safely in concentrations of up to 5% for infant shampoos and 2.5% for infant lotions and oils. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and derivatives are safe for use in topical infant products. (111258).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during pregnancy is 6 mg (3094).
LACTATION: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during lactation is 7 mg (3094).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Parsley has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term (12,13173).
LIKELY UNSAFE ...when used orally in very large doses e., 200 grams). Parsley oil contains significant amounts of the potentially toxic constituents, apiole and myristicin (11). Apiole can cause blood dyscrasias, kidney toxicity, and liver toxicity; myristicin can cause giddiness and hallucinations (4). ...when parsley seed oil is used topically. Applying parsley seed oil to the skin can cause photodermatitis upon sun exposure (4). There is insufficient reliable information available about the safety of the topical use of parsley leaf and root.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts.
Parsley has been used orally as an abortifacient and to stimulate menstrual flow (4,12,515,19104,92873). Population evidence suggests that maternal intake of An-Tai-Yin, an herbal combination product containing parsley and dong quai, during the first trimester increases the risk of congenital malformations of the musculoskeletal system, connective tissue, and eyes (15129).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the fruit is used orally in amounts commonly found in foods (13622).
POSSIBLY SAFE ...when the fruit is used orally and appropriately in medicinal amounts (6481,9796). There is insufficient reliable information available about the safety of red raspberry leaf when used orally or topically.
PREGNANCY: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
PREGNANCY: POSSIBLY SAFE
when red raspberry leaf is used orally and appropriately in medicinal amounts during late pregnancy under the supervision of a healthcare provider.
Red raspberry leaf is used by nurse midwives to facilitate delivery. There is some evidence that red raspberry leaf in doses of up to 2.4 grams daily, beginning at 32 weeks' gestation and continued until delivery, can be safely used for this purpose (6481,9796). Make sure patients do not use red raspberry leaf without the guidance of a healthcare professional.
PREGNANCY: LIKELY UNSAFE
when red raspberry leaf is used orally in medicinal amounts throughout pregnancy or for self-treatment.
Red raspberry leaf might have estrogenic effects (6180). These effects can adversely affect pregnancy. Tell pregnant patients not to use red raspberry leaf at any time during pregnancy without the close supervision of a healthcare provider.
LACTATION: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
There is insufficient reliable information available about the safety of red raspberry leaf; avoid using.
LIKELY SAFE ...when used orally and appropriately. Riboflavin 400 mg daily has been taken for up to 3 months, and 10 mg daily has been taken safely for up to 6 months (4912,91752,105480). A tolerable upper intake level (UL) has not been established (3094,91752,94089).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089). ...when used orally in higher doses for up to 1 year. Doses of 100-200 mg daily have been used safely for 4-12 months in children ages 9-13 years (71483,105484).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089).
LIKELY SAFE ...when used orally and appropriately. Selenium appears to be safe when taken short-term in amounts below the tolerable upper intake level (UL) of 400 mcg daily (4844,7830,7831,7836,7841,9724,9797,14447,17510,17511)(17512,17513,17515,17516,97087,97943,109085); however, there is concern that taking selenium long-term might not be safe. Some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). Some evidence also shows that taking a selenium supplement 200 mcg daily for an average of 3-8 years increases the risk of developing type 2 diabetes (97091,99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661). ...when used intravenously. Selenium, as selenious acid, is an FDA-approved drug. Sodium selenite intravenous infusions up to 1000 mcg daily have been safely used for up to 28 days (90347,92910).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. Doses above 400 mcg daily can increase the risk of developing selenium toxicity (4844,7825). Additionally, some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). There is also concern that taking a selenium supplement 200 mcg daily long-term, for an average of 3-8 years, increases the risk of developing type 2 diabetes (99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Selenium seems to be safe when used short-term in doses below the tolerable upper intake level (UL) of 45 mcg daily for infants up to age 6 months, 60 mcg daily for infants 7 to 12 months, 40-90 mcg daily for children 1 to 3 years, 100-150 mcg daily for children 4 to 8 years, 200-280 mcg daily for children 9 to 13 years, and 400 mcg daily for children age 14 years and older (4844,86095); however, there is some concern that long-term use might not be safe. ...when used via a nasogastric tube in premature infants (7835,9764).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily (4844,17507,74419,74481,74391); however, there is concern that long-term use might not be safe.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844).
LACTATION: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily when taken short-term (4844,74467); however, there is concern that long-term use might not be safe.
LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844,7838). ...when used orally in HIV-positive women. Selenium supplementation in HIV-positive women not taking highly active antiretroviral therapy may increase HIV-1 levels in breast milk (90358).
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Spinach has been used with apparent safety at a dose of 5 grams daily for up to 12 weeks (96856).
CHILDREN: LIKELY SAFE
when consumed in the amounts commonly found in foods by children older than 4 months of age (18).
CHILDREN: LIKELY UNSAFE
when used orally in infants under 4 months old; the high nitrate content of spinach can cause methemoglobinemia (18).
There is insufficient reliable information available about the safety of spinach in children when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods; avoid medicinal amounts.
LIKELY SAFE ...when the fruit is consumed in amounts commonly found in foods (14056,14058,93197,94712). ...when the fruit is used orally in medicinal amounts, short-term. Sweet cherry 280 grams daily for 28 days has been safely used in clinical research (94712). There is insufficient reliable information available about the safety of sweet cherry when used orally in medicinal amounts, long-term.
PREGNANCY AND LACTATION: LIKELY SAFE
when the fruit is consumed in amounts commonly found in foods (14056,14058).
There is insufficient reliable information available about the safety of sweet cherry when used in medicinal amounts during pregnancy or lactation.
LIKELY SAFE ...when used orally and appropriately. A tolerable upper intake level (UL) has not been established for thiamine, and doses up to 50 mg daily have been used without adverse effects (15,6243). ...when used intravenously or intramuscularly and appropriately. Injectable thiamine is an FDA-approved prescription product (15,105445).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 1.
4 mg daily. A tolerable upper intake level (UL) has not been established for healthy individuals (3094,6243).
LIKELY SAFE ...when the ripe or unripe tomato fruit or its products are consumed in amounts found in foods (2406,9439,10418,106653,106654). ...when tomato leaf is consumed in regular food amounts (18).
POSSIBLY SAFE ...when a tomato extract is used orally for medicinal purposes. A specific tomato extract (Lyc-O-Mato, LycoRed Ltd) has been used with apparent safety in clinical studies lasting up to 8 weeks (7898,14287,102182).
POSSIBLY UNSAFE ...when the tomato leaf or unripe green tomato fruit is used orally in excessive amounts. Tomato leaf and unripe green tomatoes contain tomatine, which has been associated with toxicity when consumed in large quantities (18,102957). There is insufficient reliable information available about the safety of the tomato vine.
PREGNANCY AND LACTATION: LIKELY SAFE
when the tomato fruit or its products are consumed in typical food amounts.
There is insufficient reliable information available about the safety of tomato extracts when used during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally, topically, intravenously, intramuscularly, or intranasally and appropriately. Vitamin B12 is generally considered safe, even in large doses (15,1344,1345,1346,1347,1348,2909,6243,7289,7881)(9414,9416,10126,14392,15765,82832,82949,82860,82864,90386)(111334,111551).
PREGNANCY: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA for vitamin B12 during pregnancy is 2.6 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA of vitamin B12 during lactation is 2.8 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 while breastfeeding.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily for adults (15). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately (3094).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (3094).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the recommended dietary allowance (RDA) (3094).
The RDA in lactating women is 2 mg daily. There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
LIKELY SAFE ...when used orally or intramuscularly and appropriately. Vitamin D has been safely used in a wide range of doses (7555,16888,16891,17476,95913,98186,104619,105209,109059). When used orally long-term, doses should not exceed the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily for adults (17506,99773); however, much higher doses such as 50,000 IU (1250 mcg) weekly orally for 6-12 weeks are often needed for the short-term treatment of vitamin D deficiency (16891,17476). Monthly oral doses of up to 60,000 IU (1500 mcg) have also been safely used for up to 5 years (105726). Toxicity usually does not occur until plasma levels exceed 150 ng/mL (17476).
POSSIBLY UNSAFE ...when used orally in excessive doses, long-term. Taking doses greater than the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily for adults for long periods can increase the risk of hypercalcemia (17506); however, much higher doses are often needed for short-term treatment of vitamin D deficiency. Toxicity typically occurs when levels exceed 150 ng/mL (17476).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
When used long-term, doses should not exceed the tolerable upper intake level (UL) of 1000 IU (25 mcg) daily for those 0-6 months of age, 1500 IU (37.5 mcg) daily for those 6-12 months of age, 2500 IU (62.5 mcg) daily for those 1-3 years of age, 3000 IU (75 mcg) daily for those 4-8 years of age, and 4000 IU (100 mcg) daily for those 9 years and older (17506); however, much higher doses are often needed for the short-term treatment of vitamin D deficiency. Some research shows that giving vitamin D 14,000 IU (350 mcg) weekly for a year in children aged 10-17 years is safe (16875). A meta-analysis of clinical studies shows that 1000 IU (25 mcg) daily in those up to a year of age and greater than 2000 IU (50 mcg) daily in those aged 1-6 years does not increase the risk of serious adverse events (108424).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses for longer than one year.
Taking doses greater than the tolerable upper intake level (UL) long-term can increase the risk of hypercalcemia (17506).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Vitamin D is safe when used in doses below the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily (17506,95910).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily. Hypercalcemia during pregnancy due to excessive vitamin D intake can lead to several fetal adverse effects, including suppression of parathyroid hormone, hypocalcemia, tetany, seizures, aortic valve stenosis, retinopathy, and mental and/or physical developmental delay (17506).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Vitamin D is safe when used in doses below the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily (17506).
LACTATION: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily (17506).
LIKELY SAFE ...when used orally or topically and appropriately. Vitamin E is generally considered safe, even at doses exceeding the recommended dietary allowance (RDA); however, adverse effects are more likely to occur with higher doses. The tolerable upper intake level (UL) in healthy people is 1000 mg daily, equivalent to 1100 IU of synthetic vitamin E (all-rac-alpha-tocopherol) or 1500 IU of natural vitamin E (RRR-alpha-tocopherol) (4668,4681,4713,4714,4844,89234,90067,90069,90072,19206)(63244,97075). Although there is some concern that taking vitamin E in doses of 400 IU (form unspecified) per day or higher might increase the risk of adverse outcomes and mortality from all causes (12212,13036,15305,16709,83339), most of this evidence comes from studies that included middle-aged or older patients with chronic diseases or patients from developing countries in which nutritional deficiencies are prevalent.
POSSIBLY UNSAFE ...when used orally in high doses. Repeated doses exceeding the tolerable upper intake level (UL) of 1000 mg daily are associated with significant side effects in otherwise healthy people (4844). ...when used intravenously in large doses. Large repeated intravenous doses of all-rac-alpha-tocopherol (synthetic vitamin E) were associated with decreased activity of clotting factors and bleeding in one report (3074). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adults who use e-cigarette, or vaping, products, which often contain vitamin E acetate. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Vitamin E acetate has been detected in most bronchoalveolar lavage samples taken from patients with EVALI. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. While this association shows a correlation between vitamin E acetate inhalation and lung injury, a causal link has not yet been determined, and it is not clear if other toxic compounds are also involved (101061,101062,102970).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Vitamin E has been safely used in children in amounts below the tolerable upper intake level (UL). The UL for healthy children is: 200 mg in children aged 1-3 years, 300 mg in children aged 4-8 years, 600 mg in children aged 9-13 years, and 800 mg in children aged 14-18 years. A UL has not been established for infants up to 12 months of age (23388).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL due to increased risk of adverse effects (23388).
...when alpha-tocopherol is used intravenously in large doses in premature infants. Large intravenous doses of vitamin E are associated with an increased risk of necrotizing enterocolitis and sepsis in this population (85062,85083). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adolescents and teenagers who use e-cigarette, or vaping, products. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Constituents in E-cigarette or vaping products with the potential to cause lung injury or impaired lung function include lipids, such as vitamin E acetate. Vitamin E acetate has been detected in all bronchoalveolar lavage samples taken from patients with EVALI. No other ingredient, including THC or nicotine, was found in all samples, and other ingredients, including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable This shows that vitamin E acetate is at the primary site of lung injury. A causal link has not yet been described and it is not clear if other compounds are also involved (101061,101062).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
The tolerable upper intake level (UL) during pregnancy is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older. However, maternal supplementation is not generally recommended unless dietary vitamin E falls below the RDA (4260). No serious adverse effects were reported with oral intake of 400 IU per day starting at weeks 9-22 of pregnancy in healthy patients or those at high risk for pre-eclampsia (3236,97075), or with 600-900 IU daily during the last two months of pregnancy (4260). However, some preliminary evidence suggests that taking vitamin E supplements might be harmful when taken in early pregnancy. A case-control study found that taking a vitamin E supplement during the first 8 weeks of pregnancy is associated with a 1.7-9-fold increase in odds of congenital heart defects (16823). However, the exact amount of vitamin E consumed during pregnancy in this study is unclear. Until more is known, advise patients to avoid taking a vitamin E supplement in early pregnancy unless needed for an appropriate medical indication.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL during lactation is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older (4844).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts that exceed the UL due to increased risk of adverse effects (4844).
LIKELY SAFE ...when vitamin K1 (phytonadione) or vitamin K2 (menaquinone) is used orally and appropriately. A tolerable upper intake level for vitamin K in adults has not been set, because no adverse effects have been noted at a wide range of studied doses. For example, Vitamin K1 up to 10 mg daily and vitamin K2 up to 45 mg daily have been safely used in clinical trials lasting up to 2 years. (54,55,58,6799,7135,14364). Notably, some of these studied doses are exponentially higher than various recommendations for daily adequate intake. See Dosing & Administration and Effectiveness sections for additional information...when vitamin K1 (phytonadione) is used parenterally and appropriately. Vitamin K1 (phytonadione) in oral and injectable form is an FDA-approved drug (7135).
POSSIBLY SAFE ...when vitamin K1 (phytonadione) 0. 1% is used topically in a cream or ointment for up to 12 weeks (91455,103919).
CHILDREN: LIKELY SAFE
when vitamin K1 (phytonadione) is used orally or parenterally and appropriately.
Vitamin K1 (phytonadione) in oral and injectable form is FDA approved for use in children. A tolerable upper intake level for vitamin K in children has not been set (7135).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the daily adequate intake level (AI).
A tolerable upper intake level for vitamin K in pregnancy and lactation has not been set (7135).
LIKELY SAFE ...when used orally and appropriately. Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 40 mg daily (7135). ...when used topically and appropriately (2688,6538,6539,7135,8623,11051,111291).
POSSIBLY SAFE ...when used orally and appropriately in doses higher than the tolerable upper intake level (UL). Because the UL of zinc is based on regular daily intake, short-term excursions above 40 mg daily are not likely to be harmful. In fact, there is some evidence that doses of elemental zinc as high as 80 mg daily in combination with copper 2 mg can be used safely for approximately 6 years without significant adverse effects (7303,8622,92212). However, there is some concern that doses higher than the UL of 40 mg daily might decrease copper absorption and result in anemia (7135).
POSSIBLY UNSAFE ...when used intranasally. Case reports and animal research suggest that intranasal zinc might cause permanent anosmia or loss of sense of smell (11155,11156,11703,11704,11705,11706,11707,16800,16801,17083). Several hundred reports of anosmia have been submitted to the US Food and Drug Administration (FDA) and the manufacturer of some intranasal zinc products (Zicam) (16800,16801). Advise patients not to use intranasal zinc products.
LIKELY UNSAFE ...when taken orally in excessive amounts. Ingestion of 10-30 grams of zinc sulfate can be lethal in adults (7135). Chronic intake of 450-1600 mg daily can cause multiple forms of anemia, copper deficiency, and myeloneuropathies (7135,17092,17093,112473). This has been reported with use of zinc-containing denture adhesives in amounts exceeding the labeled directions, such as several times a day for several years (17092,17093). Advise patients to follow the label directions on denture adhesives that contain zinc.
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL for children is based on age: 4 mg daily for 0-6 months, 5 mg daily for 7-12 months, 7 mg daily for 1-3 years, 12 mg daily for 4-8 years, 23 mg daily for 9-13 years, and 34 mg daily for 14-18 years (7135,97140).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Taking amounts greater than the UL can cause sideroblastic anemia and copper deficiency (7135). ...when used topically on damaged skin. An infant treated with 10% zinc oxide ointment for severe diaper rash with perianal erosions developed hyperzincemia. Absorption seemed to occur mainly via the erosions; plasma levels dropped after the erosions healed despite continued use of the ointment (106905).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during pregnancy in those 14-18 years of age and 40 mg daily in those 19-50 years of age (7135).
PREGNANCY: LIKELY UNSAFE
when used orally in doses exceeding the UL (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during lactation in those 14-18 years of age, and 40 mg daily for those 19-50 years of age (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses can cause zinc-induced copper deficiency in nursing infants (7135).
Below is general information about the interactions of the known ingredients contained in the product Women's Multi. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Animal studies suggest that certain annatto extracts may have hypoglycemic or hyperglycemic effects (19,31588,31605,31610,31616). Theoretically, taking annatto with antidiabetes drugs could reduce the therapeutic effects of these drugs or increase the risk for additive hypoglycemia. Monitor blood glucose levels closely.
|
Animal research suggests that annatto induces cytochrome P450 1A1 (CYP1A1) (31591). Theoretically, annatto might increase the metabolism of CYP1A1 substrates.
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of aliskiren.
Details
Pharmacokinetic research shows that coadministration of apple juice 200 mL along with aliskiren 150 mg decreases the bioavailability of aliskiren by 63% (17670). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046,94413). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Theoretically, consuming apple juice with antidiabetes drugs might interfere with blood glucose control.
Details
Clinical research suggests that consuming apples or drinking apple juice can raise blood glucose levels, with the effects of drinking apple juice being more significant than consuming apples (31699).
|
Consuming apple juice with antihypertensive drugs might interfere with blood pressure control.
Details
Some clinical evidence suggests that consuming apple and cherry juice can increase blood pressure in elderly patients (31680).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of atenolol.
Details
Pharmacokinetic research shows that coadministration of apple juice 600-1200 mL decreases levels of atenolol by 58% to 82% in a dose-dependent manner (17999). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of fexofenadine.
Details
Pharmacokinetic research shows that coadministration of apple juice 400-1200 mL along with fexofenadine 60-120 mg decreases bioavailability of fexofenadine by up to 78% (7046,94413). Coadministration with smaller quantities of apple juice (150 mL or less) does not appear to affect the bioavailability of fexofenadine (94421). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046,94413). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
There is some concern that concomitant consumption of apple juice might decrease oral absorption and blood levels of lithium.
Details
In one case report, a patient had an undetectable serum lithium level when lithium citrate was administered with apple juice. When lithium was administered with an alternative beverage, the lithium level became detectable and the patient demonstrated clinical improvement (105342).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of OATP substrates.
Details
Research shows that consuming apple juice inhibits OATP, which reduces bioavailability of oral drugs that are substrates of OATP (7046,17605). Fexofenadine, atenolol, and aliskiren are substrates of OATP. Clinical research shows that coadministration of apple juice decreases bioavailability of fexofenadine by up to 78% (7046,94413), aliskiren by 63% (17670), and atenolol by up to 82% (17999). These effects appear to increase with larger quantities of apple juice. It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Theoretically, asparagus root might increase diuresis and electrolyte loss when used with diuretic drugs.
Details
|
Theoretically, asparagus root might cause diuresis, reducing lithium clearance.
Details
|
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
Details
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Beta-carotene might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises high-density lipoprotein (HDL) cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (beta-carotene, vitamin C, vitamin E, and selenium) along with niacin and simvastatin attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as beta-carotene, or to the combination. It also is not known whether it will occur in other patient populations.
|
Theoretically, blueberries or blueberry leaf extracts might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, blueberry juice might increase blood levels of buspirone.
Details
In vitro research shows that blueberry juice can inhibit the metabolism of buspirone, possibly by inhibiting cytochrome P450 3A (CYP3A) enzymes. However, pharmacokinetic research in humans shows that drinking 300 mL of blueberry juice 30 minutes before taking buspirone hydrochloride 10 mg does not significantly affect the concentration or clearance of buspirone (92385).
|
Theoretically, blueberry juice might increase blood levels of flurbiprofen.
Details
In vitro research shows that blueberry juice can inhibit the metabolism of flurbiprofen, possibly by inhibiting cytochrome P450 2C9 (CYP2C9) enzymes. However, pharmacokinetic research in humans shows that drinking 300 mL of blueberry juice 30 minutes before taking flurbiprofen 100 mg does not significantly affect the concentration or clearance of flurbiprofen (92385).
|
Theoretically, broccoli might reduce the levels and effects of drugs metabolized by CYP1A2.
Details
|
Theoretically, broccoli might reduce the levels and effects of drugs metabolized by CYP2A6.
Details
Pharmacokinetic research in humans shows that eating 500 grams of broccoli daily for 6 days increases CYP2A6 activity by 135% to 550%. Induction of CYP2A6 activity is attributed to its glucosinolate constituents (19608).
|
A cabbage and Brussels sprout-containing diet can increase metabolism and decrease levels of acetaminophen. In clinical research, a diet that includes daily consumption of cabbage and Brussels sprout decreases acetaminophen levels by as much as 16%. This appears to occur due to a boost of elimination through glucuronide conjugation (3952).
|
Animal research suggests that Brussels sprout can induce cytochrome P450 1A2 (CYP1A2) activity (26183). Theoretically, Brussels sprout might increase the clearance and decrease the effects of drugs metabolized by CYP1A2. Some drugs metabolized by CYP1A2 include clozapine (Clozaril), cyclobenzaprine (Flexeril), fluvoxamine (Luvox), haloperidol (Haldol), imipramine (Tofranil), mexiletine (Mexitil), olanzapine (Zyprexa), pentazocine (Talwin), propranolol (Inderal), tacrine (Cognex), theophylline, zileuton (Zyflo), zolmitriptan (Zomig), and others.
|
A cabbage and Brussels sprout-containing diet seems to boost elimination through glucuronide conjugation (3952). Theoretically, these foods might also lower levels of other drugs that are metabolized through glucuronide conjugation, including acetaminophen (Tylenol, others) and oxazepam (Serax), haloperidol (Haldol), lamotrigine (Lamictal), morphine (MS Contin, Roxanol), zidovudine (AZT, Retrovir), and others.
|
A diet that includes daily consumption of cabbage and Brussels sprout decreases oxazepam levels by as much as 17%. This appears to occur due to a boost of elimination through glucuronide conjugation (3952). Theoretically, Brussels sprout might also lower levels of other drugs that are metabolized through glucuronide conjugation including acetaminophen (Tylenol, others), haloperidol (Haldol), lamotrigine (Lamictal), morphine (MS Contin, Roxanol), zidovudine (AZT, Retrovir), and others.
|
Preliminary clinical research shows that increasing Brussels sprout consumption by 400 grams daily can increase warfarin clearance rate by 27% and decrease plasma concentrations of warfarin by 16% (26182). Theoretically, consuming Brussels sprout while taking warfarin might decrease the effects of warfarin and increase the risk of blood clots in some people.
|
Cabbage might increase clearance and reduce the effects of acetaminophen.
Details
A small clinical study shows that daily consumption of cabbage and Brussels sprout decreases acetaminophen levels by as much as 16%, with some evidence suggesting that this effect is due to increased elimination through glucuronide conjugation (3952).
|
Theoretically, cabbage might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
Animal and in vivo research suggests that cabbage might have hypoglycemic effects (25424).
|
Theoretically, cabbage might decrease levels of drugs metabolized by CYP1A2.
Details
|
Theoretically, cabbage might increase clearance and decrease the effects of drugs metabolized through glucuronide conjugation.
Details
A small clinical study shows that daily consumption of cabbage and Brussels sprout decreases levels of some drugs metabolized through glucuronide conjugation (3952).
|
Cabbage might increase clearance and reduce the effects of oxazepam.
Details
A small clinical study shows that daily consumption of cabbage and brussels sprout decreases oxazepam levels by as much as 17%, with some evidence suggesting that this effect is due to increased elimination through glucuronide conjugation (3952).
|
Theoretically, cabbage might decrease the anticoagulant effects of warfarin.
Details
Cabbage contains vitamin K. If consumed in large quantities, cabbage might decrease the anticoagulant effects of warfarin (19).
|
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Details
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Details
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Details
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Details
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Details
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
Details
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Details
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Details
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Details
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
Details
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Details
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
Details
|
Calcium may reduce levels of raltegravir.
Details
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Details
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Details
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Details
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Details
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, using topical capsaicin may increase the risk of ACE inhibitor-induced cough.
Details
There is one case report of a topically applied capsaicin cream contributing to the cough reflex in a patient using an ACEI (12414). However, it is unclear if this interaction is clinically significant.
|
Theoretically, capsicum may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
In vitro research shows that capsicum might increase the effects of antiplatelet drugs (12406,12407). Also, population research shows that capsicum is associated with an increased risk of self-reported bleeding in patients taking warfarin (12405,20348). However, clinical research shows that taking a single dose of capsaicin (Asian Herbex Ltd.), the active ingredient in capsicum, 400-800 mcg orally in combination with aspirin 500 mg does not decrease platelet aggregation when compared with taking aspirin 500 mg alone. Also, there was no notable effect on measures of platelet aggregation with capsaicin (92990). It is unclear whether capsaicin must be used in more than a single dose to affect platelet aggregation.
|
Theoretically, taking capsicum with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Preliminary clinical research shows that consuming capsicum 5 grams along with a glucose drink attenuates the rise in plasma glucose after 30 minutes by 21%, decreases the 2-hour postprandial area under the curve of plasma glucose by 11%, and increases the 2-hour postprandial area under the curve of plasma insulin by 58% in healthy individuals when compared with placebo (40453,40614). Other clinical research shows that taking capsicum 5 mg daily for 28 days significantly reduces postprandial blood glucose and insulin levels, but not fasting blood glucose and insulin levels, in patients with gestational diabetes (96457).
|
Theoretically, taking capsicum with aspirin might reduce the bioavailability of aspirin.
Details
Animal research shows that acute or chronic intake of capsicum pepper reduces oral aspirin bioavailability (22617). This has not been shown in humans.
|
Theoretically, taking capsicum with ciprofloxacin might increase levels and adverse effects of ciprofloxacin.
Details
Animal research shows that concomitant use of capsaicin, the active constituent of capsicum, and ciprofloxacin increases the bioavailability of ciprofloxacin by up to 70% (22613).
|
Theoretically, taking capsicum with theophylline might increase the levels and adverse effects of theophylline.
Details
|
Preliminary clinical evidence suggests that eating cruciferous vegetables, including broccoli, cauliflower, daikon radish sprouts, and cabbage, can increase cytochrome P450 1A2 (CYP1A2) activity by 14% to 27% (26193). Theoretically, cauliflower might increase the clearance and decrease the effects of drugs metabolized by CYP1A2. Some drugs metabolized by CYP1A2 include clozapine (Clozaril), cyclobenzaprine (Flexeril), fluvoxamine (Luvox), haloperidol (Haldol), imipramine (Tofranil), mexiletine (Mexitil), olanzapine (Zyprexa), pentazocine (Talwin), propranolol (Inderal), tacrine (Cognex), theophylline, zileuton (Zyflo), zolmitriptan (Zomig), and others.
|
Theoretically, celery juice might increase the effects and side effects of acetaminophen.
Details
Animal research suggests that concomitant use of celery juice plus acetaminophen prolongs the effects of acetaminophen. This effect has been attributed to a decrease in hepatic cytochrome P450 activity (25362). However, other animal research shows that pretreatment with celery root extract protects against acetaminophen-induced acute liver failure (106487). These effects have not been reported in humans.
|
Theoretically, celery juice might increase the effects and side effects of aminopyrine.
Details
Animal research suggests that concomitant use of celery juice plus aminopyrine prolongs the effects of aminopyrine. This effect has been attributed to a decrease in hepatic cytochrome P450 activity (25362). This effect has not been reported in humans.
|
Theoretically, celery root might increase the risk of bleeding when taken with anticoagulant/antiplatelet drugs.
Details
|
Theoretically, celery seed extract might have additive effects with antihypertensive drugs.
Details
Clinical research suggests that taking celery seed extract may reduce daytime systolic blood pressure by about 12 mmHg compared to less than 1 mmHg with placebo (110755).
|
Theoretically, celery might increase levels of drugs metabolized by CYP1A2.
Details
In vitro and animal research suggests that constituents of celery can inhibit CYP1A2 (68176). This effect has not been reported in humans.
|
Theoretically, celery seed might decrease the effects of levothyroxine.
Details
Several cases of hypothyroidism with low T4 levels have been reported in people who were previously stabilized on levothyroxine and then started taking celery seed tablets. They presented with symptoms such as lethargy, bloating, and dry skin, and recovered when celery seed was stopped (10646). However, celery stem and leaf has been associated with case reports of hyperthyroidism in patients with no pre-existing thyroid disorders (102912,102914).
|
Theoretically, celery might reduce excretion and increase levels of lithium due to potential diuretic effects.
Details
|
Theoretically, celery might increase the risk of photosensitivity reactions when taken with photosensitizing drugs.
Details
|
Theoretically, celery root extract might increase blood levels of venlafaxine.
Details
There is one case report of a patient who experienced medication-induced bipolar disorder after beginning to take celery root extract 1000 mg daily along with venlafaxine 75 mg and St. John's wort 600 mg daily. Symptoms included confusion, speech abnormalities, manic affect, and visual hallucinations. The plasma level of venlafaxine was 476.8 ng/mL (normal range 195-400 ng/mL). It is theorized that celery root increased venlafaxine levels by inhibiting cytochrome P450 2D6 (92854).
|
Theoretically, chromium may have additive effects with antidiabetic agents and increase the risk of hypoglycemia.
Details
|
Theoretically, aspirin might increase chromium absorption.
Details
Animal research suggests that aspirin may increase chromium absorption and chromium levels in the blood (21055).
|
Theoretically, concomitant use of chromium and insulin might increase the risk of hypoglycemia.
Details
|
Chromium might bind levothyroxine in the intestinal tract and decrease levothyroxine absorption.
Details
Clinical research in healthy volunteers shows that taking chromium picolinate 1000 mcg with levothyroxine 1 mg decreases serum levels of levothyroxine by 17% when compared to taking levothyroxine alone (16012). Advise patients to take levothyroxine at least 30 minutes before or 3-4 hours after taking chromium.
|
NSAIDs might increase chromium levels in the body.
Details
Drugs that are prostaglandin inhibitors, such as NSAIDs, seem to increase chromium absorption and retention (7135).
|
Theoretically, cucumber seed might have additive effects with antidiabetes drugs and may increase the risk of hypoglycemia.
Details
Animal research shows that cucumber seed extract can decrease blood glucose levels (103391). Monitor blood glucose levels closely.
|
Theoretically, high doses of folic acid might increase the toxicity of 5-fluorouracil.
Details
Increases in gastrointestinal side effects of 5-fluorouracil, such as stomatitis and diarrhea, have been described in two clinical studies when leucovorin, a form of folic acid, was administered with 5-fluorouracil (16845).
|
Use of high-dose folic acid might contribute to capecitabine toxicity.
Details
Clinical research suggests that higher serum folate levels are associated with an increased risk for moderate or severe toxicity during capecitabine-based treatment for colorectal cancer (105402). Additionally, in one case report, taking folic acid 15 mg daily might have contributed to increased toxicity, including severe diarrhea, vomiting, edema, hand-foot syndrome, and eventually death, in a patient prescribed capecitabine (16837).
|
Folic acid might reduce the efficacy of methotrexate as a cancer treatment when given concurrently.
Details
Methotrexate exerts its cytotoxic effects by preventing conversion of folic acid to the active form needed by cells. There is some evidence that folic acid supplements reduce the efficacy of methotrexate in the treatment of acute lymphoblastic leukemia, and theoretically they could reduce its efficacy in the treatment of other cancers (9420). Advise cancer patients to consult their oncologist before using folic acid supplements. In patients treated with long-term, low-dose methotrexate for rheumatoid arthritis (RA) or psoriasis, folic acid supplements can reduce the incidence of side effects, without reducing efficacy (768,2162,4492,4493,4494,4546,9369).
|
Folic acid might have antagonistic effects on phenobarbital and increase the risk for seizures.
Details
|
Folic acid might reduce serum levels of phenytoin in some patients.
Details
Folic acid may be a cofactor in phenytoin metabolism (4471). Folic acid, in doses of 1 mg daily or more, can reduce serum levels of phenytoin in some patients (4471,4477,4531,4536). Increases in seizure frequency have been reported. If folic acid supplements are added to established phenytoin therapy, monitor serum phenytoin levels closely. If phenytoin and folic acid are started at the same time and continued together, adverse changes in phenytoin pharmacokinetics are avoided (4471,4472,4473,4531). Note that phenytoin also reduces serum folate levels.
|
Folic acid might have antagonistic effects on primidone and increase the risk for seizures.
Details
|
Folic acid might antagonize the effects of pyrimethamine.
Details
Folic acid can antagonize the antiparasitic effects of pyrimethamine against toxoplasmosis and Pneumocystis carinii pneumonia. Folic acid doesn't antagonize the effects of pyrimethamine in the treatment of malaria, because malarial parasites cannot use exogenous folic acid. Use folinic acid as an alternative to folic acid when indicated (9380).
|
Garlic may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking garlic with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking garlic with antihypertensive drugs might increase the risk of hypotension.
Details
|
Theoretically, garlic might decrease levels and effects of atazanavir.
Details
In a case report, a patient consuming six stir-fried garlic cloves three times weekly developed suboptimal atazanavir levels and increases in HIV viral load. While the exact cause of this interaction is unclear, there is speculation that garlic might decrease the intestinal absorption of atazanavir or increase its metabolism by inducing cytochrome P450 3A4 (CYP3A4) (88388). Until more is known, advise patients not to consume large amounts of garlic while taking atazanavir.
|
Garlic might increase levels of drugs metabolized by CYP2E1.
Details
Clinical research suggests garlic oil can inhibit the activity of CYP2E1 by 39% (10847). Use garlic oil cautiously in patients taking drugs metabolized by these enzymes.
|
Theoretically, garlic products containing allicin might induce intestinal CYP3A4 and inhibit hepatic CYP3A4. This may increase or decrease levels of drugs metabolized by CYP3A4.
Details
Some human research suggests that garlic may induce INTESTINAL CYP3A4, reducing levels of drugs metabolized by this enzyme. This is primarily based on a study showing that taking a specific allicin-containing garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces saquinavir levels by approximately 50%. It is speculated that the allicin constituent induced CYP3A4 in the gut mucosa (7027,93578). Another study shows that giving docetaxel intravenously, bypassing the CYP3A4 enzymes in the gut mucosa, along with the same specific garlic product for 12 consecutive days, does not affect docetaxel levels (17221). Conversely, there is concern that garlic may inhibit HEPATIC CYP3A4. In a single case report, increased tacrolimus levels and liver injury occurred in a liver transplant patient after taking a specific garlic supplement (Garlicin Cardio, Nature's Way) at up to three times the manufacturer recommended dose for 7 days (96010). Several other studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506).
|
Theoretically, garlic might decrease levels of isoniazid.
Details
Animal research suggests that an aqueous extract of garlic reduces isoniazid levels by about 65%. Garlic reduced the maximum concentration (Cmax) and area under the curve (AUC), but not the half-life, of isoniazid. This suggests that garlic extract might inhibit isoniazid absorption across the intestinal mucosa (15031); however, the exact mechanism of this potential interaction is not known.
|
Theoretically, garlic products containing allicin might decrease levels of PIs.
Details
Protease inhibitors are metabolized by cytochrome P450 3A4 (CYP3A4) isoenzymes. There is concern that garlic products containing allicin might induce intestinal CYP3A4, reducing plasma levels of protease inhibitors. This is primarily based on a study showing that taking a specific garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces levels of saquinavir, a PI, by approximately 50%. It is speculated that the allicin constituent induce CYP3A4 in the gut mucosa (7027,93578). Several studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506).
|
Theoretically, garlic containing allicin might decrease levels of saquinavir.
Details
Saquinavir is a substrate of cytochrome P450 3A4 (CYP3A4) isoenzymes. There is concern that garlic products containing allicin might induce intestinal CYP3A4 and cause subtherapeutic levels of saquinavir. This is primarily based on a pharmacokinetic study showing that taking a specific garlic product (GarliPure Maximum Allicin Formula, Natrol Inc.) twice daily for 3 days reduces saquinavir levels by approximately 50%. It is speculated that the allicin constituent induces CYP3A4 in the gut mucosa (7027,93578). Several pharmacokinetic studies have evaluated the impact of other garlic formulations on CYP3A4 substrates and have found no effect. Most of the products in these studies provided little or no allicin (10335,10847,15031,94506). Until more is known about this potential interaction, use garlic containing allicin cautiously in patients taking saquinavir.
|
Theoretically, taking garlic with sofosbuvir might decrease its effectiveness.
Details
Animal research in rats shows that giving aged garlic extract 120 mg/kg orally daily for 14 days decreases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 36%, increases the clearance by 63%, and decreases the plasma concentrations at 1 and 8 hours by 35% and 58%, respectively. This interaction is hypothesized to be due to induction of intestinal P-glycoprotein expression by garlic (109524).
|
Theoretically, garlic might increase levels of tacrolimus.
Details
In one case report, a liver transplant patient taking tacrolimus experienced increased tacrolimus levels and liver injury after taking a specific garlic supplement (Garlicin Cardio, Nature's Way) at up to three times the manufacturer recommended dose for 7 days. It is speculated that garlic inhibited hepatic cytochrome P450 3A4 (CYP3A4), which increased plasma levels of tacrolimus (96010).
|
Theoretically, garlic might increase the risk of bleeding with warfarin.
Details
Raw garlic and a variety of garlic extracts have antiplatelet activity and can increase prothrombin time (586,616,1874,3234,4366,4802,4803,51397). In addition, there is a report of two patients who experienced an increase in a previously stabilized international normalized ratio (INR) with concomitant garlic and warfarin use (51228,51631). However, this report has been subsequently debated due to limited clinical information. Other clinical studies have not identified an effect of garlic on INR, warfarin pharmacokinetics, or bleeding risk (15032,16416). More evidence is needed to determine the safety of using garlic with warfarin.
|
Ginger may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs. However, research is conflicting.
Details
Laboratory research suggests that ginger inhibits thromboxane synthetase and decreases platelet aggregation (7622,12634,20321,20322,20323,96257). However, this has not been demonstrated unequivocally in humans, with mixed results from clinical trials (96257). Theoretically, excessive amounts of ginger might increase the risk of bleeding when used with anticoagulant/antiplatelet drugs.
|
Theoretically, taking ginger with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, taking ginger with calcium channel blockers might increase the risk of hypotension.
Details
Some animal and in vitro research suggests that ginger has hypotensive and calcium channel-blocking effects (12633). Another animal study shows that concomitant administration of ginger and the calcium channel blocker amlodipine leads to greater reductions in blood pressure when compared with amlodipine alone (107901).
|
Theoretically, when taken prior to cyclosporine, ginger might decrease cyclosporine levels.
Details
In an animal model, ginger juice taken 2 hours prior to cyclosporine administration reduced the maximum concentration and area under the curve of cyclosporine by 51% and 40%, respectively. This effect was not observed when ginger juice and cyclosporine were administered at the same time (20401).
|
Theoretically, ginger might increase the levels of CYP1A2 substrates.
Details
In vitro research shows that ginger inhibits CYP1A2 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2B6 substrates.
Details
In vitro research shows that ginger inhibits CYP2B6 activity (111544). However, this interaction has not been reported in humans.
|
Theoretically, ginger might increase the levels of CYP2C9 substrates.
Details
In vitro research shows that ginger inhibits CYP2C9 activity (111544). However, this interaction has not been reported in humans.
|
Ginger might increase or decrease the levels of CYP3A4 substrates.
Details
In vitro research and some case reports suggest that ginger inhibits CYP3A4 activity (111544,111644). Three case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are CYP3A4 substrates (imatinib, dabrafenib, and crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
Conversely, other in vitro research suggests that ginger induces CYP3A4 activity, leading to reduced levels of CYP3A4 substrates (111404). However, this interaction has not been reported in humans. |
Theoretically, ginger might increase levels of losartan and the risk of hypotension.
Details
In animal research, ginger increased the levels and hypotensive effects of a single dose of losartan (102459). It is not clear if ginger alters the concentration or effects of losartan when taken continuously. Additionally, this interaction has not been shown in humans.
|
Theoretically, ginger might increase levels of metronidazole.
Details
In an animal model, ginger increased the absorption and plasma half-life of metronidazole. In addition, the elimination rate and clearance of metronidazole was significantly reduced (20350).
|
Ginger may have antiplatelet effects and increase the risk of bleeding if used with nifedipine.
Details
Clinical research shows that combined treatment with ginger 1 gram plus nifedipine 10 mg significantly inhibits platelet aggregation when compared to nifedipine or ginger alone (20324).
|
Ginger might increase the absorption and blood levels of P-glycoprotein (P-gp) substrates.
Details
In vitro research and case reports suggest that ginger inhibits drug efflux by P-gp, potentially increasing absorption and serum levels of P-gp substrates (111544,111644). Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking ginger and cancer medications that are P-gp substrates (trametinib, crizotinib). However, the causality of this interaction is unclear due to the presence of multiple interacting drugs and routes of administration (111644).
|
Ginger might increase the risk of bleeding with phenprocoumon.
Details
Phenprocoumon, a warfarin-related anticoagulant, might increase the international normalized ratio (INR) when taken with ginger. There is one case report of a 76-year-old woman with a stable INR on phenprocoumon that increased to greater than 10 when she began consuming dried ginger and ginger tea (12880).
|
Ginger might increase the risk of bleeding with warfarin.
Details
Laboratory research suggests that ginger might inhibit thromboxane synthetase and decrease platelet aggregation (7622,12634,20321,20322,20323). In one case report, ginger increased the INR when taken with phenprocoumon, which has similar pharmacological effects as warfarin (12880). In another case report, ginger increased the INR when taken with a combination of warfarin, hydrochlorothiazide, and acetaminophen (20349). A longitudinal analysis suggests that taking ginger increases the risk of bleeding in patients taking warfarin for at least 4 months (20348). However, research in healthy people suggests that ginger has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176). Until more is known, monitor INRs closely in patients taking large amounts of ginger.
|
Theoretically, concomitant use with antidiabetes drugs might have additive effects and increase the risk of hypoglycemia. Animal research shows that guava leaf extract or guava fruit can have hypoglycemic effects (101781). Monitor blood glucose levels closely. Medication dose adjustments may be necessary. Some antidiabetes drugs include glimepiride (Amaryl), glyburide (Diabeta, Glynase PresTab, Micronase), insulin, metformin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Theoretically, holy basil seed oil might increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
Details
Animal research shows that holy basil seed oil can prolong bleeding time, possibly due to inhibition of platelet aggregation (13251). However, it is not known if this occurs in humans.
|
Theoretically, holy basil might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, holy basil seed oil might increase the sedative effects of pentobarbital.
Details
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs; however, research is conflicting.
Details
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking Indian gooseberry 500 mg along with clopidogrel 75 mg or ecosprin 75 mg, as a single dose or for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with clopidogrel 75 mg or ecosprin 75 mg alone (92514). Until more is known, use caution when taking Indian gooseberry in combination with anticoagulant/antiplatelet drugs.
|
Taking Indian gooseberry with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with aspirin; however, research is conflicting.
Details
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking a single dose of Indian gooseberry 500 mg along with ecosprin 75 mg, or taking a combination of Indian gooseberry 500 mg twice daily plus ecosprin 75 mg once daily for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with ecosprin 75 mg alone (92514).
|
Theoretically, Indian gooseberry may increase the risk of bleeding if used with clopidogrel; however, research is conflicting.
Details
Clinical research shows that taking Indian gooseberry 500 mg as a single dose or twice daily for 10 days reduces platelet aggregation by about 24% to 36%, increases bleeding time by about 3.8-5.9 seconds, and increases clotting time by about 9.8-12.7 seconds when compared to baseline. However, taking a single dose of Indian gooseberry 500 mg along with clopidogrel 75 mg, or taking a combination of Indian gooseberry 500 mg twice daily plus clopidogrel 75 mg once daily for 10 days, does not significantly reduce platelet aggregation or increase bleeding time or clotting time when compared with clopidogrel 75 mg alone (92514).
|
Combining iodine with amiodarone might cause excessively high iodine levels.
Details
|
Iodine might alter the effects of antithyroid drugs.
Details
|
Combining iodine with lithium might have additive hypothyroid effects.
Details
Lithium can inhibit thyroid function. Several case reports suggest that concomitant use of lithium and potassium iodide can reduce thyroid function in otherwise healthy adults (17574). Monitor thyroid function.
|
Iron reduces the absorption of bisphosphonates.
Details
Advise patients that doses of bisphosphonates should be separated by at least two hours from doses of all other medications, including supplements such as iron. Divalent cations, including iron, can decrease absorption of bisphosphonates by forming insoluble complexes in the gastrointestinal tract (15).
|
Theoretically, taking chloramphenicol with iron might reduce the response to iron therapy in iron deficiency anemia.
Details
|
Iron might decrease dolutegravir levels by reducing its absorption.
Details
Advise patients to take dolutegravir at least 2 hours before or 6 hours after taking iron. Pharmacokinetic research shows that iron can decrease the absorption of dolutegravir from the gastrointestinal tract through chelation (93578). When taken under fasting conditions, a single dose of ferrous fumarate 324 mg orally along with dolutegravir 50 mg reduces overall exposure to dolutegravir by 54% (94190).
|
Theoretically, taking iron along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
Details
Iron is a divalent cation. There is concern that iron may decrease the absorption of integrase inhibitors from the gastrointestinal tract through chelation (93578). One pharmacokinetic study shows that iron can decrease blood levels of the specific integrase inhibitor dolutegravir through chelation (94190). Also, other pharmacokinetic research shows that other divalent cations such as calcium can decrease the absorption and levels of some integrase inhibitors through chelation (93578,93579).
|
Iron might decrease levodopa levels by reducing its absorption.
Details
Advise patients to separate doses of levodopa and iron as much as possible. There is some evidence in healthy people that iron forms chelates with levodopa, reducing the amount of levodopa absorbed by around 50% (9567). The clinical significance of this hasn't been determined.
|
Iron might decrease levothyroxine levels by reducing its absorption.
Details
Advise patients to separate levothyroxine and iron doses by at least 2 hours. Iron can decrease the absorption and efficacy of levothyroxine by forming insoluble complexes in the gastrointestinal tract (9568).
|
Iron might decrease methyldopa levels by reducing its absorption.
Details
|
Theoretically, iron might decrease mycophenolate mofetil levels by reducing its absorption.
Details
Advise patients to take iron 4-6 hours before, or 2 hours after, mycophenolate mofetil. It has been suggested that a decrease of absorption is possible, probably by forming nonabsorbable chelates. However, mycophenolate pharmacokinetics are not affected by iron supplementation in available clinical research (3046,20152,20153,20154,20155).
|
Iron might decrease penicillamine levels by reducing its absorption.
Details
Advise patients to separate penicillamine and iron doses by at least 2 hours. Oral iron supplements can reduce absorption of penicillamine by 30% to 70%, probably due to chelate formation. In people with Wilson's disease, this interaction has led to reduced efficacy of penicillamine (3046,3072,20156).
|
Iron might decrease levels of quinolone antibiotics by reducing their absorption.
Details
|
Iron might decrease levels of tetracycline antibiotics by reducing their absorption.
Details
Advise patients to take iron at least 2 hours before or 4 hours after tetracycline antibiotics. Concomitant use can decrease absorption of tetracycline antibiotics from the gastrointestinal tract by 50% to 90% (15).
|
Theoretically, laminaria might increase the risk of hyperkalemia when taken with ACEIs.
Details
Laminaria contains potassium (19).
|
Theoretically, combining laminaria with amiodarone might cause excessively high iodine levels.
Details
|
Due to its iodine content, laminaria might alter the effects of antithyroid drugs.
Details
|
Theoretically, laminaria might increase the risk of hyperkalemia, which could increase the effects and adverse effects of digoxin.
Details
Laminaria contains potassium (19).
|
Theoretically, laminaria might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Details
Laminaria contains potassium (19).
|
Due to its iodine content, laminaria might alter the effects of thyroid hormone.
Details
|
Theoretically, taking itraconazole capsules or tablets with a beverage containing lemon might increase the levels and clinical effects of itraconazole.
Details
In one case report, dissolving itraconazole tablets in a small amount of specific beverages containing lemon prior to administration increased the level of itraconazole in a lung transplant patient. In this case, the increased bioavailability was desirable and was likely due to improved tablet dissolution in the acidic beverage (110781).
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Details
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
Details
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
Details
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Details
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Details
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
Details
|
Gabapentin absorption can be decreased by magnesium.
Details
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
Details
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Details
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Details
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Details
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
Details
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Details
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Details
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Details
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, the risk for manganese toxicity might increase when taken with antipsychotic drugs.
Details
Hallucinations and behavioral changes have been reported in a patient with liver disease who was taking haloperidol and manganese. Researchers speculate that taking manganese along with haloperidol, phenothiazine-derivatives, or other antipsychotic medications might increase the risk of manganese toxicity in some patients (61493).
|
Theoretically, manganese might reduce the absorption of quinolone antibiotics.
Details
Manganese is a multivalent cation. Interactions resulting in reduced quinolone absorption have been reported between quinolones and other multivalent cations, such as calcium and iron (488).
|
Theoretically, manganese might reduce the absorption of tetracycline antibiotics.
Details
Manganese is a multivalent cation. Interactions resulting in reduced tetracycline absorption have been reported between tetracyclines and other multivalent cations, such as calcium and iron (488).
|
Theoretically, moringa might have additive effects when used with antidiabetes drugs; however, research is conflicting.
Details
|
Theoretically, moringa might decrease the levels and clinical effects of CYP1A2 substrates.
Details
In vitro research shows that moringa extract induces CYP1A2 enzymes (111404).
|
Theoretically, moringa might increase or decrease levels of CYP3A4 substrates.
Details
Some in vitro research suggests that moringa inhibits cytochrome P450 3A4 (CYP3A4) (20576). However, other in vitro research suggests that moringa extract induces CYP3A4 enzymes (111404). A pharmacokinetic study in patients with HIV shows no change in the pharmacokinetics of nevirapine, which is partially metabolized by CYP3A4, when administered concomitantly with moringa leaf powder 1.85 grams daily for 14 days (97209).
|
Theoretically, moringa leaf can antagonize the effects of levothyroxine.
Details
Animal research suggests that moringa aqueous leaf extract might reduce serum triiodothyronine (T3) concentrations by inhibiting the peripheral conversion of thyroxine (T4) to T3 (16348).
|
Moringa leaf is unlikely to have a clinically significant interaction with nevirapine.
Details
Nevirapine is partially metabolized by cytochrome P450 3A4 (CYP3A4). In vitro evidence suggests that moringa inhibits CYP3A4 (20576). However, a pharmacokinetic study in patients with HIV shows no change in nevirapine pharmacokinetics when administered concomitantly with moringa leaf powder 1.85 grams daily for 14 days (97209).
|
Theoretically, moringa leaf extract might increase the levels and clinical effects of P-glycoprotein substrates.
Details
In vitro research shows that moringa leaf extract inhibits renal P-glycoprotein transport activity (107850). So far, this reaction has not been reported in humans.
|
Concomitant use of alcohol and niacin might increase the risk of flushing and hepatotoxicity.
Details
Alcohol can exacerbate the flushing and pruritus associated with niacin (4458,11689). Large doses of niacin might also exacerbate liver dysfunction associated with chronic alcohol use. A case report describes delirium and lactic acidosis in a patient taking niacin 3 grams daily who ingested 1 liter of wine (14510). Advise patients to avoid large amounts of alcohol while taking niacin.
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as allopurinol.
Details
Large doses of niacin can reduce urinary excretion of uric acid, potentially resulting in hyperuricemia (4860,4863,12033). Doses of uricosurics such as allopurinol might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin may have additive effects when used with anticoagulant or antiplatelet drugs.
Details
|
Niacin can increase blood glucose levels and may diminish the effects of antidiabetes drugs.
Details
Niacin impairs glucose tolerance in a dose-dependent manner, probably by causing or aggravating insulin resistance and increasing hepatic production of glucose (4860,4863,11692,11693). In diabetes patients, niacin 4.5 grams daily for 5 weeks can increase plasma glucose by an average of 16% and glycated hemoglobin (HbA1c) by 21% (4860). However, lower doses of 1.5 grams daily or less appear to have minimal effects on blood glucose (12033). In some patients, glucose levels increase when niacin is started, but then return to baseline when a stable dose is reached (12033,93344). Up to 35% of patients with diabetes may need adjustments in hypoglycemic therapy when niacin is added (4458,4860,4863,11689,12033).
|
Theoretically, niacin may increase the risk of hypotension when used with antihypertensive drugs.
Details
The vasodilating effects of niacin can cause hypotension (4863,12033,93341). Furthermore, some clinical evidence suggests that a one-hour infusion of niacin can reduce systolic, diastolic, and mean blood pressure in hypertensive patients. This effect is not observed in normotensive patients (25917).
|
Large doses of aspirin might alter the clearance of niacin.
Details
Aspirin is often used with niacin to reduce niacin-induced flushing (4458,11689). Doses of 80-975 mg aspirin have been used, but 325 mg appears to be optimal (4458,4852,4853,11689). Aspirin also seems to reduce the clearance of niacin by competing for glycine conjugation. Taking aspirin 1 gram seems to reduce niacin clearance by 45% (14524). This is probably a dose-related effect and not clinically significant with the more common aspirin dose of 325 mg (11689,14524).
|
Bile acid sequestrants can bind niacin and decrease absorption. Separate administration by 4-6 hours to avoid an interaction.
Details
In vitro studies show that colestipol (Colestid) binds about 98% of available niacin and cholestyramine (Questran) binds 10% to 30% (14511).
|
Theoretically, concomitant use of niacin and gemfibrozil might increase the risk of myopathy in some patients.
Details
|
Theoretically, concomitant use of niacin and hepatotoxic drugs might increase the risk of hepatotoxicity.
Details
|
Theoretically, concomitant use of niacin and statins might increase the risk of myopathy and rhabdomyolysis in some patients.
Details
Some case reports have raised concerns that niacin might increase the risk of myopathy and rhabdomyolysis when combined with statins (14508,25918). However, a significantly increased risk of myopathy has not been demonstrated in clinical trials, including those using an FDA-approved combination of lovastatin and niacin (Advicor) (7388,11689,12033,14509).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as probenecid.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as probenecid might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of uricosurics such as sulfinpyrazone.
Details
Large doses of niacin reduce urinary excretion of uric acid, potentially causing hyperuricemia (4863,12033). Doses of uricosurics such as sulfinpyrazone might need to be increased to maintain control of gout in patients who start taking niacin (4458). People who have frequent attacks of gout despite uricosuric therapy should avoid niacin (4863).
|
Theoretically, niacin might antagonize the therapeutic effects of thyroid hormones.
Details
Clinical research and case reports suggests that taking niacin can reduce serum levels of thyroxine-binding globulin by up to 25% and moderately reduce levels of thyroxine (T4) (25916,25925,25926,25928). Patients taking thyroid hormone for hypothyroidism might need dose adjustments when using niacin.
|
Theoretically, concomitant use of niacin and transdermal nicotine might increase the risk of flushing and dizziness.
Details
|
Theoretically, concomitant use of anticoagulant or antiplatelet drugs with onion might increase the risk of bleeding.
Details
|
Concomitant use of antidiabetes drugs with onion may increase the risk of hypoglycemia.
Details
|
Concomitant use of aspirin with onion may worsen onion allergy.
Details
In one case report, a patient with a mild onion allergy reported worsening allergy, including swelling and severe urticaria, after taking aspirin (5054).
|
Theoretically, taking onion might increase the levels and clinical effects of drugs metabolized by CYP2E1.
Details
Animal research shows that taking onion powder inhibits CYP2E1 (19653). However, this interaction has not been reported in humans.
|
Theoretically, parsley might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
Details
Animal research suggests that parsley has antiplatelet effects (68209).
|
Theoretically, parsley might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, aspirin might increase the severity of allergic reactions to parsley.
Details
In one case, severe urticaria and swelling were reported after taking aspirin with parsley in an individual with a known mild parsley allergy (5054).
|
Theoretically, parsley might increase serum levels of CYP1A2 substrates.
Details
Laboratory research suggests that parsley can inhibit CYP1A2 (68176).
|
Theoretically, parsley might enhance or interfere with the effects of diuretic drugs.
Details
|
Theoretically, parsley might increase the duration of pentobarbital effects.
Details
Animal research suggests that parsley juice prolongs the action of pentobarbital, perhaps by decreasing cytochrome P450 levels (25362). It is not known if this occurs in humans or if this applies to other barbiturates or sedatives.
|
Theoretically, large quantities of parsley might increase sirolimus levels.
Details
In one case report, an adult female with a history of kidney transplant presented with elevated blood sirolimus levels, approximately 4-7 times greater than previous measures, after daily consumption of a juice containing approximately 30 grams of parsley for 7 days. Sirolimus levels returned to normal a week after the parsley juice was discontinued (106010).
|
Theoretically, large amounts of parsley leaf and root might decrease the effects of warfarin.
Details
Parlsey contains vitamin K (19).
|
Theoretically, taking red raspberry leaf with anticoagulant/antiplatelet drugs might increase the risk of bleeding.
Details
In vitro research suggests that red raspberry leaf extract has antiplatelet activity and enhances the in vitro effects of the antiplatelet medication cangrelor (96300). This interaction has not been reported in humans.
|
Red raspberry leaf might reduce glucose levels in patients being treated with insulin.
Details
In one case report, a 38-year-old patient with gestational diabetes, whose blood glucose was being controlled with medical nutrition therapy and insulin, developed hypoglycemia after consuming two servings of raspberry leaf tea daily for 3 days beginning at 32 weeks' gestation. The patient required an insulin dose reduction. The hypoglycemia was considered to be probably related to use of red raspberry leaf tea (96299).
|
Theoretically, taking riboflavin with tetracycline antibiotics may decrease the potency of these antibiotics.
Details
In vitro research suggests that riboflavin may inhibit the potency of tetracycline antibiotics (23372). It is not clear if this effect is clinically significant, as this interaction has not been reported in humans.
|
Selenium may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
Clinical research suggests that taking selenium 10 mcg/kg/day can increase bleeding times by increasing prostacyclin production, which inhibits platelet activity (14540). Other clinical research suggests that taking selenium 75 mcg daily, in combination with ascorbic acid 600 mg, alpha-tocopherol 300 mg, and beta-carotene 27 mg, reduces platelet aggregation (74406).
|
Theoretically, selenium might prolong the sedating effects of barbiturates.
Details
|
Contraceptive drugs might increase levels of selenium, although the clinical significance of this effect is unclear.
Details
Some research suggests that oral contraceptives increase serum selenium levels in women taking oral contraceptives; however, other research shows no change in selenium levels (14544,14545,14546,101343). It is suggested that an increase could be due to increased carrier proteins, indicating a redistribution of selenium rather than a change in total body selenium (14545).
|
Gold salts might interfere with selenium activity in tissues.
Details
|
Theoretically, selenium supplementation may reduce the effectiveness of immunosuppressant therapy.
Details
|
Selenium might reduce the beneficial effects of niacin on high-density lipoprotein (HDL) levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as selenium, or to the combination. It also is not known whether it will occur in other patient populations.
|
Theoretically, selenium might interfere with warfarin activity.
Details
Animal research suggests that selenium can increase warfarin activity. Selenium might interact with warfarin by displacing it from albumin binding sites, reducing its metabolism in the liver, or by decreasing production of vitamin K-dependent clotting factors (14541). Selenium can also prolong bleeding times in humans by increasing prostacyclin production, which inhibits platelet activity (14540).
|
Spinach contains vitamin K, which can interfere with the activity of warfarin.
Details
In human research, although eating spinach with one meal does not result in coagulation test results outside the therapeutic range, daily consumption for one week necessitates dose adjustment of warfarin (19600). Individuals using anticoagulants should consume a consistent daily amount of spinach to maintain the effect of anticoagulant therapy (19).
|
In vitro and animal research suggests that strawberry extract can inhibit platelet aggregation due to its phenolic content (76472,76488). Theoretically, strawberry might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
Details
Some anticoagulant or antiplatelet drugs include aspirin, clopidogrel (Plavix), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, ticlopidine (Ticlid), warfarin (Coumadin), and others.
|
In vitro research suggests that strawberry extract can inhibit p-glycoprotein efflux (76474,76476). Theoretically, strawberry might inhibit p-glycoprotein mediated drug efflux and potentially increase levels of drugs that are substrates of p-glycoprotein. Until more is known, strawberry should be used cautiously in people taking p-glycoprotein substrates.
Details
Drugs that might be affected include some chemotherapeutic agents (etoposide, paclitaxel, vinblastine, vincristine, vindesine), antifungals (ketoconazole, itraconazole), protease inhibitors (amprenavir, indinavir, nelfinavir, saquinavir), H2 antagonists (cimetidine, ranitidine), some calcium channel blockers (diltiazem, verapamil), corticosteroids, erythromycin, cisapride (Propulsid), fexofenadine (Allegra), cyclosporine, loperamide (Imodium), quinidine, and others.
|
Trimethoprim might increase blood levels of thiamine.
Details
In vitro, animal, and clinical research suggest that trimethoprim inhibits intestinal thiamine transporter ThTR-2, hepatic transporter OCT1, and renal transporters OCT2, MATE1, and MATE2, resulting in paradoxically increased thiamine plasma concentrations (111678).
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
Details
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Details
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Details
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
Details
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
Details
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
Details
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Details
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
Details
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Details
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
Details
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
Details
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Details
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
Details
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Details
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Vitamin D might increase aluminum absorption and toxicity, but this has only been reported in people with renal failure.
Details
The protein that transports calcium across the intestinal wall can also bind and transport aluminum. This protein is stimulated by vitamin D, which may therefore increase aluminum absorption (11595,11597,22916). This mechanism may contribute to increased aluminum levels and toxicity in people with renal failure, when they take vitamin D and aluminum-containing phosphate binders chronically (11529,11596,11597).
|
Vitamin D might reduce absorption of atorvastatin.
Details
A small, low-quality clinical study shows that taking vitamin D reduces levels of atorvastatin and its active metabolites by up to 55%. However, while atorvastatin levels decreased, total cholesterol, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol levels did not substantially change (16828). Atorvastatin is metabolized in the gut by CYP3A4 enzymes, and researchers theorized that vitamin D might induce CYP3A4, causing reduced levels of atorvastatin. However, this proposed mechanism was not specifically studied.
|
Taking calcipotriene with vitamin D increases the risk for hypercalcemia.
Details
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (15). Theoretically, combining calcipotriene with vitamin D supplements might increase the risk of hypercalcemia.
|
Vitamin D might induce CYP3A4 enzymes and reduce the bioavailability of CYP3A4 substrates.
Details
There is some concern that vitamin D might induce CYP3A4. In vitro research suggests that vitamin D induces CYP3A4 transcription. Additionally, observational research has found that increased UV light exposure and serum vitamin D levels are associated with decreased serum levels of CYP3A4 substrates such as tacrolimus and sirolimus, while no association between UV light exposure or vitamin D levels and levels of mycophenolic acid, a non-CYP3A4 substrate, was found (110539). A small, low-quality clinical study shows that taking vitamin D reduces levels of the CYP3A4 substrate atorvastatin and its active metabolites by up to 55%; however, the clinical effects of atorvastatin were not reduced (16828). While researchers theorized that vitamin D might induce CYP3A4, this proposed mechanism was not specifically studied.
|
Theoretically, hypercalcemia induced by high-dose vitamin D can increase the risk of arrhythmia from digoxin.
Details
High doses of vitamin D can cause hypercalcemia. Hypercalcemia increases the risk of fatal cardiac arrhythmias with digoxin (15). Avoid vitamin D doses above the tolerable upper intake level (4000 IU daily for adults) and monitor serum calcium levels in people taking vitamin D and digoxin concurrently.
|
Theoretically, hypercalcemia induced by high-dose vitamin D can reduce the therapeutic effects of diltiazem for arrhythmia.
Details
High doses of vitamin D can cause hypercalcemia. Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically this could also occur with diltiazem. Avoid vitamin D doses above the tolerable upper intake level (4000 IU daily for adults) and monitor serum calcium levels in people taking vitamin D and diltiazem concurrently.
|
Theoretically, taking thiazide diuretics and high-dose vitamin D can increase the risk of hypercalcemia.
Details
Thiazide diuretics decrease urinary calcium excretion, which could lead to hypercalcemia if vitamin D supplements are taken concurrently (3072,11541,69580). This has been reported in people being treated with vitamin D for hypoparathyroidism, and also in elderly people with normal parathyroid function who were taking a thiazide, vitamin D, and calcium-containing antacids daily (11539,11540).
|
Hypercalcemia induced by high-dose vitamin D can reduce the therapeutic effects of verapamil for arrhythmia.
Details
Hypercalcemia due to high doses of vitamin D can reduce the effectiveness of verapamil in atrial fibrillation (10574). Avoid vitamin D doses above the tolerable upper intake level (4000 IU daily for adults) and monitor serum calcium levels in people taking vitamin D and verapamil concurrently.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of alkylating agents.
Details
There's concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
Concomitant use of vitamin E and anticoagulant or antiplatelet agents might increase the risk of bleeding.
Details
Vitamin E seems to inhibit of platelet aggregation and antagonize the effects of vitamin K-dependent clotting factors (4733,4844,11580,11582,11583,11584,11586,112162). These effects appear to be dose-dependent, and are probably only likely to be clinically significant with doses of at least 800 units daily (11582,11585). Mixed tocopherols, such as those found in food, might have a greater antiplatelet effect than alpha-tocopherol (10364). RRR alpha-tocopherol (natural vitamin E) 1000 IU daily antagonizes vitamin K-dependent clotting factors (11999). Advise patients to avoid high doses of vitamin E, especially in people with low vitamin K intake or other risk factors for bleeding.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of antitumor antibiotics.
Details
There's concern that antioxidants could reduce the activity of antitumor antibiotic drugs such as doxorubicin, which generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
A specific form of vitamin E might increase absorption and levels of cyclosporine.
Details
There is some evidence that one specific formulation of vitamin E (D-alpha-tocopheryl-polyethylene glycol-1000 succinate, TPGS, tocophersolan, Liqui-E) might increase absorption of cyclosporine. This vitamin E formulation forms micelles which seems to increase absorption of cyclosporine by 40% to 72% in some patients (624,625,10368). However, this interaction is unlikely to occur with the usual forms of vitamin E.
|
Theoretically, vitamin E might induce metabolism of CYP3A4, possibly reducing the levels CYP3A4 substrates.
Details
Vitamin E appears to bind with the nuclear receptor, pregnane X receptor (PXR), which results in increased expression of CYP3A4 (13499,13500). Although the clinical significance of this is not known, use caution when considering concomitant use of vitamin E and other drugs affected by these enzymes.
|
Vitamin E might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
Details
A combination of niacin and simvastatin (Zocor) effectively raises high-density lipoprotein (HDL) cholesterol levels in people with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% (7388,11537). Vitamin E alone combined with a statin does not seem to decrease HDL levels (11286,11287). It is not known whether the adverse effect on HDL is due to one of the other antioxidants or to the combination. It also is not known whether it will occur in other patient populations.
|
Taking selumetinib with vitamin E can result in a total daily dose of vitamin E that exceeds safe limits and therefore might increase the risk of bleeding.
Details
Selumetinib contains 48-54 IU vitamin E per capsule (102971). The increased risk of bleeding with vitamin E appears to be dose-dependent (11582,11585,34577). Be cautious when using selumetinib in combination with supplemental vitamin E, especially in patients at higher risk of bleed, such as those with chronic conditions and those taking antiplatelet drugs (102971).
|
Using vitamin E with warfarin might increase the risk of bleeding.
Details
Due to interference with production of vitamin K-dependent clotting factors, use of more than 400 IU of vitamin E daily with warfarin might increase prothrombin time (PT), INR, and the risk of bleeding, (91,92,93). At a dose of 1000 IU per day, vitamin E can antagonize vitamin K-dependent clotting factors even in people not taking warfarin (11999). Limited clinical evidence suggests that doses up to 1200 IU daily may be used safely by patients taking warfarin, but this may not be applicable in all patient populations (90).
|
Vitamin K can antagonize and reverse the therapeutic effects of warfarin.
Details
|
Amiloride can modestly reduce zinc excretion and increase zinc levels.
Details
Clinical research shows that amiloride can reduce urinary zinc excretion, especially at doses of 10 mg per day or more. This zinc-sparing effect can help to counteract zinc losses caused by thiazide diuretics, but it is unlikely to cause zinc toxicity at usual amiloride doses (830,11626,11627,11634). The other potassium-sparing diuretics, spironolactone (Aldactone) and triamterene (Dyrenium), do not seem to have a zinc-sparing effect.
|
Zinc modestly reduces levels of atazanavir, although this effect does not seem to be clinically significant.
Details
Clinical research shows that zinc might decrease serum atazanavir levels by chelating with atazanavir in the gut and preventing its absorption (93578). Although a single dose of zinc sulfate (Solvazinc tablets) 125 mg orally does not affect atazanavir concentrations in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate 125 mg daily for 2 weeks reduces plasma levels of atazanavir by about 22% in these patients. However, despite this decrease, atazanavir levels still remain at high enough concentrations for the prevention of HIV virus replication (90216).
|
Zinc might decrease cephalexin levels by chelating with cephalexin in the gut and preventing its absorption.
Details
A pharmacokinetic study shows that zinc sulfate 250 mg taken concomitantly with cephalexin 500 mg decreases peak levels of cephalexin by 31% and reduces the exposure to cephalexin by 27%. Also, taking zinc sulfate 3 hours before cephalexin decreases peak levels of cephalexin by 11% and reduces the exposure to cephalexin by 18%. By decreasing cephalexin levels, zinc might increase the risk of treatment failure. This effect does not occur when zinc is taken 3 hours after the cephalexin dose (94163). To avoid an interaction, advise patients take zinc sulfate 3 hours after taking cephalexin.
|
Theoretically, zinc might interfere with the therapeutic effects of cisplatin.
Details
Animal research suggests that zinc stimulates tumor cell production of the protein metallothionein, which binds and inactivates cisplatin (11624,11625). It is not known whether zinc supplements or high dietary zinc intake can cause clinically significant interference with cisplatin therapy. Cisplatin might also increase zinc excretion.
|
Theoretically, taking zinc along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
Details
|
Zinc might reduce the levels and clinical effects of penicillamine.
Details
By forming an insoluble complex with penicillamine, zinc interferes with penicillamine absorption and activity. Zinc supplements reduce the efficacy of low-dose penicillamine (0.5-1 gram/day), but do not seem to affect higher doses (1-2.75 gram/day), provided dosing times are separated (2678,4534,11605). Advise patients to take zinc and penicillamine at least 2 hours apart.
|
Zinc can decrease the levels and clinical effects of quinolones antibiotics.
Details
|
Zinc modestly reduces levels of ritonavir.
Details
Clinical research shows that zinc might reduce serum ritonavir levels by chelating with ritonavir in the gut and preventing its absorption (93578). In patients with HIV, ritonavir is taken with atazanavir to prevent the metabolism and increase the effects of atazanavir. A pharmacokinetic study shows that, in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate (Solvazinc tablets) 125 mg as a single dose or as multiple daily doses for 2 weeks reduces plasma levels of ritonavir by about 16% (90216). However, atazanavir levels still remains high enough to prevent HIV virus replication. Therefore, the decrease in ritonavir levels is not likely to be clinically significant.
|
Zinc might reduce levels of tetracycline antibiotics.
Details
Tetracyclines form complexes with zinc in the gastrointestinal tract, which can reduce absorption of both the tetracycline and zinc when taken at the same time (3046,4945). Taking zinc sulfate 200 mg with tetracycline reduces absorption of the antibiotic by 30% to 40% (11615). Demeclocycline and minocycline cause a similar interaction (4945). However, doxycycline does not seem to interact significantly with zinc (11615). Advise patients to take tetracyclines at least 2 hours before, or 4-6 hours after, zinc supplements to avoid any interactions.
|
Below is general information about the adverse effects of the known ingredients contained in the product Women's Multi. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, annatto leaf seems to be well tolerated. Rarely, annatto has been reported to cause constipation (31612). When used as a coloring agent, annatto has been reported to cause allergic reactions, including anaphylaxis (31619,31621,95158,95157).
Gastrointestinal ...Orally, annatto leaf powder has been reported to cause constipation (31612). Annatto food coloring has been associated with an increase in symptoms of irritable bowel syndrome (IBS) in one case report. A woman with frequent symptoms of diarrhea, bloating, and abdominal pain experienced an improvement in all symptoms upon elimination of annatto-containing products; symptoms returned after these products were added back into her diet (95142).
Immunologic ...When used as a food coloring, annatto causes rare cases of allergic reactions in children and adults. Reactions have occurred after consumption of cereal, cheese, ice cream, and other foods containing annatto food coloring, and use of cosmetics containing annatto. Symptoms include urticaria, angioedema, severe hypotension, and anaphylaxis (31619,31621,95157.109549). One patient with a history of urticaria after using cosmetics, or ingesting food containing annatto, was given oral doses of annatto gradually increasing from 1 mg to 100 mg at hourly intervals. Severe urticaria requiring treatment with antihistamines and corticosteroids occurred with doses of 50-100 mg, while milder reactions started at around 20 mg (109549). Reactions to annatto food coloring are possibly due to traces of seed protein (95157).
General
...Orally, apple fruit is well tolerated.
Apple seeds, which contain cyanide, may cause serious adverse effects when consumed in large amounts.
Most Common Adverse Effects:
Orally: Bloating, flatulence.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis. Ingestion of large amounts of apple seeds may cause cyanide poisoning, leading to death.
Gastrointestinal ...Orally, apple products, including whole apples, apple puree, and apple juice, may cause bloating and flatulence in some people (104184).
Immunologic ...Patients allergic to other fruits in the Rosaceae family, including apricot, almond, plum, peach, pear, and strawberry, can also be allergic to apples (7129). Rarely, the allergy has resulted in anaphylaxis (94425).
Other ...Orally, ingestion of large amounts of apple seeds, which contain hydrogen cyanide (HCN), may cause cyanide poisoning, leading to death. One death is attributed to ingestion of a cupful of apple seeds. To release cyanide, seeds must be hydrolyzed in the stomach, and several hours may elapse before poisoning symptoms occur (6).
General
...Asparagus is usually well tolerated when used in food amounts.
Information on its use in medicinal amounts is limited.
Most Common Adverse Effects:
Orally: Urine odor.
Serious Adverse Effects (Rare):
All routes of administration: Allergic reactions.
Gastrointestinal ...Orally, a specific combination product (Asparagus-P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused constipation, abdominal distension and pain, nausea, dry mouth, and gallbladder complaints in up to 50% of the study population in one clinical trial (94940). It is not clear if these effects were due to asparagus root, parsley, or the combination.
Genitourinary
...Orally, asparagus can cause a strong urine odor in some people.
It is not produced in all individuals, nor are all individuals able to smell the odor (32581,32583,32584,94942).
Orally, a specific combination product (Asparagus-P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused dysuria in approximately 2.5% of patients in one clinical trial (94940). It is not clear if this effect was due to asparagus root, parsley, or the combination.
Immunologic ...Orally and topically, asparagus can cause allergic reactions. They can occur in individuals sensitive to other members of the Liliaceae family, including onions, garlic, leeks, and chives (15557,15561,15562). Ingestion of fresh or canned asparagus can cause itchy eyes, runny nose, coughing, urticaria, dysphagia, dyspnea, and anaphylaxis in sensitized people (15561,15562,15564,32536,32594). There are also reports of fixed food eruptions, with lesions occurring at the same skin locations after ingesting asparagus on three separate occasions (15557,94941). Topically, exposure to asparagus during harvesting, processing, or cooking has caused contact dermatitis, urticaria, asthma, rhinitis, and conjunctivitis (15557,15561,15562,15564,32587,94943).
Musculoskeletal ...Orally, a specific combination product (Asparagus- P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused gout in approximately 2% of patients in one clinical trial (94940). It is not clear if this effect was due to asparagus root, parsley, or the combination.
Renal ...Orally, a specific combination product (Asparagus-P, Grunwalder) containing asparagus root 6 grams and parsley leaf 6 grams caused kidney pain and peripheral edema in approximately 15% of patients in one clinical trial (94940). It is not clear if these effects were due to asparagus root, parsley, or the combination.
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, beta-carotene is well-tolerated when used in appropriate amounts.
Most Common Adverse Effects:
Orally: Belching, orange skin (temporary).
Serious Adverse Effects (Rare):
Orally: Increased cardiovascular mortality and cancer risk in smokers and other specific patient populations.
Cardiovascular ...Orally, beta-carotene 20 to 30 mg daily seems to increase cardiovascular mortality by 12% to 26% in people who smoke (2642,3949,108641). Smokers and people with a history of asbestos exposure should not use beta-carotene supplements. In males who smoke and have had a prior myocardial infarction (MI), the risk of fatal coronary heart disease increases by as much as 43% with beta-carotene 20 mg daily (3937). These adverse effects do not seem to occur in people who eat foods high in beta-carotene content (1440,2657).
Dermatologic ...High oral doses of beta-carotene in foods or supplements can cause yellow or orange skin pigmentation called carotenoderma (11786,34572,34594,91382,108641). In clinical trials, the incidence of carotenoderma has been reported to be up to 15.8% (34626).
Gastrointestinal ...Orally, beta-carotene may cause belching (34572,34594).
Ocular/Otic ...In a case report, treatment with a high dose of beta-carotene and canthaxanthin for more than 6 years resulted in the development of glistening bright yellow crystalline deposits around the maculae. This resulted in a slight decrease in visual acuity and adaptation to the dark (34641).
Oncologic ...Smokers and people with a history of asbestos exposure should not use beta-carotene supplements. Beta-carotene in doses of 20 mg per day for 5-8 years has been associated with an increased risk of lung and prostate cancer and increased total mortality in people who smoke cigarettes (21 or more daily), and in people with a history of high-level asbestos exposure (3959,6393,11303,11786,104467,108641). These adverse effects do not seem to occur in people who eat foods high in beta-carotene content (1440,2657). There is also concern that beta-carotene might increase the risk of adverse outcomes in non-smokers. In one large-scale population study, males who took a multivitamin more than 7 times per week and who also took a separate beta-carotene supplement had a significantly increased risk of developing advanced prostate cancer (15607).
Pulmonary/Respiratory ...Clinical research shows that taking beta-carotene 20 mg daily, alone or along with vitamin E 50 mg daily, increases the risk of common colds by 21% to 25% in individuals participating in heavy exercise at leisure. However, it does not appear to affect the risk of common cold in individuals who participate in heavy activity at work (34508).
Other ...Analysis of studies in smokers and non-smokers suggests that taking beta-carotene supplements alone or in combination with other antioxidants increases the risk of mortality from all causes (15305).
General
...Orally and topically, biotin is generally well tolerated.
Most Common Adverse Effects: None.
Gastrointestinal ...Orally, high-dose biotin has been rarely associated with mild diarrhea. Transient mild diarrhea was reported by 2 patients taking biotin 300 mg daily (95662).
Pulmonary/Respiratory ...In one case report in France, a 76-year-old female frequent traveler developed eosinophilic pleuropericarditis after taking biotin 10 mg and pantothenic acid 300 mg daily for 2 months. She had also been taking trimetazidine for 6 years (3914). Whether eosinophilia in this case was related to biotin, pantothenic acid, other substances, or patient-specific conditions is unknown. There have been no other similar reports.
General ...Blackberry fruit is commonly consumed as a food without reports of adverse effects. However, a thorough evaluation of safety outcomes for blackberry when used as a medicine has not been conducted.
General
...Orally, blueberry is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, nausea, and vomiting with freeze-dried blueberries.
Gastrointestinal ...Orally, freeze-dried blueberries may cause constipation, diarrhea, nausea, and vomiting. In one clinical trial, 26% of patients taking freeze-dried blueberries 50 grams daily dropped out in the first week of the study due to gastrointestinal complaints (107278).
General ...Broccoli is well tolerated when consumed as food. A thorough evaluation of safety outcomes when broccoli is taken as medicine has not been conducted.
Dermatologic ...Topically, allergic reactions to broccoli have caused contact dermatitis (14158).
Gastrointestinal ...Orally, loose stools, diarrhea, abdominal pain, and abdominal cramping have been reported following intake of broccoli seed and sprout extracts, particularly at high doses (114753).
Hepatic ...In one case report, a 56-year-old adult developed elevated transaminases, with alanine aminotransferase (ALT) 5. 8 times above normal, aspartate aminotransferase (AST) 2.4 times above normal, and gamma-glutamyl transpeptidase (GGT) 5.1 times above normal. This was thought to be related to the consumption of 800 mL of broccoli juice daily over a 4-week period. Values returned to normal 15 days after cessation of juice consumption (96191).
Immunologic ...Topically, allergic reactions to broccoli have caused contact dermatitis (14158).
General ...Orally, Brussels sprout is generally well-tolerated when consumed in dietary amounts. Eating Brussels sprout or other types of fermentable carbohydrates can cause flatulence (26470).
Gastrointestinal ...Orally, eating Brussels sprout or other types of fermentable carbohydrates can cause flatulence (26470).
General ...Topically, cabbage leaf seems to be well-tolerated.
Dermatologic ...Some preliminary clinical research shows that application of cabbage leaf wraps to knee joints for at least 2 hours daily for 4 weeks is generally well-tolerated. Of the 27 patients using cabbage leaf wraps in this study, one patient reported an itching and burning sensation during the application. This patient was later found to have shingles, which may explain the adverse event (93671). However, in another case, a patient applying fresh Savoy cabbage leaves on his knee to reduce joint pain reported pain and burning after 4 hours of use. Skin patch and prick tests did not indicate an allergic reaction, and the patient's lesion improved with wet dressings, topical antibiotics, and oral antibiotics (93675).
Immunologic ...Topically, cabbage may cause contact dermatitis (93675). Allergic reactions to cabbage-related vegetables are rare. However, anaphylactic reactions to broccoli and cauliflower have been reported. Because the surface proteins believed to cause allergic reactions to brocolli are also found in cabbage, some patients allergic to brocolli or other vegetables in the Brassicaceae family may also be allergic to cabbage (92516).
Other ...Topical application of cabbage leaves to the breasts has been reported to stain clothes and put off an unpleasant smell (6781,6782).
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, capsicum is generally well tolerated in amounts typically found in food or when the extract is used in doses of up to 200 mg daily.
Topically and intranasally, capsaicin, a constituent of capsicum, is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, burning, diarrhea, dyspepsia, gas, headache, mild constipation, nausea, rhinorrhea, skin flushing, and sweating.
Serious Adverse Effects (Rare):
Orally: Cases of myocardial infarction and hypertensive crisis have been reported.
Cardiovascular
...Orally, palpitation was reported in one clinical trial (105196).
One case of myocardial infarction has been reported in a 41-year-old male without cardiovascular risk factors; the event was attributed to the use of an oral capsicum pepper pill that the patient had been taking for weight loss (40768). Another case of coronary vasospasm and acute myocardial infarction has been reported for a healthy 29-year-old male; the event was attributed to the use of a topical capsicum-containing patch that the patient had been applying to the middle of the back for 6 days (40658). Two cases of arterial hypertensive crisis have been reported for individuals who ingested a large amount of peppers and chili peppers the day before. One of the patients also had an acute myocardial infarction, and the other had high levels of thyroid stimulating hormone (40569,40606).
Dermatologic
...Orally, capsicum or its constituent capsaicin may cause urticaria and skin wheals in rare cases (96457,105203).
Topically, capsicum can cause a prickling sensation, itching, pain, burning, edema, stinging, irritation, rash, and erythema. About 1 in 10 patients who use capsaicin topically discontinue treatment because of adverse effects. These effects seem to occur more often with topical formulations containing higher concentrations of capsaicin, the active constituent of capsicum. Side effects tend to diminish with continued use (12401,15260,15261,40358,40439,40483,40547,40676,40682,40719)(40784,40847,92979,92983,92984,96453,105193,105197,105202,111514). In one case, application of a capsaicin 8% patch (Qutenza) for 60 minutes caused a second-degree burn, characterized by burning, erythema, severe pain, and blistering at the administration site. The burn was treated with topical corticosteroids, but 9 months later neuropathic pain persisted, resulting in limited mobility. It is unclear whether the mobility sequalae were caused by topical capsaicin or the patient's pre-existing neurological disorders (111514). Skin contact with fresh capsicum fruit can also cause irritation or contact dermatitis (12408).
Intranasally, capsaicin can cause nasal burning and pain in most patients. It also often causes lacrimation, sneezing, and excessive nasal secretion; however, these side effects appear to diminish with repeat applications (14323,14329,14358). In some cases, the burning sensation disappears after 5-8 applications (14351,14358). In some cases, patients are pretreated with intranasal lidocaine to decrease the pain of intranasal capsaicin treatment. However, even with lidocaine pretreatment, patients seem to experience significant pain (14324).
Gastrointestinal
...Orally, capsicum can cause upper abdominal discomfort, including irritation, fullness, dyspepsia, gas, bloating, nausea, epigastric pain and burning, anal burning, diarrhea, mild constipation, and belching (12403,12410,40338,40427,40456,40503,40560,40584,40605,40665)(40718,40725,40745,40808,40828,96456,96457,105194,105196).
There is a case report of a 3-year-old female who experienced a burning and swollen mouth and lips after touching the arm of a parent that had been treated with a capsaicin patch and then placing the fingers in the mouth (105199). Excessive amounts of capsaicin can lead to gastroenteritis and hepatic necrosis (12404). In a case report, a 40-year-old male with diabetes consumed white wine daily and chewed cayenne which was thought to result in black teeth stains and loss of enamel (40809). Some preliminary research links ingestion of capsaicin with stomach and gallbladder cancer; however the link may be due to contamination of capsaicin products with carcinogens (40771).
Topically, capsaicin can cause diarrhea and vomiting (105202).
Immunologic ...In a case report, a 34-year-old female had anaphylaxis involving difficulty breathing and stupor and also urticaria after consuming a red bell pepper, which is in the capsicum genus. The causal chemical was theorized to be 1,3-beta-glucanase (92978). In another case report, a 33-year-old female experienced angioedema, difficulty breathing and swallowing, and urticaria after ingesting raw green and red peppers (92982).
Neurologic/CNS ...Orally, capsicum can cause sweating and flushing of the head and neck, lacrimation, headache, faintness, and rhinorrhea (7005,12410,105196,105203). Topically, applying capsaicin can cause headache (96450,105202). Injection of capsaicin into the intermetatarsal space has also been associated with headache (96454).
Ocular/Otic
...Topically, capsicum can be extremely irritating to the eyes and mucous membranes.
Capsicum oleoresin, an oily extract in pepper self-defense sprays, causes intense eye pain. It can also cause erythema, blepharospasm, tearing, shortness of breath, and blurred vision. In rare cases, corneal abrasions have occurred (12408,12409,40345,40348,40383,40720,40857).
Inhalation of capsicum can cause eye irritation, and allergic alveolitis (5885). In a case report, a 38-year-old female had acute anterior uveitis that developed about 12 hours after using a specific patch (Isola Capsicum N Plus) that contained capsaicin 1.5 mg per patch and methyl salicylate 132 mg per patch for neck pain. The uveitis was controlled with topical steroids and did not recur (92977).
Oncologic ...Population research suggests that moderate to high intake of capsaicin, the active constituent of capsicum, is associated with an increased risk of gastric cancer, while low intake is associated with a decreased risk. It is not clear from the study what amount of capsaicin is considered high versus low intake (92988). Additionally, some research suggests that any link may be due to contamination of capsaicin products with carcinogens (40771).
Pulmonary/Respiratory
...Orally, difficulty breathing was reported in a clinical trial (105196).
Topically, nasopharyngitis related to the use of a cream containing capsaicin has been reported (105202).
Inhalation of capsicum and exposure to capsicum oleoresin spray can cause cough, dyspnea, pain in the nasal passages, sneezing, rhinitis, and nasal congestion (5885,15016,40522,40546,40647). In rare cases, inhalation of the capsicum oleoresin or pepper spray has caused cyanosis, apnea, respiratory arrest and death in people. Death was caused by asphyxiation probably due to acute laryngeal edema and bronchoconstriction from inhalation of the capsicum oleoresin spray (40546,40672,40837,40879).
In a case report, a 47-year-old female who was exposed to capsaicin gas for more than 20 minutes experienced acute cough, shortness of breath, short-term chest pain, wheezing, and difficulty breathing for months afterwards (92980). In rare cases, exposure to capsicum oleoresin spray resulted in apnea, pulmonary injury, cyanosis, and even respiratory arrest (40383,40546).
General
...Orally, carrot is well tolerated when consumed as a food.
It also seems to be generally well-tolerated when consumed as a medicine. Some people are allergic to carrot; allergic symptoms include anaphylactic, cutaneous, respiratory, and gastrointestinal reactions such as hives, swelling of the larynx, asthma, or diarrhea (25820,93606,106560). In infants, excessive consumption of carrot products in nursing bottles has been reported to cause extensive caries in the primary teeth (25817).
Topically, carrot has been associated with a case of phytophotodermatitis (101716).
Dental ...Orally, feeding carrot juice to infants, with or without sugar- or acid-containing beverages, has been reported to damage teeth and cause dental caries (25817).
Dermatologic ...Orally, excessive consumption of carrots or carrot-containing products can cause yellowing of the skin, which results from increased beta-carotene levels in the blood (25817). Carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306).
Gastrointestinal ...Orally, carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods can include gastrointestinal symptoms, such as diarrhea (25820).
Immunologic
...Orally, carrots may cause allergic reactions in some patients (25820,96306,106560).
Allergic responses to carrot-containing foods can include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306). For one patient, treatment of skin lesions resolved after a month of oral antihistamines and topical steroids, and avoiding further contact with carrot (96306). Allergic responses to carrot-containing foods can also include gastrointestinal symptoms, such as diarrhea, and respiratory symptoms, such as swelling of the larynx or asthma (25820). In one case, a patient with a history of allergic rhinitis and asthma who had been successfully treated with subcutaneous immunotherapy and was tolerant of consumption of raw and cooked carrots developed rhinoconjunctivitis when handling carrots. Inhalation of dust particles and aerosols produced by food processing activities and containing allergens from the peel and pulp of carrots is thought to have sensitized the airway, producing a distinct form of respiratory food allergy in which there are typically no symptoms with ingestion (106560).
Topically, a female runner developed phytophotodermatitis, which was considered possibly associated with the inclusion of carrot in a sunscreen (Yes To Carrots Daily Facial Moisturizer with SPF 15; Yes to, Inc.) (101716).
Psychiatric ...Compulsive carrot eating is a rare condition in which the patient craves carrots. According to one case report, withdrawal symptoms include nervousness, cravings, insomnia, water brash, and irritability (25821).
General ...Orally, no adverse effects have been reported when cauliflower is used medicinal amounts; however, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, celery seems to be well tolerated.
Most Common Adverse Effects:
Orally: Photosensitivity. Oral allergy syndrome in sensitive individuals.
Topically: Photosensitivity. Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Dermatologic
...Due to its psoralen content, contact with or ingestion of celery and exposure to ultraviolet radiation may cause photodermatitis (4,34347,40968,40969,40986,41085,41087,41143,41146,41151).
Acute symptoms include skin eruption with edema and erythema; the main chronic symptom is hyperpigmentation at the eruption site (41093).
Celery can also cause contact or atopic dermatitis (19,41118,41124) and urticaria pigmentosa (40908).
Endocrine
...Celery has been associated with hyperthyroidism in otherwise healthy adults.
In one case report a 36-year-old female presented with weight loss, blurred vision, nausea, palpitations, sweating, exophthalmos, elevated serum T4 levels, and low thyroid stimulating hormone (TSH) levels after taking 8 grams of a powdered celery extract for 78 days (102912). In another case report, a 48-year-old male presented with weight loss, exophthalmos, sweating, elevated serum T4 levels, and low TSH levels after taking 4 grams of dried celery leaves for 45 days (102914). In both of these cases, symptoms resolved and thyroid function tests normalized after discontinuing celery and completing a course of methimazole.
In contrast, several cases of hypothyroidism with low T4 levels have been reported in people who were previously stabilized on levothyroxine and then started taking celery seed tablets. They presented with symptoms such as lethargy, bloating, and dry skin, and recovered when celery seed was stopped (10646).
Gastrointestinal ...Symptoms of celery allergy have included oral allergy syndrome, characterized by itching and burning in the mouth and throat (41159,40977,115301), and laryngeal edema (40953).
Immunologic
...Raw celery, cooked celery, and celery juice can all cause allergic reactions (40908,40926,41118,41131,92852,92855,115301).
Symptoms of celery allergy include laryngeal edema, skin reactions, nasal congestion and discharge, an urticaria-edema-anaphylactic shock syndrome, celery-dependent exercise-induced anaphylaxis, and anaphylactic shock (40953,41100,41102,41107,41115,41124,41129,41135,41137,92852)(92855,115301). Additionally, in clinical research, itchy throat has been reported in individuals taking celery seed powder (112410).
There is a case report of anaphylactic shock involving hypotension, tachycardia, and tachypnea in a patient who had ingested raw celery 15 minutes prior to symptom onset. The patient was treated with epinephrine, dexamethasone, and antazoline (92855). Another case report describes a patient with positive skin prick tests to celery, pollens including birch, chrysanthemum, mugwort, and ragweed, and to dust mites. When celery was consumed 30 minutes prior to exercise, the patient had an anaphylactic reaction that required treatment with intravenous pheniramine and corticosteroid, as well as nebulized albuterol (92852). Additionally, a patient with a history of shortness of breath and cough after consuming a spice mixture containing dried celery had a positive food challenge with 15 grams of cooked celery mixed with different ingredients to mask the taste. The patient's reaction included wheezing, tachycardia, and itching, and treatment required intravenous dexamethasone and clemastinum and intramuscular epinephrine. Notably, prior to the food challenge, the patient had a negative skin prick test to food allergens including celery, but an inhibition assay confirmed cross-sensitivity to mugwort(115301). Another patient with a history of anaphylactic reactions to undeclared celery in restaurant meals was able to undergo desensitization with gradually increasing oral doses of celery juice over several months, and then chronic daily ingestion of the juice to maintain hyposensitization (40908).
General
...Orally, chromium is generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal irritation, headaches, insomnia, irritability, mood changes.
Serious Adverse Effects (Rare):
Orally: Rare cases of kidney and liver damage, rhabdomyolysis, and thrombocytopenia have been reported.
Dermatologic
...Orally, chromium-containing supplements may cause acute generalized exanthematous pustulosis (42561), skin rashes (42679), and urticaria (17224).
Also, chromium picolinate or chromium chloride may cause systemic contact dermatitis when taken orally, especially in patients with contact allergy to chromium (6624,90058). In one clinical study, a patient taking chromium nicotinate 50 mcg daily reported itchy palms that improved after the intervention was discontinued. It is unclear of this effect was due to the chromium or another factor (95096).
Topically, hexavalent chromium, which can be present in some cement, leather products, or contaminated soil, may cause allergic contact dermatitis (42645,42789,90060,90064,110606).
A case of lichen planus has been reported for a patient following long-term occupational exposure to chromium (42688).
Endocrine ...Orally, cases of hypoglycemia have been reported for patients taking chromium picolinate 200-1000 mcg daily alone or 200-300 mcg two or three times weekly in combination with insulin (42672,42783). Chromium picolinate has also been associated with weight gain in young females who do not exercise and in those following a weight-lifting program (1938).
Gastrointestinal
...Orally, chromium in the form of chromium picolinate, chromium polynicotinate, chromium-containing brewer's yeast, or chromium-containing milk powder may cause nausea, vomiting, diarrhea, decreased appetite, constipation, flatulence, or gastrointestinal upset (14325,42594,42607,42622,42643,42679).
Long-term exposure to heavy metals, including chromium, has been associated with increased risk of gallbladder disease and cancer (42682,42704).
Genitourinary ...Orally, chromium polynicotinate has been associated with disrupted menstrual cycles in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Hematologic ...Anemia, hemolysis, and thrombocytopenia were reported in a 33 year-old female taking chromium picolinate 1200-2400 mcg daily for 4-5 months (554). The patient received supportive care, blood product transfusions, and hemodialysis and was stabilized and discharged a few days later. Lab values were normal at a one-year follow-up.
Hepatic ...Liver damage has been reported for a 33-year-old female taking chromium picolinate 1200 mcg daily for 4-5 months (554). Also, acute hepatitis has been reported in a patient taking chromium polynicotinate 200 mcg daily for 5 months (9141). Symptoms resolved when the product was discontinued. Two cases of hepatotoxicity have been reported in patients who took a specific combination product (Hydroxycut), which also contained chromium polynicotinate in addition to several herbs (13037).
Musculoskeletal ...Acute rhabdomyolysis has been reported for a previously healthy 24-year-old female who ingested chromium picolinate 1200 mcg over a 48-hour time period (42786). Also, chromium polynicotinate has been associated with leg pain and paresthesia in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Neurologic/CNS ...Orally, chromium picolinate may cause headache, paresthesia, insomnia, dizziness, and vertigo (6860,10309,14325,42594). Vague cognitive symptoms, slowed thought processes, and difficulty driving occurred on three separate occasions in a healthy 35-year-old male after oral intake of chromium picolinate 200-400 mcg (42751). Transient increases in dreaming have been reported in three patients with dysthymia treated with chromium picolinate in combination with sertraline (2659). A specific combination product (Hydroxycut) containing chromium, caffeine, and ephedra has been associated with seizures (10307). But the most likely causative agent in this case is ephedra.
Psychiatric ...Orally, chromium picolinate has been associated with irritability and mood changes in patients taking the supplement to lose weight, while chromium polynicotinate has been associated with agitation and mood changes in patients taking the supplement to prevent weight gain during smoking cessation (6860,42643).
Renal
...Orally, chromium picolinate has been associated with at least one report of chronic interstitial nephritis and two reports of acute tubular necrosis (554,1951,14312).
Laboratory evidence suggests that chromium does not cause kidney tissue damage even after long-term, high-dose exposure (7135); however, patient- or product-specific factors could potentially increase the risk of chromium-related kidney damage. More evidence is needed to determine what role, if any, chromium has in potentially causing kidney damage.
Intravenously, chromium is associated with decreased glomerular filtration rate (GFR) in children who receive long-term chromium-containing total parenteral nutrition - TPN (11787).
Topically, burns caused by chromic acid, a hexavalent form of chromium, have been associated with acute chromium poisoning with acute renal failure (42699). Early excision of affected skin and dialysis are performed to prevent systemic toxicity.
Other ...Another form of chromium, called hexavalent chromium, is unsafe. This type of chromium is a by-product of some manufacturing processes. Chronic exposure can cause liver, kidney, or cardiac failure, pulmonary complications, anemia, and hemolysis (9141,11786,42572,42573,42699). Occupational inhalation of hexavalent chromium can cause ulceration of the nasal mucosa and perforation of the nasal septum, and has been associated with pneumoconiosis, allergic asthma, cough, shortness of breath, wheezing, and increased susceptibility to respiratory tract cancer and even stomach and germ cell cancers (42572,42573,42601,42610,42636,42667,42648,42601,42788,90056,90066). Although rare, cases of interstitial pneumonia associated with chromium inhalation have been reported. Symptoms resolved with corticosteroid treatment (42614).
General
...Orally, cucumber is well tolerated in food amounts.
Cucumber extract and seed extract also seem to be well tolerated. Topically, the extract, fruit, fruit extract, fruit water, juice, seed extract, and seed oil of cucumber are well tolerated.
Most Common Adverse Effects:
Topically: Allergic eczema, erythema, irritation.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Dermatologic ...Topically, mild redness and irritation have occurred rarely (103382).
Immunologic
...Orally, anaphylaxis with dizziness, vomiting, trouble breathing, and itching, occurring 5 minutes after eating a partially peeled cucumber, has been reported in a 76-year-old woman (103382,103384).
Topically, allergic eczema related to exposure to cucumber leaves and stems has been reported in a greenhouse worker (103382,103393).
General
...Orally, folic acid is generally well-tolerated in amounts found in fortified foods, as well as in supplemental doses of less than 1 mg daily.
Most Common Adverse Effects:
Orally: At doses of 5 mg daily - abdominal cramps, diarrhea, and rash. At doses of 15 mg daily - bitter taste, confusion, hyperactivity, impaired judgment, irritability, nausea, sleep disturbances.
Serious Adverse Effects (Rare):
Orally: Cancer (long-term use), cardiovascular complications, liver injury, seizures.
All ROAs: Allergic reactions such as bronchospasm and anaphylactic shock.
Cardiovascular ...There is some concern that high oral doses of folic acid might increase the risk of adverse cardiovascular outcomes. Clinical research shows that taking doses of 800 mcg to 1.2 mg/day might increase the risk of adverse cardiovascular events in patients with cardiovascular disease (12150,13482). High doses of folic acid might promote cell growth by providing large amounts of the biochemical precursors needed for cell replication. Overgrowth of cells in the vascular wall might increase the risk of occlusion (12150). Although some research suggests that use of folic acid might increase the need for coronary revascularization, analysis of multiple studies suggests that taking folic acid up to 5 mg/day for up to 24 months does not appear to affect coronary revascularization risk (90798).
Dermatologic ...Orally, folic acid 1-5 mg daily can cause rash (7225,90375,91319). Folic acid 15 mg daily can sometimes cause allergic skin reactions (15).
Gastrointestinal ...Orally, folic acid 5 mg daily can cause abdominal cramps and diarrhea (7225). Folic acid 15 mg daily can sometimes cause nausea, abdominal distention, flatulence, and bitter taste in the mouth (15). In children aged 6-30 months at risk of malnourishment, taking a nutritional supplement (Nutriset Ltd) enriched in folic acid 75-150 mcg daily, with or without vitamin B 12 0.9-1.8 mcg daily, for 6 months increases the likelihood of having persistent diarrhea (90391).
Hepatic ...Liver dysfunction, with jaundice and very high liver enzymes, occurred in a 30-year-old pregnant patient with severe nausea and vomiting taking a folic acid supplement (Folic acid, Nature Made) 400 mcg daily. Based on the timing of ingestion, the lack of other etiological factors, a positive drug-induced lymphocyte stimulation test, and liver function normalization once the folic acid had been stopped, the authors suggest the folic acid supplement was the cause. However, the authors did not determine which substance in the folic acid supplement was responsible and therefore it cannot be determined that folic acid itself was the cause (91309).
Neurologic/CNS ...Orally, folic acid 15 mg daily can sometimes cause altered sleep patterns, vivid dreaming, irritability, excitability, hyperactivity, confusion, and impaired judgment (15). Large doses of folic acid can also precipitate or exacerbate neuropathy in people deficient in vitamin B12 (6243). Use of folic acid for undiagnosed anemia has masked the symptoms of pernicious anemia, resulting in lack of treatment and eventual neurological damage (15). Patients should be warned not to self-treat suspected anemia. There is also some concern that consuming high amounts of folic acid from the diet and/or supplements might worsen cognitive decline in older people. A large-scale study suggests that people over 65 years of age, who consume large amounts of folic acid (median of 742 mcg/day), have cognitive decline at a rate twice as fast as those consuming smaller amounts (median of 186 mcg/day). It's not known if this is directly attributable to folic acid. It is theorized that it could be due to folic acid masking a vitamin B12 deficiency. Vitamin B12 deficiency is associated with cognitive decline (13068). More evidence is needed to determine the significance of this finding. For now, suggest that most patients aim for the recommended folic acid intake of 400 mcg/day.
Oncologic
...There is some concern that high dose folic acid might increase the risk of cancer, although research is unclear and conflicting.
A large-scale population study suggests that taking a multivitamin more than 7 times per week with a separate folic acid supplement significantly increased the risk of prostate cancer (15607). Clinical research also shows that taking folic acid 1 mg daily increase the absolute risk of prostate cancer by 6.4% over a 10-year period when compared with placebo. However, those with a higher baseline dietary intake of folic acid had a lower rate of prostate cancer, but this was not statistically significant. Also, folate and folic acid intake in patients with prostate cancer is not associated with the risk of prostate cancer recurrence after radical prostatectomy (91317). However, it is possible that discrepancies are due to dietary folate versus folic acid intake. Large analyses of population studies suggest that while dietary folate/folic acid is not associated with prostate cancer, high blood folate/folic acid increases the risk of prostate cancer (50411,91316).
Additional clinical research shows that taking folic acid 800 mcg daily, in combination with vitamin B12 400 mcg, significantly increases the risk of developing cancer, especially lung cancer, and all-cause mortality in patients with cardiovascular disease (17041). However, this may be due to vitamin B12, as other observational research found that higher vitamin B12 levels are linked with an increased risk for lung cancer (102383). Meta-analyses of large supplementation trials of folic acid at levels between 0.5-2.5 mg daily also suggest an increased risk of cancer (50497,110318). Also, in elderly individuals, taking folic acid 400 mcg daily with vitamin B12 500 mcg daily increased the risk of cancer. The risk was highest in individuals over 80 years of age and in females and mainly involved gastrointestinal and colorectal cancers (90393).
Not all researchers suspect that high intake of folic acid supplements might be harmful. Some research suggests that increased dietary intake of folic acid, along with other nutrients, might be protective against cancer (16822). A meta-analysis of multiple clinical trials suggests that folic acid supplementation studies with folic acid levels between 500 mcg to 50 mg/day does not increase the risk of general or site-specific cancer for up to 7 years (91312,91321). Also, a post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378).
Psychiatric ...Orally, folic acid 15 mg daily can sometimes cause exacerbation of seizure frequency and psychotic behavior (15).
Pulmonary/Respiratory ...Folic acid use in late pregnancy has been associated with an increased risk of persistent and childhood asthma at 3. 5 years in population research (50380). When taken pre-pregnancy or early in pregnancy, population research has not found an association with increased risk of asthma or allergies in childhood (90799,103979). Folic acid use in pregnancy has been associated with a slightly increased risk of wheeze and lower respiratory tract infections up to 18 months of age in population research (50328).
General
...Orally, garlic is generally well tolerated.
Topically, garlic seems to be well tolerated. Intravenously, there is insufficient reliable information available about adverse effects.
Most Common Adverse Effects:
Orally: Abdominal pain, body odor, flatulence, malodorous breath, and nausea. Allergic reactions in sensitive individuals.
Topically: Burns and dermatitis with fresh garlic.
Serious Adverse Effects (Rare):
Orally: Some case reports raise concerns about increased risk of bleeding with garlic.
Dermatologic
...Orally, garlic may cause pruritus (51316,51474,107239), flushing, and acne (107239).
Oral intake of a specific garlic product containing allicin (Allimax) has been associated with a case of pruritic rash (51474). Enteric-coated garlic tablets standardized to 1.5% allicin have also been associated with a case of pruritus (51316). Garlic has also been associated with a case of superficial pemphigus in a 49-year-old male with type 2 diabetes (51564). Garlic-induced oral ulcers have also been reported (51467).
Topically, garlic may cause contact dermatitis and urticaria (4833,5004,12635,51258,51265,51375,51403,51412,51459,51483)(51511,51512,51530,51616,51617,51618,111769), as well as contact cheilitis (51384). Fresh garlic may be more likely to elicit a reaction than garlic extract. Most reactions have resolved following withdrawal of garlic therapy. In one case report, applying crushed garlic on the neck to help ease a sore throat resulted in an itchy, burning, erythematous lesion in a young female patient. The lesion healed after one week of treatment with topical antibiotics, steroids, and antihistamine ointments (88390). Cases of occupational eczema or dermatitis have been reported in cooks (51303,51210), food handlers (51292), and caterers (51304). According to one case report, dermatitis appeared in chefs exposed to garlic (15033). Treatment with acitretin 25 mg daily or topical psoralen-ultraviolet A (PUVA) for 12 weeks proved effective in mitigating the symptoms. A 34-year-old female with a history of hand dermatitis and paronychia had a worsening of these conditions after peeling raw garlic. She had a positive skin patch test to fresh, raw garlic but not to any other tested allergens, and the conditions resolved when she avoided contact with garlic (105528). Topically, garlic may also cause chemical burns, usually within 12 hours of application. Second- and third-degree chemical burns have been reported in adults, children, and infants exposed to topical garlic, often as an unintended consequence of using garlic medicinally on the skin (585,4832,51226,51230,51252,51281,51377,51418,51468,51495,51536)(51558,51576,51577,88409,96006). A case of painful blisters on the soles of the feet of a 23-year-old Chinese female has been attributed to chemical burns caused by applying crushed raw garlic for 3 hours (51440). Topically, garlic may also cause hyperpigmentation, ulcers, necrotic lesions, facial flushing, and local irritation (4832,15030,51268,51269,108606). In one case report, applying crushed raw garlic to the palatal mucosa for several minutes to relieve mouth pain resulted in a chemical burn that produced a 3 cm necrotic ulcer in an adult female with trigeminal neuralgia (108606).
Gastrointestinal
...Orally, dehydrated garlic preparations or raw garlic may cause malodorous breath (51438,51444), body odor (732,1873,4784,4793,4795,4798,9201,10787,42692,49769)(51269,51316,51467,51602), abdominal pain or fullness, anorexia, diarrhea, constipation, flatulence, belching, heartburn, nausea, unpleasant taste, reflux, and bowel obstruction (1884,6457,6897,9201,49769,51269,51343,51380,51438,51442)(51450,51457,51466,51471,51474,51520,51593,51602,51623,88398)(88405,111766,114892).
Large quantities of garlic may damage the gastrointestinal tract. In one case report, a patient taking garlic for hypertension reported odynophagia and retrosternal pain after taking garlic without any water the previous day. An esophageal lesion 3 cm in length was detected upon endoscopy. The symptoms resolved 3 days after starting a liquid diet and taking lansoprazole 30 mg twice daily and sucralfate four times daily (88389). One case of bowel obstruction was reported in a 66-year-old male who ingested an entire garlic bulb (51525). Esophageal perforation has been reported in at least 17 individuals who consumed entire garlic cloves. In one case the perforation led to mediastinitis and death (102672).
Garlic has also been associated with eosinophilic infiltration of the gastrointestinal tract. In one case report a 42-year-old female presented with symptoms of eosinophilic gastroenteritis, which included pollinosis, asthma, diarrhea, heart burn, peripheral eosinophilia, and urticaria. After stopping use of garlic and sesame, the patient improved (51441). In a case report of eosinophilic esophagitis, garlic was determined to be the causative agent in a patient with long-standing gastrointestinal symptoms. The patient had attempted to treat upper gastrointestinal symptoms as gastrointestinal reflux disease without success for many years. Skin prick testing showed a positive reaction to garlic, of which the patient noted frequent consumption. Marked symptom improvement was noted within 3 weeks of garlic avoidance (88393).
Intravenously, garlic 1 mg/kg of body weight daily diluted into 500 mL saline and administered over 4 hours has been reported to cause abdominal discomfort, vomiting, diarrhea, nausea, anorexia, flatulence, weight loss, and garlicky body odor (51462).
Clinical research suggests that patients with metabolic syndrome taking 1600 mg of powdered garlic by mouth daily for 3 months may experience improved intestinal transit time when compared with placebo, suggesting that garlic powder may reduce symptoms of constipation (110722).
Genitourinary ...Orally, garlic might cause dysuria, hematuria, or polyuria (51438,51450,51467,113618). In one case, an older male with high dietary and supplemental garlic intake at doses of 300-5400 mg daily for 3-4 years developed severe hematuria with clots after undergoing a minimally invasive prostate procedure (113618).
Hematologic
...Oral use of dietary garlic or supplements containing garlic has caused platelet dysfunction, increased fibrinolytic activity, prolonged bleeding time, retrobulbar hemorrhage (bleeding behind the eye) postoperative bleeding, and spinal epidural hematoma (586,587,4801,4802,11325,51397,51473,51491,51532,51534)(51570,51584,51593,51594,113618).
Also, a case of kidney hematoma following extracorporeal shock-wave lithotripsy (SWL) has been reported in a patient with nephrolithiasis who took aged garlic (51630). A case of increased bleeding time that complicated epistaxis management has been reported in a patient taking garlic, aspirin, and milk thistle (51426).
Intravenously, garlic has been associated with the development of thrombophlebitis at the injection site (51462).
Immunologic
...There is a case report of an immediate sensitivity reaction to oral raw garlic, resulting in wheals, in a 31-year-old female.
The patient did not react to cooked garlic, and skin prick tests showed allergy only to raw garlic (96015). Researchers note that at least some allergens in raw garlic are heat labile (88392,96012,96015). This suggests that consuming cooked rather than raw garlic may help avoid this reaction in patients allergic to raw garlic. However, different people react to different allergens in garlic. At least some of these allergens are heat stable (96012). While rare, garlic-induced anaphylaxis has been reported (88392,96012).
Topically, allergic contact dermatitis has been reported in case reports (51406,51498,51510,51519,51560).
Musculoskeletal ...Orally, garlic has been associated with individual cases of gout and low back pain (51474,51467), but it is not clear if these adverse events can be attributed to garlic.
Neurologic/CNS ...Orally, dizziness, insomnia, headaches, diaphoresis, fever, chills, somnolence, increased appetite, euphoria, and weight loss have been reported with garlic (15032,42692,51316,51467,51471,51520). In one case, the smell of garlic was identified as a trigger for migraines in a 32-year-old female. The subject reported fortification spectra along with visual spots for a few seconds followed by instantaneous biparietal, crushing level (10/10) headaches upon exposure to the scent of garlic or onion (88404).
Pulmonary/Respiratory ...Garlic exposure, most notably in occupational settings, may cause asthma and other symptoms such as sneezing, nasal obstruction, rhinorrhea, and sinusitis (40661,51218). A case of minor hemoptysis has been reported for one patient with cystic fibrosis following intake of garlic capsules orally once daily for 8 weeks (51438). A 77-year-old female developed pneumonia related to the intake of one whole black garlic clove daily. The cloves were prepared by heating a whole garlic bulb in a pot for one month. Symptoms included dyspnea and coughing, and test results were positive for lymphocyte-induced stimulation by black garlic and raw garlic. The patient required treatment with oral steroids and was told to avoid garlic (96011).
General
...Orally, ginger is generally well tolerated.
However, higher doses of 5 grams per day increase the risk of side effects and reduce tolerability. Topically, ginger seems to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, burping, diarrhea, heartburn, and a pepper-like irritant effect in the mouth and throat. However, some of these mild symptoms may be reduced by ingesting encapsulated ginger in place of powdered ginger.
Topically: Dermatitis in sensitive individuals.
Cardiovascular ...Orally, use of ginger resulted in mild arrhythmia in one patient in a clinical trial (16306).
Dermatologic
...Orally, ginger can cause hives (17933), as well as bruising and flushing (20316) or rash (20316).
Topically, ginger can cause dermatitis in sensitive individuals (12635,46902).
Gastrointestinal
...Orally, common side effects of ginger include nausea (17933,22602,89898,101761), belching (10380,103359), dry mouth (103359), dry retching (10380), vomiting (10380), burning sensation (10380), oral numbness (22602), abdominal discomfort (5343,89898,96253), heartburn (5343,7624,12472,16306,20316,51845,89894,89895,89898,89899)(101760,101761,101762,111543), diarrhea (5343,101760), constipation (89898,101760,101761), or a transient burning or "chilly hot" sensation of the tongue and throat (52076).
Orally, Number Ten, a specific product composed of rhubarb, ginger, astragalus, red sage, and turmeric, can increase the incidence of loose stools (20346).
Four cases of small bowel obstruction due to ginger bolus have been reported following the ingestion of raw ginger without sufficient mastication (chewing). In each case, the bolus was removed by enterotomy. Ginger is composed of cellulose and therefore is resistant to digestion. It can absorb water, which may cause it to swell and become lodged in narrow areas of the digestive tract (52115).
Genitourinary ...In one clinical trial, some patients reported increased menstrual bleeding while taking a specific ginger extract (Zintoma, Goldaru) 250 mg four times daily orally for 3 days (17931). An "intense" urge to urinate after 30 minutes was reported in two of eight patients given 0.5-1 gram of ginger (7624). However, this effect has not been corroborated elsewhere. Dysuria, flank pain, perineal pain, and urinary stream interruption have been reported in a 43-year-old male who drank ginger tea, containing 2-3 teaspoons of dry ginger, daily over 15 years. The adverse effects persisted for 4 years and were not associated with increases in urinary frequency or urgency. Upon discontinuing ginger, the patient's symptoms began to improve within one week and completely resolved after eight weeks, with no relapses six months later (107902).
Immunologic ...In one case report, a 59-year-old Japanese female with multiple allergic sensitivities developed pruritus and then anaphylactic shock after taking an oral ginger-containing herbal supplement for motion sickness (Keimei Gashinsan, Keimeido). The patient had used this supplement previously for over 20 years with no allergic reaction. The authors theorized the development of a cross-reactivity to ginger after the use of an oral supplement containing zedoary and turmeric, which are also in the Zingiberaceae family (102463).
Neurologic/CNS ...Orally, ginger may cause sedation, drowsiness, or dizziness (16306,17933,51845).
General ...Orally, guava leaf extract may cause transient abdominal pain or nausea (101782). Topically, guava leaf extract may cause contact dermatitis (95560).
Dermatologic ...Topically, guava leaf extract may cause contact dermatitis and worsen atopic dermatitis. Exacerbation of atopic dermatitis has been reported for a 17-year-old male who added tea bags containing guava leaf 30 grams to his bath to help treat his condition. His eczema worsened after bathing with the guava tea bags and improved after discontinuation of use. Based on laboratory testing, the exacerbation of eczema was attributed to positive skin reactions of the patient to a protein and tannins found in guava leaf extract (95560).
Gastrointestinal ...Orally, transient abdominal pain or nausea has been reported in a clinical trial (101782).
General
...Orally and topically, holy basil extract seems to be well tolerated.
Most Common Adverse Effects:
Orally: Loose stools and nausea.
Topically: Bitter taste with oral application.
Gastrointestinal
...Orally, two out of 24 participants taking capsules containing holy basil extract in one clinical study experienced nausea or loose stools (55037).
Topically, holy basil mouthwash has been reported to cause a bitter taste in clinical trials (55038).
General ...Orally, Indian gooseberry seems to be well tolerated.
Dermatologic ...Orally, itching has been reported by one individual in a clinical trial (105354).
Gastrointestinal ...Orally, epigastric discomfort or dyspepsia have been reported by up to four individuals in clinical trials (105354,105356).
Hepatic ...In clinical research, increased serum glutamic pyruvic transaminase (SGPT) levels, with otherwise normal liver function, occurred in patients taking Ayurvedic formulations containing ginger, Tinospora cordifolia, and Indian gooseberry, with or without Boswellia serrata. The SGPT levels normalized after discontinuing the treatments (89557). It is unclear if these hepatic effects were due to Indian gooseberry or other ingredients contained in the formulations.
Musculoskeletal ...Orally, musculoskeletal pain has been reported by three individuals in a clinical trial (105354).
Neurologic/CNS ...Orally, fatigue has been reported by one individual in a clinical trial (105354).
Pulmonary/Respiratory ...Orally, breathlessness has been reported by one individual in a clinical trial (105354).
General
...Orally, iodine is well tolerated when taken in amounts that do not exceed the tolerable upper intake level (UL) or when used therapeutically with appropriate medical monitoring (2197,7080,7135).
Most Common Adverse Effects:
Orally: Abdominal upset, diarrhea, goiter, headache, hyperthyroidism, hypothyroidism, metallic taste, nausea, rhinorrhea, thyroid adenoma.
Topically: Burns, dermatitis, irritation.
Serious Adverse Effects (Rare):
All ROAs: Hypersensitivity reactions such as anaphylaxis and angioedema.
Dermatologic
...Orally, taking iodine chronically or in large amounts has been reported to cause acneform skin lesions called iododerma (2138).
In one case, a patient developed iododerma after consuming a specific product (Hoxsey's Brown Tonic) containing an unspecified quantity of potassium iodide. After several months of consumption, the patient developed acneform skin lesions on the nose, cheeks, and upper back and presented with a urine iodine level of 7,455,647 ug/L (reference range: 34-523 ug/L). After discontinuation of potassium iodide, the lesions resolved gradually over the course of several weeks (95431).
Topically, iodine may stain skin, irritate tissues, and cause sensitization in some individuals (15,56106). Iodine burns are associated with application of 7% hydroalcoholic solution (15). Povidone-iodine may cause contact dermatitis or irritant reactions in some people. However, patch testing with potassium iodide is usually negative in these patients, indicating that contact dermatitis caused by topical iodine does not indicate a propensity for reaction to oral potassium iodide (93001).
Endocrine
...Prolonged use and/or large oral doses of iodine intake can cause thyroid gland hyperplasia, thyroid adenoma, goiter, and hypothyroidism (15,56013,56089,91397,91398,99793,99795).
In another case report, an infant presented with reversible hypothyroidism at birth because the mother had consumed excessive seaweed soup during and after pregnancy, which resulted in excessive iodine consumption (99795). Iodine has also been linked to rare cases of adverse events. In one case report, a 56-year-old male developed thyrotoxic hypokalemic paralysis thought to be related to excessive intake of iodine (91401).
Topically, using povidone-iodine (PI) 1% solution as a gargle and nasal spray, in addition to intranasal application of PI 10% ointment over 5 days, can precipitate subclinical hypothyroidism, with elevated thyroid stimulating hormone (TSH) and normal thyroid hormone levels. TSH levels seem to normalize about 7-12 days after stopping topical PI application (105877).
Gastrointestinal
...Orally, the commonly reported adverse effects of a saturated solution of potassium iodide (SSKI) are nausea (14%), abdominal pain (14%), metallic taste (4%), and diarrhea (4%) (17561).
These side effects can be minimized by avoiding quick dosage increases (17574). Taking iodine chronically or in large amounts has also been reported to cause soreness in teeth and gums, burning in mouth and throat, increased salivation, swelling of parotid and submaxillary glands, inflammation of the respiratory tract, gastric upset, and diarrhea (15,2138).
Intranasally, applying povidone-iodine 1% solution along with a 10% ointment can cause unpleasant nasal tingling (105877).
Immunologic ...People who are allergic to iodine-containing foods or drugs are sometimes stated to have "iodine allergy", but the actual allergen is another agent such as seafood proteins or radiocontrast media (93001). However, some people can be hypersensitive to iodine when used orally. Symptoms of hypersensitivity can include angioedema, cutaneous and mucosal hemorrhage, fever, arthralgia, lymph node enlargement, eosinophilia, urticaria, erythema, and thrombotic thrombocytopenic purpura (15,17561). Other reported side effects include potassium toxicity, metabolic acidosis, pustular psoriasis, and vasculitis (17574). However, such sensitivity is very rare (93001). Orally, iodine hypersensitivity can cause fatal periarteritis (15).
Neurologic/CNS
...Orally, common side effects of a saturated solution of potassium iodide (SSKI) have included headache (7%) (17561).
Side effects can be minimized by avoiding quick dosage increases (17574).
High intake of iodine may be associated with adverse cognitive outcomes in children. Observational research in children aged 7-14 years has found that those consuming drinking water with iodine concentrations above 900 mcg/L daily, which exceeds the tolerable upper intake level, is associated with a 1.6-point reduction in intelligence level when compared with those consuming water with iodine concentrations below 300 mcg/L (108709).
Ocular/Otic ...Orally, taking iodine chronically or in large amounts has been reported to cause eye irritation and eyelid swelling (15,2138).
Pulmonary/Respiratory ...Orally, common side effects of a saturated solution of potassium iodide (SSKI) included rhinorrhea (11%) (17561). Side effects can be minimized by avoiding quick dosage increases (17574). Taking iodine chronically or in large amounts has also been reported to cause coryza, sneezing, cough, and pulmonary edema (15,2138). Ophthalmically, povidone-iodine 5% solution 3 drops administered in each eye has been reported to slow respiration by about 18 seconds (range 4 to 96 seconds) when compared with saline control in children ages 2-17 years undergoing strabismus surgery (103077).
Renal ...When povidone-iodine was used in renal pelvic instillation sclerotherapy, one patient (2%) had significant flank pain during treatment (55970).
General
...Orally or intravenously, iron is generally well tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, gastrointestinal irritation, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about oral or gastric ulcerations.
Intravenously: Case reports have raised concerns about hypophosphatemia and osteomalacia.
Cardiovascular
...There is debate regarding the association between coronary heart disease (CHD) or myocardial infarction (MI) and high iron intake or high body iron stores.
Some observational studies have reported that high body iron stores are associated with increased risk of MI and CHD (1492,9542,9544,9545,15175). Some observational studies reported that only high heme iron intake from dietary sources such as red meat are associated with increased risk of MI and CHD (1492,9546,15174,15205,15206,91180). However, the majority of research has found no association between serum iron levels and cardiovascular disease (1097,1099,9543,9547,9548,9549,9550,56469,56683).
There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
Dermatologic ...Cutaneous hemosiderosis, or skin staining, has been reported following intravenous iron infusion in various case reports. Most of these cases are due to extravasation following iron infusion (112605,112611). In one case, extravasation has occurred following iron derisomaltose infusion in a 41-year-old female with chronic kidney disease (112605). Rarely, diffuse cutaneous hermosiderosis has occurred. In one case, a 31-year-old female with excessive sweating developed cutaneous hemosiderosis in the armpits following an intravenous iron polymaltose infusion (112611).
Endocrine ...Population research in females shows that higher ferritin levels are associated with an approximately 1. 5-fold higher odds of developing gestational diabetes. Increased dietary intake of heme-iron, but not non-heme iron, is also associated with an increased risk for gestational diabetes. The effects of iron supplementation could not be determined from the evaluated research (96618). However, in a sub-analysis of a large clinical trial in pregnant adults, daily supplementation with iron 100 mg from 14 weeks gestation until delivery did not affect the frequency or severity of glucose intolerance or gestational weight gain (96619).
Gastrointestinal
...Orally, iron can cause dry mouth, gastrointestinal irritation, heartburn, abdominal pain, constipation, diarrhea, nausea, or vomiting (96621,102864,104680,104684,110179,110185,110188,110189,110192).
These adverse effects are uncommon at doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron in adults with normal iron stores (7135). Higher doses can be taken safely in adults with iron deficiency, but gastrointestinal side effects may occur (1095,20118,20119,56698,102864). Taking iron supplements with food seems to reduce gastrointestinal side effects (7135). However, food can also significantly reduce iron absorption. Iron should be taken on an empty stomach, unless it cannot be tolerated.
There are several formulations of iron products such as ferrous sulfate, ferrous gluconate, ferrous fumarate, and others. Manufacturers of some formulations, such as polysaccharide-iron complex products (Niferex-150, etc), claim to be better tolerated than other formulations; however, there is no reliable evidence to support this claim. Gastrointestinal tolerability relates mostly to the elemental iron dose rather than the formulation (17500).
Enteric-coated or controlled-release iron formulations might reduce nausea for some patients, however, these products also have lower absorption rates (17500).
Liquid oral preparations can blacken and stain teeth (20118).
Iron can also cause oral ulcerations and ulcerations of the gastric mucosa (56684,91182,96622,110179). In one case report, an 87-year-old female with Alzheimer disease experienced a mucosal ulceration, possibly due to holding a crushed ferrous sulfate 80 mg tablet in the mouth for too long prior to swallowing (91182). The ulceration was resolved after discontinuing iron supplementation. In another case report, a 76-year old male suffered gastric mucosal injury after taking a ferrous sulfate tablet daily for 4 years (56684). In a third case report, a 14-year-old female developed gastritis involving symptoms of upper digestive hemorrhage, nausea, melena, and stomach pain. The hemorrhage was attributed to supplementation with ferrous sulfate 2 hours after meals for the prior 2 weeks (96622). In one case report, a 43-year old female developed atrophic gastritis with non-bleeding ulcerations five days after starting oral ferrous sulfate 325 mg twice daily (110179).
Intravenously, iron can cause gastrointestinal symptoms sch as nausea (104684,110192).
Immunologic
...Although there is some clinical research associating iron supplementation with an increased rate of malaria infection (56796,95432), the strongest evidence to date does not support this association, at least for areas where antimalarial treatment is available (95433,96623).
In an analysis of 14 trials, iron supplementation was not associated with an increased risk of malaria (96623). In a sub-analysis of 7 preliminary clinical studies, the effect of iron supplementation was dependent upon the access to services for antimalarial treatment. In areas where anemia is common and services are available, iron supplementation is associated with a 9% reduced risk of clinical malaria. In an area where services are unavailable, iron supplementation was associated with a 16% increased risk in malaria incidence (96623). The difference in these findings is likely associated with the use of malaria prevention methods.
A meta-analysis of clinical studies of all patient populations shows that administering IV iron, usually iron sucrose and ferric carboxymaltose, increases the risk of infection by 16% when compared with oral iron or no iron. However, sub-analyses suggest this increased risk is limited to patients with inflammatory bowel disease (IBD) (110186).
Intravenously, iron has rarely resulted in allergic reactions, including anaphylactoid reactions (110185,110192,112606,112607). There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
Musculoskeletal ...Intravenously, iron rarely results in osteomalacia related to hypophosphatemia (112609). At least 2 cases exist of hypophosphatemic osteomalacia. In one case, a 70-year-old male with a genetic hemorrhagic disorder infused with ferric carboxymaltose developed lower limb pain with hypophosphatemia and diffuse bone demineralization in the feet (112609). In a second case, a 61-year-old male developed femoral neck insufficiency fractures following repeated ferric carboxymaltose transfusions for anemia related to vascular malformation in the bowel (112603). Severe hypophosphatemia requiring intravenous phosphate in the absence of osteomalacia has also occurred following intravenous ferric carboxymaltose (112608,112610).
Oncologic
...There is a debate regarding the association between high levels of iron stores and cancer.
Data are conflicting and inconclusive (1098,1099,1100,1102). Epidemiological studies suggest that increased body iron stores may increase the risk of cancer or general mortality (56703).
Occupational exposure to iron may be carcinogenic (56691). Oral exposure to iron may also be carcinogenic. Pooled analyses of population studies suggest that increasing the intake of heme iron increases the risk of colorectal cancer. For example, increasing heme iron intake by 1 mg/day is associated with an 11% increase in risk (56699,91185).
Other ...Intravenously, sodium ferric gluconate complex (SFGC) caused drug intolerance reactions in 0. 4% of hemodialysis patients including 2 patients with pruritus and one patient each with anaphylactoid reaction, hypotension, chills, back pain, dyspnea/chest pain, facial flushing, rash and cutaneous symptoms of porphyria (56527).
General ...Orally, kale is generally well tolerated when consumed in amounts commonly found in foods. No adverse effects have been reported with medicinal use. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, iodine-reduced laminaria seems to be well tolerated, while other laminaria formulations may contain excess amounts of iodine, as well as arsenic.
Most Common Adverse Effects:
Intravaginally: Cervical bleeding and pelvic cramps.
Serious Adverse Effects (Rare):
Orally: Arsenic poisoning.
Intravaginally: Rupture of cervical wall, fetal hypoxia, and fetal death. Anaphylaxis in sensitive individuals.
Dermatologic ...Orally, laminaria has been linked to a report of induced or exacerbated acne (9555).
Endocrine ...Orally, laminaria can affect levels of certain thyroid hormones, and might cause hypothyroidism or hyperthyroidism, or exacerbate existing hyperthyroidism (9556,94046).
Genitourinary ...Intravaginally, laminaria used for cervical ripening can cause pelvic cramps and cervical bleeding (8945). Uterine contractions associated with laminaria use have been implicated in fetal hypoxia and subsequent intrauterine death (6). Use of endocervical laminaria tents has been associated with possible rupture of the cervical wall and subsequent neonatal and parental infection (6,8945).
Immunologic ...There are case reports of anaphylactic reactions to laminaria when used intravaginally as a cervical dilator. In at least one case, ventilation was required (102766).
Other ...Laminaria concentrates arsenic from the ocean. In one case, use of an oral laminaria supplement for several months resulted in symptoms of arsenic poisoning including headache, weakness, fatigue, worsening memory loss, rash, nail damage, diarrhea, and vomiting. Urinary arsenic levels were elevated (15588). The concentration of arsenic in laminaria may vary between different batches, and also depends upon the part of the world where it was harvested (645,10275,15588). The concentration of arsenic has been reported to be higher in preparations from Australia than from Great Britain (645,10275).
General
...Orally, lemon is well tolerated in amounts commonly found in foods.
A thorough evaluation of safety outcomes has not been conducted on the use of larger amounts.
Most Common Adverse Effects:
Orally: Epigastralgia and heartburn with the regular consumption of fresh lemon juice.
Dermatologic ...Topically, the application of lemon oil might cause photosensitivity, due to furocoumarin derivative content. This occurs most often in fair-skinned people (11019).
Gastrointestinal ...Orally, fresh lemon juice, taken as 60 mL twice daily, has been reported to cause gastrointestinal disturbances in 37% of patients in one clinical trial, compared with 8% of patients in the placebo group. Specifically, of the patients consuming lemon juice, 21% experienced heartburn and 8% experienced epigastralgia, compared to 1% and 3%, respectively, in the placebo group (107489).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally and parenterally, manganese is generally well tolerated when used in appropriate doses.
High doses might be unsafe.
Serious Adverse Effects (Rare):
All routes of administration: Neurotoxicity, including Parkinson-like extrapyramidal symptoms, when used in high doses.
Cardiovascular ...Chronic occupational exposure to manganese dust or fumes can cause orthostatic hypotension, and heart rate and rhythm disturbances (61363).
Endocrine ...Chronic occupational exposure to manganese dust or fumes can cause elevations in thyrotropin-releasing hormone (TRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels (61378).
Hepatic ...Manganese intoxication may cause cirrhosis and hepatic steatosis. In one case, a 13-year-old female with manganese intoxication developed severe, life-threatening neurological symptoms, with liver biopsy indicating incomplete cirrhosis and microvesicular steatosis. Chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of manganese exposure was not identified, and it is not clear if the impaired liver function contributed to the manganese accumulation or if elevated manganese exposure led to the liver damage.
Musculoskeletal ...Chronic occupational exposure to manganese dust or fumes has been associated with lower bone quality in females, but not males, suggesting that prolonged manganese exposure might increase the risk of osteoporosis in females (102516). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower motor function scores (108537).
Neurologic/CNS
...Orally, there is concern that higher doses of manganese might increase the risk of neurotoxicity, including Parkinson-like extrapyramidal symptoms (7135,10665,10666).
One severe case of irreversible Parkinson disease possibly related to taking manganese 100 mg daily for 2-4 years has been reported (96418). In another case, a 13-year-old female with manganese intoxication (diagnosed from blood manganese levels and cranial MRI evidence) developed severe neurological symptoms including loss of consciousness, decorticate posture, clonus, increased reflexes in the extremities, isochoric pupils, and no painful stimulus response. Liver biopsy also showed incomplete cirrhosis and microvesicular steatosis. The patient was intubated, and chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of the child's manganese exposure was not identified (112137). Individuals with impaired manganese excretion can also experience these effects even with very low manganese intake. Manganese accumulation due to chronic liver disease seems to cause Parkinson-like extrapyramidal symptoms, encephalopathy, and psychosis (1992,7135). One review recommends stopping supplementation if aminotransferase or alkaline phosphatase levels rise beyond twice normal (99302).
Chronic occupational exposure to manganese dust or fumes can also cause extrapyramidal reactions (1990,7135). In 1837, Couper observed that exposure to manganese dust particles produces a neurological syndrome characterized by muscle weakness, tremor, bent posture, whispered speech, and excess salivation (61264). Additionally, observational research in children has found that elevated manganese levels detected in the hair and fingernails due to environmental exposure may be associated with impaired neurocognitive function or development (108535). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower cognitive function scores (108537).
Intravenously, manganese might increase the risk of neurotoxicity when administered at high doses or for an extended duration. Cases of Parkinson-like symptoms have been reported in patients receiving parenteral nutrition containing more than 60 mcg of manganese daily. Moderate MRI intensity uptake for manganese in the globus pallidus and basal ganglion areas of the brain has been shown in patients receiving parenteral manganese (96416,99302).
Psychiatric ...Chronic occupational exposure to manganese dust or fumes can cause mood disturbance and dementia (1990,7135). A case report describes a man who presented with confusion, psychosis, dystonic limb movements, and cognitive impairment after chronic industrial manganese exposure (99415). Symptoms of manganese toxicity from inhalational exposure develop slowly with initial fatigue and personality changes, progressing to hallucinations, delusions, hyperexcitability, Parkinson-like symptoms, dystonia, and dementia (99415). Additionally, observational research has found that chronic environmental exposure to manganese sources such as mining operations and various industrial processes may be associated with a greater risk for developing symptoms of depression (108536).
Pulmonary/Respiratory ...Chronic occupational exposure to manganese dust or fumes can cause acute chemical pneumonitis, pulmonary edema, or acute tracheobronchitis (61495).
General
...Orally and topically, moringa leaf and seed seem to be well tolerated.
Orally, moringa root and root bark might be unsafe. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Transient diarrhea.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis, have been reported.
Cardiovascular ...Orally, a case of bilateral pulmonary embolism after a 5-month history of taking moringa leaf extract is reported in a 63-year-old female without other risks for venous thromboembolism. The patient recovered with standard anticoagulant treatment. Researchers speculate that possible procoagulant effects of moringa may have played a role in this event (110644).
Dermatologic ...Orally, Stevens-Johnson syndrome has been linked to the consumption of moringa leaves. A 53-year-old male presented with fever and generalized maculopapular rash 14 hours after eating food containing moringa leaves. Painful oral ulcers developed by the next day. The patient also reported a similar episode of oral ulcers after eating food containing moringa leaves three months earlier. The patient was treated with oral prednisolone and omeprazole and recovered within two weeks. Researchers speculate that the immunomodulatory effects of moringa may have played a role in this reaction (99876). There are also cases of fixed food eruption to moringa. In one case, suspected fixed food eruption occurred on the trunk and face of a 60-year-old female, reoccurring 8 hours after self reintroduction (112641).
Gastrointestinal ...Orally, moringa leaf powder can cause diarrhea. In a clinical trial, taking moringa leaf powder 8 grams daily resulted in transient diarrhea in 4 of 16 patients (25%) (105470).
Immunologic ...Orally, cases of anaphylaxis are reported after ingestion of young moringa leaves and seedpods. In these cases, positive skin-prick testing confirmed moringa as the causative allergen. The patients recovered after standard treatment (110597,110643). There are also cases of fixed food eruption to moringa. In one case, suspected fixed food eruption occurred on the trunk and face of a 60-year-old female, reoccurring 8 hours after self reintroduction (112641).
General
...Orally, niacin is well tolerated in the amounts found in foods.
It is also generally well tolerated in prescription doses when monitored by a healthcare provider.
Most Common Adverse Effects:
Orally: Flushing, gastrointestinal complaints (abdominal pain, constipation, diarrhea, heartburn, nausea, vomiting), and elevated liver enzymes.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, myopathy, thrombocytopenia, and vision changes.
Cardiovascular
...Orally, flushing is a common dose-related adverse reaction to niacin.
A large meta-analysis of clinical studies shows that up to 70% of patients may experience flushing (96211). Although flushing can occur with doses of niacin as low as 30 mg daily, it is more common with the larger doses used for treatment of dyslipidemia. The flushing reaction is due to prostaglandin-induced blood vessel dilation and can also include symptoms of burning, tingling, urticaria, erythema, pain, and itching of the face, arms, and chest. There may also be increased intracranial blood flow and headache (4889,26089,93341,104933). Onset is highly variable and ranges from within 30 minutes to as long as 6 weeks after the initial dose (6243). Flushing can be minimized via various strategies, including taking doses with meals, slow dose titration, using extended release formulations, pretreating with non-steroidal anti-inflammatory drugs, taking regular-release niacin with meals, or taking the sustained-release product at bedtime (4852,4853,4854,4857,4858,25922,26073,26084). Flushing often diminishes with continued use but can recur when niacin is restarted after missed doses (4863,6243,26081). The vasodilating effects of niacin can also cause hypotension, dizziness, tachycardia, arrhythmias, syncope, and vasovagal attacks, especially in patients who are already taking antihypertensive drugs (4863,12033,93341,110494).
High doses of niacin can raise homocysteine levels. A 17% increase has been reported with 1 gram daily and a 55% increased has been reported with 3 grams daily. Elevated homocysteine levels are an independent risk factor for cardiovascular disease (490); however, the clinical significance of this effect is unknown. A large-scale study (AIM-HIGH) found that patients receiving extended-release niacin (Niaspan) 1500-2000 mg daily with a statin had an over two-fold increased risk of ischemic stroke (1.6%) when compared with those receiving only simvastatin (0.7%). However, when the risk was adjusted for confounding factors, niacin was not found to be associated with increased stroke risk (17627,93354). A meta-analysis of three clinical trials conducted in approximately 29,000 patients showed a higher risk of mortality in patients taking niacin in addition to a statin when compared with a statin alone. However, with a p-value of 0.05 and confidence interval including 1, the validity of this finding remains unclear (97308).
Endocrine
...Orally, niacin can impair glucose tolerance in a dose-dependent manner.
Dosages of 3-4 grams daily appear to increase blood glucose in patients with or without diabetes, while dosages of 1.5 grams daily or less have minimal effects (12033). Niacin is thought to impair glucose tolerance by increasing insulin resistance or increasing hepatic output of glucose (4863,11692,11693). In patients with diabetes, niacin 4.5 grams daily for 5 weeks has been associated with an average 16% increase in plasma glucose and 21% increase in glycated hemoglobin (HbA1C) (4860). Up to 35% of patients with diabetes may need to increase the dose or number of hypoglycemic agents when niacin is started (4458,4860,4863,11689,12033). Occasionally, severe hyperglycemia requiring hospitalization can occur (11693). In patients with impaired fasting glucose levels, niacin may also increase fasting blood glucose, and adding colesevelam might attenuate this effect (93343).
Although patients without diabetes seem to only experience small and clinically insignificant increases in glucose (4458), niacin might increase their risk of developing diabetes. A meta-analysis of clinical research involving over 26,000 patients shows that using niacin over 5 years is associated with increased prevalence of new onset type 2 diabetes at a rate of 1 additional case of diabetes for every 43 patients treated with niacin (96207). This finding is limited because the individual trials were not designed to assess diabetes risk and the analysis could not be adjusted for confounding factors like obesity. One small clinical study shows that taking extended-release niacin with ezetimibe/simvastatin does not increase the risk of a new diagnosis of diabetes or need for antidiabetic medication when compared with ezetimibe/simvastatin alone after 16 months (93344). This may indicate that the increased risk of developing diabetes is associated with niacin use for more than 16 months.
Niacin therapy has also been linked with hypothyroidism and its associated alterations in thyroid hormone and binding globulin tests (such as decreased total serum thyroxine, increased triiodothyronine, decreased thyroxine-binding globulin levels, and increased triiodothyronine uptake) (25916,25925,25926,25928).
Gastrointestinal ...Orally, large doses of niacin can cause gastrointestinal disturbances including nausea, vomiting, bloating, heartburn, abdominal pain, anorexia, diarrhea, constipation, and activation of peptic ulcers (4458,4863,12033,26083,93341,96211). These effects may be reduced by taking the drug with meals or antacid, and usually disappear within two weeks of continued therapy (4851,26094). Gastrointestinal effects may be more common with time-release preparations of niacin (11691).
Hematologic ...Orally, sustained-release niacin has been associated with cases of reversible coagulopathy, mild eosinophilia, and decreased platelet counts (4818,25915,26097,93340). Also, there have been reports of patients who developed leukopenia while taking niacin for the treatment of hypercholesterolemia (25916).
Hepatic ...Orally, niacin is associated with elevated liver function tests and jaundice, especially with doses of 3 grams/day or more, and when doses are rapidly increased (4458,4863,6243). The risk of hepatotoxicity appears to be higher with slow-release and extended-release products (4855,4856,4863,6243,11691,12026,12033,93342). Niacin should be discontinued if liver function tests rise to three times the upper limit of normal (4863). There are rare cases of severe hepatotoxicity with fulminant hepatitis and encephalopathy due to niacin (4863,6243,11691). Also, there is at least one case of niacin-induced coagulopathy resulting from liver injury without liver enzyme changes (93340).
Musculoskeletal ...Orally, niacin has been associated with elevated creatine kinase levels (4818,4888). Also, several cases of niacin-induced myopathy have been reported (26100,26111). Concomitant administration of niacin and HMG-CoA reductase inhibitors may increase the risk of myopathy and rhabdomyolysis (14508,25918,26111); patients should be monitored closely.
Neurologic/CNS ...Orally, high-dose niacin has been associated with cases of neuropsychiatric adverse events such as extreme pain and psychosis. Two 65-year-old males taking niacin orally for 5 months for the treatment of dyslipidemias developed severe dental and gingival pain. The pain was relieved by the discontinuation of niacin. The pain was thought to be due to inflammation and pain referral to the teeth (4862). In one case report, a 52-year-old male with no history of psychiatric illness who initially complained of hot flushes when taking niacin 500 mg daily, presented with an acute psychotic episode involving mania after niacin was increased to 1000 mg daily (93350).
Ocular/Otic ...Orally, chronic use of large amounts of niacin has been associated with dry eyes, toxic amblyopia, blurred vision, eyelid swelling, eyelid discoloration, loss of eyebrows and eyelashes, proptosis, keratitis, macular edema, and cystic maculopathy, which appear to be dose-dependent and reversible (4863,6243,26112).
General
...Orally, onion is well tolerated.
Topically, onion is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, heartburn.
Topically: Eczema, irritation.
Serious Adverse Effects (Rare):
All ROAs: Anaphylaxis in sensitive individuals.
Dermatologic ...Topically, frequent contact with onions can result in hand eczema, pemphigus, sensitization, and irritation (18,5004,51303,67066,67093).
Gastrointestinal ...The consumption of large quantities of onions or onion powder can cause stomach distress or heartburn (18,95155,104772). Stomach distress from onion powder appears to be transient (104772). In one case report, consumption of raw onions led to esophageal spasm (66841).
Immunologic ...Allergy to onion is rare, although there are reports of symptoms to both oral and topical exposure (41752,101743). In one case, oral exposure or the aroma of onions caused the sensation of throat closing in an allergic woman (88404). In a 35-year-old man, cooked onion ingestion triggered anaphylaxis (101742). In another case, the smell of onion was identified as a trigger for migraines in a 32-year-old female. Because the patient had a positive allergy skin test for onion, allergenic or immunogenic mechanisms were considered to be the origin of the migraines (88404).
Ocular/Otic ...Exposure to onion aroma can cause excessive tearing (67049).
General
...Orally, pantothenic acid is generally well tolerated.
Topically and intramuscularly, dexpanthenol, a synthetic form of pantothenic acid, seems to be well tolerated.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, eczema, irritation, and itching related to dexpanthenol.
Cardiovascular ...There is one case of eosinophilic pleuropericardial effusion in a patient taking pantothenic acid 300 mg per day in combination with biotin 10 mg per day for 2 months (3914).
Dermatologic ...Topically, dexpanthenol has been associated with itching, burning, skin irritation, contact dermatitis, and eczema (67779,67781,67788,111258,111262). Three cases of allergic contact dermatitis have been reported (111260,111261).
Gastrointestinal ...Orally, pantothenic acid has been associated with diarrhea (67822,111258).
General
...Orally, parsley seems to be well tolerated when used low to moderate doses.
Large doses may be unsafe.
Serious Adverse Effects (Rare):
Orally, Hallucinations, hemolytic anemia, hypotension, hepatic impairment, kidney impairment, nephrotic syndrome, paralysis, and thrombocytopenia purpura when taken in very high doses (200 grams parsley oil or 10 grams or more of parsley's apiole or myristicin constituents).
Cardiovascular ...Parsley contains the potentially toxic constituent, myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with myristicin include hypotension and bradycardia (4).
Dermatologic
...Orally, parsley oil can cause contact photodermatitis with sun exposure (4).
Topically, parsley can cause contact photodermatitis (4).
Hematologic ...Parsley contains the potentially toxic constituent apiole, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with more than 10 grams of the constituent apiole include hemolytic anemia and thrombocytopenia purpura (4).
Hepatic ...Parsley contains the potentially toxic constituents, apiole and myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with more than 10 grams of the constituent apiole include hepatic dysfunction (4). Adverse effects specifically associated with the constituent myristicin include fatty degeneration of the liver (4).
Immunologic ...A case of anaphylaxis involving severe angioedema leading to unconsciousness has been reported in a woman who consumed parsley 45 minutes prior to symptoms. The patient responded to epinephrine, antihistamines, intravenous fluids, oxygen therapy, and 1 mg/kg methylprednisolone. The woman had consumed one cup of chopped parsley nearly every day for several years, but upon skin testing, the patient tested positive to parsley (92869). There is also a report of lip angioedema after consumption of raw parsley. The patient had anaphylaxis to raw arugula, and reported itchy red lesions after contact with the leaves of either raw parsley or arugula. The patient had positive skin prick tests to both plants. The reaction may have been due to oral allergy syndrome, as the patient could tolerate cooked arugula and parsley, but not raw (92870).
Ocular/Otic ...Parsley contains the potentially toxic constituent, myristicin, which can cause significant adverse effects at high doses (11). An adverse effect specifically associated with the constituent myristicin includes deafness (4).
Psychiatric ...Parsley contains the potentially toxic constituent, myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with the constituent myristicin include giddiness and hallucinations (4).
Renal ...Parsley contains the potentially toxic constituents, apiole and myristicin, which can cause significant adverse effects at high doses (11). Adverse effects specifically associated with more than 10 grams of the constituent apiole include nephrosis and kidney irritation (4). Adverse effects specifically associated with the constituent myristicin include fatty degeneration of the kidneys (4).
General
...Orally, red raspberry fruit is well tolerated.
There is currently a limited amount of information on the adverse effects of red raspberry leaf.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, and epigastric pain. However, these adverse effects do not commonly occur with typical doses.
Dermatologic ...A liquid containing red raspberry leaf cell culture extract 0. 0005%, vitamin C 20%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to red raspberry leaf, the other ingredients, or the combination.
Gastrointestinal ...Orally, red raspberry may cause gastrointestinal upset, diarrhea, and epigastric pain (112127).
Pulmonary/Respiratory ...A case of occupational asthma due to the inhalation of red raspberry powder has been reported for a 35-year-old female. Symptoms included wheezing and shortness of breath (70370).
General
...Orally, riboflavin is generally well tolerated.
Most Common Adverse Effects:
Orally: Dose-related nausea and urine discoloration.
Gastrointestinal ...Orally, riboflavin has been associated with rare diarrhea and dose-related nausea (1398,71483). In one clinical study, one subject out of 28 reported having diarrhea two weeks after starting riboflavin 400 mg daily (1398).
Genitourinary ...Orally, high doses of riboflavin can cause bright yellow urine. Furthermore, in one clinical study, one subject out of 28 reported polyuria two weeks after starting riboflavin 400 mg daily (1398,3094).
General
...Orally, selenium is generally well-tolerated when used in doses that do not exceed the tolerable upper intake level (UL) of 400 mcg daily.
Intravenously, selenium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Gastric discomfort, headache, and rash. Excessive amounts can cause alopecia, dermatitis, fatigue, nail changes, nausea and vomiting, and weight loss.
Serious Adverse Effects (Rare):
Orally: Excessive ingestion has led to cases of multi-organ failure and death.
Dermatologic ...Excess selenium can produce selenosis in humans, affecting liver, skin, nails, and hair (74304,74326,74397,74495,90360) as well as dermatitis (74304). Results from the Nutritional Prevention of Cancer Trial conducted among individuals at high risk of nonmelanoma skin cancer demonstrate that selenium supplementation is ineffective at preventing basal cell carcinoma and that it increases the risk of squamous cell carcinoma and total nonmelanoma skin cancer (10687). Mild skin rash has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Endocrine
...Multiple clinical studies have found an association between increased intake of selenium, either in the diet or as a supplement, and the risk for type 2 diabetes (97091,99661).
One meta-analysis shows that a selenium plasma level of 90 mcg/L or 140 mcg/L is associated with a 50% or 260% increased risk for developing type 2 diabetes, respectively, when compared with plasma levels below 90 mcg/L. Additionally, consuming selenium in amounts exceeding the recommended dietary allowance (RDA) is associated with an increased risk of developing diabetes when compared with consuming less than the RDA daily. Also, taking selenium 200 mcg daily as a supplement is associated with an 11% increased risk for diabetes when compared with a placebo supplement (99661).
Hypothyroidism, secondary to iodine deficiency, has been reported as a result of selenium intravenous administration (14563,14565). One large human clinical trial suggested a possible increased risk of type 2 diabetes mellitus in the selenium group (16707).
Gastrointestinal ...In human research, nausea, vomiting, and liver dysfunction has been reported as a result of high selenium exposure (74439,74376). Mild gastric discomfort has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Genitourinary ...The effect of selenium supplementation on semen parameters is unclear. In human research, selenium supplementation may reduce sperm motility (9729); however, follow-up research reported no effect on sperm motility or any other semen quality parameter (74441).
Neurologic/CNS ...Chronic exposure to organic and inorganic selenium may cause neurotoxicity, particularly motor neuron degeneration, leading to an increased risk of amyotrophic lateral sclerosis (ALS) (74304). Mild headache has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
General
...Orally, spinach is well tolerated when consumed as a food.
Serious Adverse Effects (Rare):
Orally: In infants under 4 months of age, methemoglobinemia has been reported.
All routes of administration: Allergies in sensitive individuals.
Dermatologic ...Topically, contact dermatitis has been reported from spinach in a 54-year-old female farmer (41757).
Gastrointestinal ...Bagged spinach has been linked to Escherichia coli outbreaks, sometimes causing severe gastrointestinal symptoms and even death (75846,75847,75849,75851,96858).
Hematologic ...Orally, spinach ingestion by infants under 4 months of age can cause methemoglobinemia, due to its high nitrate content (75802,75858,75860,75861,75862).
Immunologic ...Orally, topically, and via inhalation, spinach has been reported to cause allergic reactions in sensitive individuals (75870,96859).
Pulmonary/Respiratory ...Lung inflammation associated with allergic alveolitis has been reported after inhalation of spinach powder (75871). The powder has also been reported to induce occupational asthma in a spinach factory worker (75833).
General
...Orally, strawberry is well tolerated when taken in the amounts commonly found in food.
When taken in medicinal amounts, strawberry seems to be generally well tolerated (100109,100113,100116,100119). Rarely, strawberry has been reported to cause nausea and allergic reactions, including oral allergy syndrome and skin reactions (100113,100119,103880).
Topically, strawberry can cause contact dermatitis (13637).
Gastrointestinal ...Orally, taking freeze-dried strawberry powder 50 grams daily has been reported to cause nausea in clinical trials (100113,100119).
Immunologic ...Orally, consuming strawberry has been reported to cause allergic reactions, including oral allergy syndrome and skin reactions, in some patients. (103880). Topically, strawberry has caused contact urticaria in one case report (13637). Overall, allergy to strawberry appears to be rare (103880).
General ...Orally, sweet cherry is generally well tolerated.
Immunologic ...Orally, sweet cherry can cause allergic reactions in sensitive patients. These reactions can range from mucosal irritation to urticaria, angioedema, dyspnea, cough, and gastrointestinal symptoms (14057).
General
...Orally and parenterally, thiamine is generally well tolerated.
Serious Adverse Effects (Rare):
Parenterally: Hypersensitivity reactions including angioedema and anaphylaxis.
Immunologic
...Orally, thiamine might rarely cause dermatitis and other allergic reactions.
Parenterally, thiamine can cause anaphylactoid and hypersensitivity reactions, but this is also rare (<0.1%). Reported symptoms and events include feelings of warmth, tingling, pruritus, urticaria, tightness of the throat, cyanosis, respiratory distress, gastrointestinal bleeding, pulmonary edema, angioedema, hypotension, and death (15,35585,105445).
In one case report, a 46-year-old female presented with systemic allergic dermatitis after applying a specific product (Inzitan, containing lidocaine, dexamethasone, cyanocobalamin and thiamine) topically by iontophoresis; the allergic reaction was attributed to thiamine (91170).
General
...Orally, tomato leaves and ripe or unripe tomato fruit are well tolerated in typical food amounts.
Tomato extracts also seem to be well tolerated. Tomatine, a glycoalkaloid found in tomato leaves and unripe green tomatoes, can cause serious side effects when consumed in excessive amounts.
Serious Adverse Effects (Rare):
Orally: Bradycardia, diarrhea, respiratory disturbances, spasms, vomiting, and death with excessive consumption of tomatine, a glycoalkaloid found in tomato leaves and unripe green tomatoes.
Cardiovascular ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause bradycardia when consumed in excessive amounts (18,102957).
Gastrointestinal ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause severe mucous membrane irritation, vomiting, diarrhea, and colic when consumed in excessive amounts (18,102957).
Immunologic ...In a case report, a 31-year-old female working in the supermarket developed an airborne allergy to tomato stem proteins with symptoms of severe rhinoconjunctivitis. This woman did not have a food allergy to tomato fruit (102467).
Neurologic/CNS ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause dizziness, stupor, headache, and mild spasms when consumed in excessive amounts (18,102957).
Pulmonary/Respiratory ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause respiratory disturbances when consumed in excessive amounts. In severe cases, death by respiratory failure might occur (18,102957).
General
...Orally, intramuscularly, and topically, vitamin B12 is generally well-tolerated.
Most Common Adverse Effects:
Intramuscular: Injection site reactions.
Serious Adverse Effects (Rare):
Intramuscularly: Severe hypokalemia has been rarely linked with correction of megaloblastic anemia with vitamin B12.
Cardiovascular ...In human clinical research, an intravenous loading dose of folic acid, vitamin B6, and vitamin B12, followed by daily oral administration after coronary stenting, increased restenosis rates (12150). Hypertension following intravenous administration of hydroxocobalamin has been reported in human research (82870,82864).
Dermatologic
...Orally or intramuscularly, vitamin B12 can cause allergic reactions such as rash, pruritus, erythema, and urticaria.
Theoretically, allergic reactions might be caused by the cobalt within the vitamin B12 molecule (82864,90373,90381,103974). In one case report, oral methylcobalamin resulted in contact dermatitis in a 59-year-old Japanese female with a cobalt allergy (103974). In another case report, a 69-year-old female developed a symmetrical erythematous-squamous rash for 5 years after oral vitamin B12 supplementation for 10 years. A patch test confirmed that the systemic allergic dermatitis was due to vitamin B12 supplementation, which resolved 3 months after discontinuation (114578).
Vitamin B12 (intramuscular or oral) has also been associated with at least 19 cases of acneiform eruptions which resolved upon discontinuation of vitamin B12 (90365,90369,90388). High-dose vitamin B12 (20 mcg daily) and vitamin B6 (80 mg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may last up to four months after the supplement is stopped and can be treated with systemic corticosteroids and topical therapy (10998,82870,82871).
Gastrointestinal ...Intravenously, vitamin B12 (hydroxocobalamin) 2. 5-10 grams can cause nausea and dysphagia (82864).
Genitourinary ...Intravenously, vitamin B12 (hydroxocobalamin) 5-15 grams has been associated with chromaturia in clinical research (82870,82871,112282,112264).
Hematologic ...According to case report data, the correction of megaloblastic anemia with vitamin B12 may result in fatal hypokalemia (82914).
Musculoskeletal ...According to case report data, correction of megaloblastic anemia with vitamin B12 has precipitated gout in susceptible individuals (82879).
Neurologic/CNS ...Treatment with vitamin B12 has been rarely associated with involuntary movements in infants with vitamin B12 deficiency (90370,90385,90397). In some cases these adverse reactions were misdiagnosed as seizures or infantile tremor syndrome (90370,90385). These adverse reactions presented 2-5 days after treatment with vitamin B12 and resolved once vitamin B12 was discontinued (90370,90385,90397).
Oncologic ...Although some epidemiological research disagrees (9454), most research has found that elevated plasma levels of vitamin B12 are associated with an increased risk of various types of cancer, including lung and prostate cancers and solid tumors (50411,102383,107743). One study found, when compared with blood levels of vitamin B12 less than 1000 ng/mL, plasma vitamin B12 levels of at least 1000 ng/mL was strongly associated with the occurrence of solid cancer (107743). It is unclear if increased intake of vitamin B12, either through the diet or supplementation, directly affects the risk of cancer. It is possible that having cancer increases the risk of vitamin B12 elevation. However, one observational study has found that the highest quintile of dietary intake of vitamin B12 is associated with a 75% increased incidence of developing esophageal cancer when compared with the lowest quintile in never drinkers, but not drinkers (107147).
Renal ...There is a case report of oxalate nephropathy in a 54-year-old male which was determined to be related to the use of intravenous hydroxocobalamin as treatment for cyanide poisoning. Intermittent hemodialysis was started 5 days after admission, along with a low-oxalate diet, oral calcium acetate, and pyridoxine 5 mg/kg daily (107148). A review of the use of intravenous hydroxocobalamin for suspected cyanide poisoning in 21 intensive care units in France between 2011 and 2017 resulted in a 60% increased odds of acute kidney injury and a 77% increased odds of severe acute kidney injury in the first week. However, biopsies were not conducted and a direct link with use of hydroxocobalamin could not be made (107139).
Other ...Several studies have found that higher vitamin B12 levels may be associated with increased mortality or decreased survival rates in hospitalized elderly patients (82889,82812,82857,82895). Human research has also found a positive correlation between vitamin B12 status and all-cause mortality in Pima Indians with diabetes (82863).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Tell patients daily doses of 100 mg or less are unlikely to cause problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).
General
...Orally or intramuscularly, vitamin D is well tolerated.
Serious Adverse Effects (Rare):
Orally or intramuscularly: Excessive doses can lead to vitamin D toxicity with symptoms of hypercalcemia, and also sometimes azotemia and anemia.
Cardiovascular ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Rarely, people develop hypertension (10142). An analysis of clinical research suggests that, when taken orally, vitamin D might modestly increase levels of low-density lipoprotein (LDL)-cholesterol. However, it is not clear if this increase is clinically significant (84642).
Gastrointestinal ...Orally, vitamin D may cause dry mouth. In clinical research, intake of vitamin D 50,000 IU weekly for 4 weeks followed by 50,000 IU monthly for 5 months thereafter was associated with a 3.7-fold increase in reports of dry mouth compared with placebo (91348).Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Symptoms of vitamin D toxicity include pancreatitis (10142,84433). Vomiting occurred in one patient given a single dose of 200,000 IU (104624).
Genitourinary ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Advanced symptoms may include decreased libido (10142). Vaginal discharge and itching have been reported in a clinical trial following oral use (91348).
Hematologic
...Lab values of urinary and blood calcium, phosphate, albumin, blood urea nitrogen, serum cholesterol, aspartate aminotransferase, and alanine aminotransferase concentrations might increase with vitamin D use, especially with high doses (10142,91349,93943).
A case of elevated international normalized ration (INR) has been reported for an 84 year-old patient who took vitamin D 50,000 IU daily for 2 months. The patient's serum levels of vitamin D increased from <7 ng/mL to 100 ng/mL over 6 months. To resolve symptoms, vitamin D supplementation was discontinued (84433).
Musculoskeletal ...Vitamin D intoxication can occur when vitamin D supplements are taken in excessive doses (10142,17506). Symptoms of vitamin D toxicity include osteoporosis in adults and decreased growth in children (10142).
Ocular/Otic ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses (10142,17506). Symptoms of vitamin D toxicity include calcific conjunctivitis and photophobia (10142).
Psychiatric ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses (10142,17506). In rare cases, symptoms of vitamin D toxicity include psychosis (10142,93002).
Pulmonary/Respiratory ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Advanced symptoms of vitamin D toxicity may include runny nose (10142,17506,93002).
Renal ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Symptoms of vitamin D toxicity include azotemia. Vitamin D may also cause hypercalcemia, with advanced symptoms including kidney stones or kidney insufficiency due to precipitation of calcium phosphate in the tubules. Symptoms of renal impairment include frequency, nighttime awakening to urinate, thirst, inability to concentrate urine, and proteinuria. Renal impairment is usually reversible with discontinuation of vitamin D supplements (10142,93002,93943,110831,110833).
General
...Orally and topically, vitamin E is generally well-tolerated.
Serious Adverse Effects (Rare):
Orally: Bleeding, hemorrhagic stroke, cardiovascular complications.
Inhaled: Vitamin E acetate is thought to be responsible for e-cigarette, or vaping, product-use associated lung injury (EVALI).
Cardiovascular
...Some evidence suggests that taking vitamin E supplements, especially greater than or equal to 400 IU taken by mouth daily for over one year, might also increase the risk of mortality in non-healthy patients (12212,13036,15305,16709,83339).
A population study shows that vitamin E use is associated with a significantly increased risk of mortality in people with a history of severe cardiovascular disease such as stroke or myocardial infarction (16709). In an analysis of clinical trials, patients who took either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) in doses of 400 IU/day or higher had an increased risk of mortality from all causes. The risk of mortality seems to increase when higher doses are used (12212). A large-scale study also suggests that patients with diabetes or cardiovascular disease who take RRR-alpha-tocopherol (natural vitamin E) 400 IU daily have an increased risk of heart failure and heart failure-related hospitalization (13036). However, in another large scale study, taking 600 IU vitamin E every other day for 10 years did not increase the risk of heart failure in healthy females over 45 years of age (90068). There is speculation that high-dose vitamin E might disrupt the normal antioxidant balance and result in pro-oxidant rather than antioxidant effects.
There is some evidence that vitamin E in combination with simvastatin (Zocor), niacin, selenium, vitamin C, and beta-carotene might lower high density lipoprotein-2 (HDL-2) by 15%. HDL-2 is considered to be the most cardioprotective component of HDL (7388). However, vitamin E and a statin alone don't seem to negatively affect HDL (11286,11287). In addition, vitamin E has been associated with increased triglycerides (85215). Although only certain isomers of vitamin E are included for determination of dietary requirements, all isomers are considered for determining safe intake levels. All the isomers are thought to potentially contribute to toxicity.
Dermatologic
...Topically, vitamin E has been associated with contact dermatitis, inflammatory reactions, and eczematous lesions (11998,85066,85285).
Dermatitis, often associated with moisturizers containing vitamin E, has a scattered generalized distribution, is more common on the face than the hands, and is more common in females with a history of atopic dermatitis. In a retrospective analysis of results of patch tests for DL-alpha-tocopherol sensitivity, 0.9% of patients had a definite positive reaction, while over 50% had a weakly positive, non-vesicular erythematous reaction (107869).
Orally, vitamin E has been associated with pruritus in one clinical trial (34596).
Subcutaneously, vitamin E has been associated with reports of lipogranuloma (85188,112331). In one case, subcutaneous injection of a specific supplement (1Super Extenze), containing mineral oil and tocopherol acetate, into the penile tissue resulted in penile disfigurement due to sclerosing lipogranuloma (85188). In another case, a 50-year-old Iranian female presented with lipogranuloma of the face, characterized by severe facial erythema, edema, and tenderness, 3 months after receiving subcutaneous injections of vitamin E to the cheeks for "facial rejuvenation." The patient had noticed initial symptoms within 3 days, and her symptoms progressively worsened over time (112331).
Gastrointestinal ...Orally, vitamin E supplementation has been associated with abdominal pain, nausea, diarrhea, or flu-like symptoms (85040,85323). Intravenously, large doses of vitamin E in premature infants are associated with an increased risk of necrotizing enterocolitis and sepsis (85083,85231).
Genitourinary ...There is contradictory evidence about the effect of vitamin E on prostate cancer risk. One large-scale population study shows that males who take a multivitamin more than 7 times per week and who also take a separate vitamin E supplement have a significantly increased risk of developing prostate cancer (15607). In a large-scale clinical trial (The SELECT trial) in males over the age of 50 years, taking all-rac-alpha-tocopherol (synthetic vitamin E) 400 IU daily increased the risk of developing prostate cancer by 17% when compared with placebo. However, the difference in prostate cancer risk between vitamin E and placebo became significant only 3 years after patients stopped taking supplementation and were followed in an unblinded fashion. Interestingly, patients taking vitamin E plus selenium did not have a significantly increased risk of prostate cancer (17688).
Hematologic ...High doses of vitamin E might increase the risk of bleeding due to antagonism of vitamin K-dependent clotting factors and platelet aggregation. Patients with vitamin K deficiencies or taking anticoagulant or antiplatelet drugs are at a greater risk for bleeding (4098,4844,11999,34596,34538,34626,34594,112162).
Neurologic/CNS ...There is concern that vitamin E might increase the risk of hemorrhagic stroke (16708,34594,34596,108641). In one clinical study, there was a higher incidence of hemorrhagic stroke in male smokers taking all-rac-alpha-tocopherol (synthetic vitamin E) for 5-8 years compared to those not taking vitamin E (3949). Other studies lasting from 1.4-4.5 years and using either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) showed no significantly increased risk for stroke (2307,3896,3936). A meta-analysis of studies shows that vitamin E in doses of 300-800 IU daily, including both natural and synthetic forms, does not significantly affect total stroke risk. However, it significantly increases the risk of hemorrhagic stroke by 22%. This means that there will be one additional hemorrhagic stroke for every 1250 patients taking vitamin E. In contrast to this finding, the analysis also found that vitamin E significantly reduces the risk of ischemic stroke by 10%. This means that one ischemic stroke will be prevented for every 476 patients taking vitamin E (14621). In patients with moderately severe Alzheimer disease, taking vitamin E 2000 IU for 2 years has been associated with a modest, but significant, increase in falls and episodes of syncope when compared to placebo (4635).
Pulmonary/Respiratory ...When inhaled, vitamin E acetate is thought to play a role in the development of e-cigarette, or vaping, product-use associated lung injury (EVALI). Although a causal link has not yet been determined, in two case series, vitamin E acetate has been found in most bronchoalveolar lavage samples taken from the primary site of lung injury in patients with EVALI, whereas no vitamin E was found in healthy control samples. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. EVALI has resulted in death in some patients (101062,102970).
Other ...In an analysis of 3 trials, taking vitamin E 400 IU with vitamin C 1000 mg daily for 14-22 weeks during gestation appears to increase the risk of gestational hypertension by 30% compared to placebo in patients at risk of pre-eclampsia. However, the risk of pre-eclampsia itself was not increased (83450).
General
...Orally, vitamin K is generally well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, nausea, and stomach upset.
Serious Adverse Effects (Rare):
Intravenously: There have been rare cases of anaphylaxis and hyperbilirubinemia (in infants).
Dermatologic ...Orally, intake of vitamin K2 (menaquinone) along with calcium and vitamin D3 can cause an increased incidence of skin and skin appendage lesions compared to taking calcium and vitamin D3 alone. However, the risk of this adverse event is low, with 0.5 incidences per 100 patient-years occurring for patients treated with vitamin K, calcium, and vitamin D3 and 0.1 incidences per 100 patient-years occurring for patients treated with calcium and vitamin D3 alone (85467).
Gastrointestinal ...Orally, vitamin K can cause mild to moderate gastrointestinal side effects (91450,91451). The most common effects include nausea, abdominal pain, and diarrhea (91450,91451).
Hepatic ...Orally, vitamin K3 (menadione) has been linked to hepatotoxicity. Vitamin K3 is no longer used therapeutically in North America because it has been linked to hepatic toxicity and jaundice in animal research (7135).
Other ...Intravenously, vitamin K can cause reactions that resemble hypersensitivity or anaphylaxis (85389). These reactions are rare. It is unclear whether the adverse effect is caused by the drug or a component of the solution. There have been very rare cases of hyperbilirubinemia, particularly in premature neonates, following large doses of vitamin K (15). One clinical study in premature infants shows that intramuscular administration of vitamin K 1.0 mg increases bilirubin levels and the duration of phototherapy when compared with vitamin K 0.3 mg and 0.5 mg. However, the clinical relevance of these findings is unclear, as no differences in bilirubin-induced neurologic dysfunction were reported (112100).
General
...Orally, zinc is well tolerated in doses below the tolerable upper intake level (UL), which is 40 mg daily for adults.
Topically, zinc is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, metallic taste, nausea and vomiting (dose-related).
Topically: Burning, discoloration, itching, stinging, and tingling when applied to irritated tissue.
Intranasally: Bad taste, dry mouth, headache, irritation, reduced sense of smell.
Serious Adverse Effects (Rare):
Orally: There have been cases of acute renal tubular necrosis, interstitial nephritis, neurological complications, severe vomiting, and sideroblastic anemia after zinc overdose.
Intranasally: There have been cases where intranasal zinc caused permanent loss of smell (anosmia).
Dermatologic
...Topically, zinc can cause burning, stinging, itching, and tingling when applied to inflamed tissue (6911,8623,87297).
Zinc oxide can be deposited in the submucosal tissue and cause dark discoloration of the skin. This can occur with prolonged topical application to intact skin, application to eroded or ulcerated skin, or penetrating traumatic exposure, and also parenteral administration (8618).
In rare cases, oral zinc has resulted in worsened acne (104056), skin sensitivity (6592), a leishmanial reaction with a macular rash that occurred on exposed parts of the body (86935), eczema (104055), systemic contact dermatitis (109457), and the development of severe seborrheic dermatitis (86946).
Gastrointestinal
...Orally, zinc can cause nausea (338,2663,2681,6592,6700,18216,106230,106233,106227,113661), vomiting (2663,2681,6519,6592,96069,96074), a metallic or objectionable taste in the mouth (336,338,6700,11350,18216,106902,113661), abdominal cramping (6592,96069), indigestion (87227), heartburn (96069), dry mouth (87533), and mouth irritation (336,2619).
When used orally in amounts above the tolerable upper intake level, zinc may cause irritation and corrosion of the gastrointestinal tract (331,86982,87315,106902), watery diarrhea (1352), epigastric pain (2663,2681), and severe vomiting (2663,2681).
Intranasally, zinc can cause bad taste, dry mouth, and burning and irritation of the throat (8628,8629).
When used topically as a mouth rinse, zinc may cause tooth staining (90206).
Hematologic ...There is concern that high daily doses of zinc, above the tolerable upper intake level (UL) of 40 mg per day, might increase the risk of copper deficiency, potentially leading to anemia and leukopenia (7135,112473). To prevent copper deficiency, some clinicians give a small dose of copper when zinc is used in high doses, long-term (7303).
Hepatic ...There are two cases of liver deterioration in patients with Wilson disease following initiation of treatment with zinc 50-200 mg three times daily. The mechanism of action is not understood, and the event is extremely uncommon (86927,87470).
Immunologic ...Daily doses of 300 mg of supplemental zinc for 6 weeks appear to impair immune response (7135). A case of erythematosus-like syndrome, including symptoms such as fever, leg ulcers, and rash, has been reported following intake of effervescent tablets (Solvezink) containing zinc 45 mg (87506). In another case, severe neutropenia was reported after taking supplemental zinc 900 mg daily for an unknown duration (112473).
Musculoskeletal ...Orally, zinc may cause body aches in children (113661).
Neurologic/CNS
...Zinc-containing denture adhesives can cause toxicity if used more frequently than recommended for several years.
Case reports describe hyperzincemia, low copper levels, blood dyscrasias, and neurological problems, including sensory disturbances, numbness, tingling, limb weakness, and difficulty walking in patients applying denture adhesive multiple times daily for several years (17092,17093,90205,90233). Due to reports of zinc toxicity associated with use of excessive amounts of zinc-containing denture adhesives for several years, GlaxoSmithKline has reformulated Polygrip products to remove their zinc content (17092,17093).
Intranasally (8628) and orally (87534), zinc can cause headache. When used orally in amounts above the tolerable upper intake level (UL), zinc may cause central nervous system (CNS) symptoms including lethargy, fatigue, neuropathy, dizziness, and paresthesia (2663,2681,87369,87470,87533,87534,112473).
Oncologic ...There is concern that zinc might worsen prostate disease. For example, some preliminary evidence suggests that higher dietary zinc intake increases the risk for benign prostatic hyperplasia (6908). Epidemiological evidence suggests that taking more than 100 mg of supplemental zinc daily or taking supplemental zinc for 10 or more years doubles the risk of developing prostate cancer (10306). Another large-scale population study also suggests that men who take a multivitamin more than 7 times per week and who also take a separate zinc supplement have a significantly increased risk of prostate cancer-related mortality (15607). However, a large analysis of population research suggests that there is no association between zinc intake and the risk of prostate cancer (96075).
Pulmonary/Respiratory
...There are several hundred reports of complete loss of sense of smell (anosmia) that may be permanent with use of zinc gluconate nasal gel, such as Zicam (11306,11155,11707,16800,16801,17083,86999,87535).
Loss of sense of smell is thought to be dose related but has also been reported following a single application (11306,11155,11707,16800). Patients often report having sniffed deeply when applying the gel, then experiencing an immediate burning sensation, and noticing anosmia within 48 hours (17083). On June 16, 2009, the US Food and Drug Administration (FDA) advised patients not to use a specific line of commercial zinc nasal products (Zicam) after receiving 130 reports of loss of smell (16800). The manufacturer of these products had also received several hundred reports of loss of smell related to its intranasal zinc products (16801). Zinc sulfate nasal spray was used unsuccessfully for polio prophylaxis before the polio vaccine was developed. It caused loss of smell and/or taste, which was sometimes permanent (11713). Animal studies suggest that zinc sulfate negatively affects smell, possibly by damaging the olfactory epithelium and neurons (11156,11703,11704,11705,11706). Zinc gluconate nasal spray has not been tested for safety in animals or humans. The clinical studies of intranasal zinc have not described anosmia as an adverse effect, but testing was not done to see if zinc use adversely affected sense of smell (6471,8628,8629,10247). Also, these clinical studies reported tingling or burning sensation in the nostril, dry nose, nose pain, and nosebleeds.
When used in amounts above the tolerable upper intake level (UL), zinc may cause flu-like symptoms including coughing (2663).
Renal ...In overdose, zinc can cause acute renal tubular necrosis and interstitial nephritis (331,1352,87338).
Other ...Occupational inhalation of zinc oxide fumes can cause metal fume fever with symptoms including fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, and salivation (331).