Ingredients | Amount Per Serving |
---|---|
Calories
|
160 Calorie(s) |
Total Fat
|
3 Gram(s) |
Saturated Fat
|
0.5 Gram(s) |
(Na)
|
260 mg |
Total Carbohydrates
|
16 Gram(s) |
Dietary Fiber
|
6 Gram(s) |
Total Sugars
|
<1 Gram(s) |
Added Sugars
|
0 Gram(s) |
Protein
|
17 Gram(s) |
1548 mcg | |
30 mg | |
(Ca)
|
245 mg |
(K)
|
200 mg |
Plant Protein Blend
|
20 Gram(s) |
Chlorella Protein
|
|
(seed)
|
|
Plant Energy Blend
|
6075 mg |
(sprouts)
|
|
(sprout)
|
|
(sprouts)
|
|
(sprouts)
|
|
(sprout)
|
|
Fiber/Antioxidant Blend
|
3950 mg |
organic Acacia Gum
(fiber)
|
|
(seed)
|
|
Plum fruit extract
(fruit)
|
|
(juice)
|
|
(fruit)
|
|
Pineapple
(juice)
|
|
(juice)
|
|
(juice)
|
|
(juice)
|
|
Mango
(juice)
|
|
(juice)
|
|
Cupuacu
(juice)
|
|
(fruit)
|
|
Watermelon
(juice)
|
|
(berry)
|
|
(skin)
|
|
(fruit)
|
|
Amylase
|
|
Cellulase
|
|
Plant Essential Fatty Acid Blend
|
1516 mg |
(seed)
|
|
(seed)
|
|
Sacha Inchi
(seed)
|
|
(seed)
|
|
(seed)
|
|
Digestive Blend
|
988 mg |
(Bacillus coagulans )
(1 billion CFU)
(Bacillus coagulans Genus: Bacillus Species: coagulans Note: 1 billion CFU )
|
|
(Inulin)
|
|
Alpha-Galactosidase
(AGS)
|
|
Fermented Whole Food Blend
|
50 mg |
Fermented Mushroom Blend
|
|
Organic Fermented Vegetable Blend
|
|
Pea
|
|
Pepper
|
|
Organic Fermented Fruit Blend
|
|
Organic Fermented Sprout Blend
|
|
Organic Cultured Spice Blend
|
|
Cinnamon
|
|
Essential Glyconutrient Blend
|
|
Mannose
|
|
Glucose
|
|
Galactose
|
|
Xylose
|
|
(Coffea arabica )
|
|
(Aloe barbadensis )
|
Cocoa, natural Chocolate flavor, Inulin, Rebaudioside A (Form: Stevia rebaudiana Genus: Stevia Species: rebaudiana), Guar Gum, L-Isoleucine, L-Leucine, L-Valine, L-Glutamine, natural Vanilla flavor, natural Caramel flavor, Lo Han Guo, Silica, Maltodextrin (Form: Tapioca), Corn Starch
Below is general information about the effectiveness of the known ingredients contained in the product Meal Replacement Plant Protein Chocolate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of allspice.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of camu camu.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Proteolytic enzymes represent a wide group of enzymes that are used alone or in combination. See specific monographs for effectiveness information.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
There is insufficient reliable information available about the effectiveness of watercress.
There is insufficient reliable information available about the effectiveness of white mustard.
Below is general information about the safety of the known ingredients contained in the product Meal Replacement Plant Protein Chocolate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Acai pulp, in a dose of up to 162.5 grams daily, has been used with apparent safety for up to 3 months in clinical research (17731,99400). There is insufficient reliable information available about the safety of acai when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Allspice has Generally Recognized As Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of allspice when used orally as medicine.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of allspice when used in larger amounts as medicine; avoid using.
LIKELY SAFE ...when aloe gel is used topically and appropriately. Aloe gel-containing formulations have been safely applied in clinical trials (101,11982,12096,12098,12159,12160,12163,12164,17418)(90123,90124,90127,90128,90129,90131,97320,98816,103305). When included in topical cosmetics, the Cosmetic Ingredient Review Expert Panel concluded that aloe-derived anthraquinone levels should not exceed 50 ppm (90122).
POSSIBLY SAFE ...when aloe gel is used orally and appropriately, short-term. Aloe gel has been safely used in a dose of 15 mL daily for up to 42 days or 100 mL of a 50% solution twice daily for up to 4 weeks (11984,12164). Also, a specific aloe gel complex (Aloe QDM complex, Univera Inc.) has been safely used at a dose of approximately 600 mg daily for up to 8 weeks (90121). ...when aloe extract is used orally and appropriately, short-term. Aloe extract has been used with apparent safety in a dose of 500 mg daily for one month (101579). Also, an aloe extract enriched in aloe sterols has been used with apparent safety in a dose of 500 mg daily for 12 weeks (101577).
POSSIBLY UNSAFE ...when aloe latex is used orally. There is some evidence that anthraquinones in aloe latex are carcinogenic or promote tumor growth, although data are conflicting (6138,16387,16388,91596,91597). In 2002, the US FDA banned the use of aloe latex in laxative products due to the lack of safety data (8229). ...when aloe whole-leaf extract is used orally. Aloe whole-leaf extract that has not been filtered over charcoal still contains anthraquinones. This type of aloe whole-leaf extract is referred to as being "nondecolorized". The International Agency for Research on Cancer has classified this type of aloe whole-leaf extract as a possible human carcinogen (91598,91908). Although filtering aloe whole-leaf extract over charcoal removes the anthraquinones, some animal research suggests that this filtered extract, which is referred to as being "decolorized", may still cause gene mutations (91598). This suggests that constituents besides anthraquinones may be responsible for the carcinogenicity of aloe whole-leaf extract. It should be noted that commercial products that contain aloe whole-leaf extract may be labeled as containing "whole leaf Aloe vera juice" or "aloe juice" (91908).
LIKELY UNSAFE ...when aloe latex is used orally in high doses. Ingesting aloe latex 1 gram daily for several days can cause nephritis, acute kidney failure, and death (8,8961).
CHILDREN: POSSIBLY SAFE
when aloe gel is used topically and appropriately.
Aloe gel-containing formulations have been safely applied in clinical trials (90124,90131).
CHILDREN: POSSIBLY UNSAFE
when aloe latex and aloe whole leaf extracts are used orally in children.
Children younger than 12 years may experience abdominal pain, cramps, and diarrhea (4).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Anthraquinones present in aloe latex and aloe whole leaf extracts have irritant, cathartic, and possible mutagenic effects (4,16387,16388,90122). There are also anecdotal reports and evidence from animal research that anthraquinones or aloe whole leaf extracts might induce abortion and stimulate menstruation; avoid using (4,8,19,90122).
LACTATION: POSSIBLY UNSAFE
when aloe preparations are used orally.
Cathartic and mutagenic anthraquinones present in aloe latex and aloe whole leaf extracts might pass into milk; avoid using (4,19).
LIKELY SAFE ...when used orally in food amounts. Amaranth seed and leaves are commonly used in foods (3833,5063,31069,31083,104835).
POSSIBLY SAFE ...when used orally as medicine, short-term. Amaranth oil 20 mL has been used daily with apparent safety for up to 3 weeks (104834,104836,104837).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using as medicine.
LIKELY SAFE ...when used orally in food amounts. Eating apples and consuming apple juice is safe for most people. Apples are a common food source (3470,3472). However, eating apple seeds should be avoided because they can be toxic (6).
CHILDREN: LIKELY SAFE
when used orally in food amounts.
Eating apples and consuming apple juice is safe for most people. Apples are a common food source (3470,3472).
CHILDREN: POSSIBLY SAFE
when apple pectin is used orally and appropriately, short-term.
Preliminary clinical research suggests that combination products containing apple pectin and German chamomile (Diarrhoesan) are safe when used in infants for up to one week (19705,19706).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of apple in amounts greater than those found in foods during pregnancy and lactation; avoid using.
POSSIBLY SAFE ...when taken orally and appropriately. Bacillus coagulans spores in doses up to 6 billion colony-forming units (CFUs) daily have been used with apparent safety in clinical studies for up to 3 months (92726,92730,92734,92735,92736,92739,92740,104231,105169)(107611,107612,107614). Lower doses of B. coagulans up to 100 million CFUs daily have been used with apparent safety in clinical studies for up to one year (92738). There is insufficient reliable information available about the safety of non-viable, heat-killed B. coagulans formulations when used orally.
CHILDREN: POSSIBLY SAFE
when taken orally and appropriately.
Bacillus coagulans spores in doses up to 100 million colony-forming units (CFUs) daily have been used with apparent safety in clinical studies in infants of most ages for up to one year (92729,92733,92738) and in doses of one billion CFUs in children aged 6-8 years for 3 months (107615). There is insufficient reliable information available about the safety of Bacillus coagulans in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in the amounts commonly found in food.
POSSIBLY SAFE ...when the leaves are applied topically and appropriately (93456). There is insufficient reliable information available about the safety of the other parts of the banana plant when used orally or topically as a medicine.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using amounts greater than those found in food.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Bilberry has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. Bilberry fruit extracts have been used with apparent safety in clinical trials at a dose of up to 160 mg daily for up to 6 months (39,40,8139,9739,14280,35472,35510,35512,103190,104192,104195). A higher bilberry extract dose of 1.4 grams daily has been used with apparent safety for up to 4 weeks (104194). Whole bilberries or bilberry juice have also been consumed with apparent safety in quantities of 100-160 grams daily for up to 35 days (35463,91506).
POSSIBLY UNSAFE ...when the leaves are used orally in high doses or for a prolonged period. Death can occur with chronic use of 1.5 gram/kg daily (2).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts commonly found in foods.
However, there is insufficient reliable information available about the safety of bilberry when used in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally in the amounts commonly found in foods. Black mustard has Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of black mustard when used orally or topically for medicinal purposes.
PREGNANCY: LIKELY UNSAFE
when used orally for medicinal purposes.
Black mustard might have abortifacient and menstrual stimulant effects (19). There is insufficient reliable information available about the safety of black mustard for its other uses during pregnancy; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Blueberry, as the whole fruit, juice, or in a powder formulation, is safe when consumed in amounts commonly found in foods (13533,92387,92388,92394,96467,97181,99139). There is insufficient reliable information available about the safety of blueberry when used topically or when the leaves are used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts commonly found in foods (13533,96465).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (13533,107281).
There is insufficient reliable information available about the safety of blueberry for medicinal use; avoid using.
LIKELY SAFE ...when used orally in food amounts (14145). There is insufficient reliable information available about the safety of broccoli when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts (14145).
There is insufficient reliable information available about the safety of broccoli when used in medicinal amounts during pregnancy and lactation; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Doses up to 240 mg daily have been used safely for up to a year (6252,6253,10622,11457,18281,18284,91104,91105,91106,91111)(96449,103298). Higher doses up to 3200 mg daily have been used safely, short-term (18283,110546). ...when used topically and appropriately. Bromelain has been used safely as a debriding agent for up to 4 hours (18275,91113,103297,108148,108149,113899). Additionally, a retrospective cohort study in critically ill patients with severe burns suggests that use of bromelain as a debriding agent for up to 4 hours is not associated with a greater risk of bacteremia (113899).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately (11438,11442).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts (18). ...when used topically and appropriately, short-term. Topical application of cabbage leaves has been general well-tolerated in short-term studies (6781,6782,6783,6784,93671,110558). However, pain, itching, and burning with topical use of cabbage leaves have been reported in some patients leaving cabbage leaf wraps in place for 2-4 hours (93671,93675).
PREGNANCY:
There is insufficient reliable information available about using cabbage in medicinal amounts during pregnancy; avoid using.
LACTATION: LIKELY SAFE
when used topically and appropriately, short-term.
Significant adverse effects have not been reported in short-term studies (6781,6782,6783,6784,93673,93677). There is insufficient reliable information available about using cabbage orally in medicinal amounts during lactation; avoid using.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
There is insufficient reliable information available about the safety of camu camu.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Carrot has been used safely in doses of approximately 100 grams three times daily for up to 4 weeks (96308). There is insufficient reliable information available about the safety of carrot when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
CHILDREN: POSSIBLY UNSAFE
when carrot juices are used excessively in nursing bottles for small children.
Excessive use of carrot juice may cause carotenemia and dental caries (25817).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in food (4912).
Carrot essential oil, extracts, and food additives have Generally Recognized as Safe (GRAS) status in the US (4912).
There is insufficient reliable information available about the safety of carrot when used in medicinal amounts during pregnancy and lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods (104531,104532).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chia has been used safely at doses up to 40 grams daily for up to 6 months (16124,97940). ...when used topically, short-term. A product containing chia seed oil 4% has been applied to the skin safely for up to 8 weeks (25537).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when clove oil is applied topically (272). A clove oil 1% cream has been applied to the anus with apparent safety for up to 6 weeks (43487). A liposome-based product containing clove oil 45% has been applied to the palms with apparent safety for up to 2 weeks (100596).
LIKELY UNSAFE ...when clove smoke is inhaled. Smoking clove cigarettes can cause respiratory injury (17,43599). ...when clove oil is injected intravenously. This can cause pulmonary edema, hypoxemia, and acute dyspnea (16384). There is insufficient reliable information available about the safety of using clove orally in medicinal amounts.
CHILDREN: LIKELY UNSAFE
when clove oil is taken orally.
Ingesting 5-10 mL of undiluted clove oil has been linked to reports of coagulopathy, liver damage, and other serious side effects in infants and children up to 3 years of age (6,17,43385,43395,43419,43457,43652).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts found in foods (4912).
Clove, clove oil, and eugenol have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). There is insufficient reliable information available about the safety of using clove in medicinal amounts during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately. Drinking decaffeinated coffee or coffee containing caffeine in low to moderate amounts is safe (15,98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 4 cups of coffee daily providing caffeine 400 mg daily is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of beverages such as coffee that contain caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Acute use of high doses of caffeine (more than 400 mg per day), which is found in more than 4 cups of caffeinated coffee, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Drinking caffeinated coffee in amounts greater than 6 cups per day (about 600 mg caffeine) short-term or long-term can also cause caffeinism, with symptoms of anxiety possibly progressing to delirium and agitation. Chronic use of caffeine, especially in large amounts, can sometimes produce tolerance, habituation, and psychological dependence (3719). Abrupt discontinuance of caffeine can cause physical withdrawal symptoms (11733). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as coffee, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. ...when used rectally as an enema. Coffee enemas have been linked to cases of severe electrolyte abnormalities and septicemia leading to severe side effects including death (3026,3347,3349,6652).
CHILDREN: POSSIBLY SAFE
when coffee containing caffeine is consumed orally in moderate amounts.
Oral intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). However, higher doses should be avoided. The adverse effects typically associated with caffeine-containing coffee are usually more severe in children than adults (11733).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Intake of caffeine from coffee and other sources should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen. Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). In some studies, consuming amounts over 200 mg daily has been associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in people with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume caffeine in doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as coffee, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY UNSAFE
when caffeinated coffee providing more than 300 mg of caffeine daily is consumed orally.
Caffeine from coffee crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption from all sources below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee. High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). Drinking more than 6 cups of coffee daily increases the risk of spontaneous abortion (2709). Drinking 8 or more cups of coffee daily doubles the risk of stillbirth when compared with those who do not drink coffee during pregnancy (10621).
LACTATION: POSSIBLY SAFE
when used orally.
Drinking one or two caffeine-containing beverages daily during lactation is not associated with unacceptable levels of caffeine in human milk (11734).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine from coffee can cause wakefulness or irritability in breast-fed infants. Caffeine can also cause feeding intolerance and gastrointestinal irritation in infants (6026).
POSSIBLY SAFE ...when used orally and appropriately (2). In clinical research, a specific combination product providing coffee charcoal 600 mg, myrrh 1200 mg, and chamomile extract 840 mg (MYRRHINIL-INTEST, Repha GmbH) daily has been safely used for up to 12 months (93653). ...when used topically and appropriately (2).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE . .when used orally and appropriately. Cranberry juice up to 300 mL daily and cranberry extracts in doses up to 800 mg twice daily have been safely used in clinical trials (3333,3334,6758,6760,7008,8252,8253,8254,8995,11328) (16415,16720,17100,17126,17176,17210,17524,46379,46388,46389)(46390,46425,46439,46443,46465,46456,46466,46467,46469,46471)(46496,46499,90044,102847,111407).
CHILDREN: LIKELY SAFE
when cranberry juice is consumed in amounts commonly found in the diet (2811,6759,46441,46452,46470,111407).
There is insufficient reliable information available about the safety of cranberry when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in the diet.
There is insufficient reliable information available about the safety of cranberry when used therapeutically during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally in the amounts typically found in foods. Elderberry has generally recognized as safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when elderberry fruit extract is used orally, short-term. One specific elderberry fruit extract (Sambucol, Nature's Way) has been used with apparent safety for up to 5 days (5260,12235,103831); another (BerryPharma, Iprona AG) has been used with apparent safety for up to 15 days (91374). A specific elderberry fruit extract lozenge (ViraBLOC, HerbalScience) has been used with apparent safety for 2 days (17022). Other elderberry fruit extracts have been used with apparent safety for up to 12 weeks (21141,21142).
POSSIBLY UNSAFE ...when elder tree leaves and stems, or unripe or uncooked elderberries, are consumed. The unripe green fruit, as well as the leaves and stems of the elder tree, contain a cyanide-producing chemical, which can cause serious toxicity (17020,17021,21143,21144,91374). Cooking eliminates the toxin.
CHILDREN: LIKELY SAFE
when consumed in the amounts typically found in foods.
CHILDREN: POSSIBLY SAFE
when used orally for up to 3 days.
A specific fruit extract (Sambucol, Nature's Way) has been used in doses of 15 mL twice daily for 3 days in children 5 years and older (5260,103831).
CHILDREN: POSSIBLY UNSAFE
when unripe or uncooked elderberries are consumed.
The unripe green fruit, as well as the leaves and stems of the elder tree, contain a cyanide-producing chemical , which can cause serious toxicity (17020,17021,21143,21144,91374). Cooking eliminates the toxin.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in the amounts typically found in foods.
There is insufficient reliable information available about the safety of elderberry when used for medicinal purposes; avoid using in amounts greater than those found in foods.
LIKELY SAFE ...when ground flaxseed is used orally and appropriately. Ground flaxseed has been safely used in numerous clinical trials in doses up to 30-60 grams daily for up to 1 year (6803,6808,8020,10952,10978,12908,12910) (16760,16761,16762,16765,16766,18224,21191,21194,21196,21198) (21199,21200,22176,22179,22180,22181,65866,66065) (101943,101949,101950).
POSSIBLY SAFE ...when flaxseed lignan extract or mucilage is used orally and appropriately. Some clinical research shows that a specific flaxseed lignan extract (Flax Essence, Jarrow Formulas) 600 mg daily can be used with apparent safety for up to 12 weeks (16768). Additional clinical research shows that other flaxseed lignin extracts can be used with apparent safety for up to 6 months (21193,21197,21200). In one clinical trial, flaxseed mucilage was used with apparent safety at a dose of up to 5120 mg daily for up to 12 weeks (108047)....when flaxseed is used topically in a warm poultice (101946).
POSSIBLY UNSAFE ...when raw or unripe flaxseed is used orally. Raw flaxseed contains potentially toxic cyanogenic glycosides (linustatin, neolinustatin, and linamarin); however, these glycosides have not been detected after flaxseed is baked (5899). Unripe flaxseeds are also thought to be poisonous when consumed due to cyanide content.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Flaxseed can have mild estrogenic effects. Theoretically, this might adversely affect pregnancy (9592,12907); however, there is no reliable clinical evidence about the effects of flaxseed on pregnancy outcomes.
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, alone or in combination with probiotics, in doses up to 30 grams daily for up to 4 weeks (741,745,8505,90266,107729,107931). ...when a specific FOS product (NutraFlora, Ingredion Inc.) is used orally in combination with calcium at doses up to 3.2 grams daily for up to 24 months (94931).
CHILDREN: POSSIBLY SAFE
when short-chain FOS are included in approved infant formulas for healthy term infants at a level of up to 4 grams/L or 1 gram/kg daily (94929,94930,98651).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when goji fruit preparations are used orally and appropriately, short-term. Goji berry whole fruit, boiled or steamed, has been used with apparent safety at a dose of 15 grams daily for 16 weeks (105489). Other goji berry products have also been used with apparent safety in clinical research, including a specific goji fruit juice (GoChi, FreeLife International) 120 mL daily for 30 days (52532), a goji fruit polysaccharide 300 mg daily for 3 months (92117), and a specific milk-based formulation of goji berry (Lacto-Wolfberry, Nestlé Research Center) for 3 months (52539). There has been some concern about the atropine content of goji; however, most analyses show that levels of atropine in goji berries from China and Thailand are far below potentially toxic levels (52524,94667). There is insufficient reliable information available about the safety of oral use of other parts of the goji plant.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Some animal research shows that goji fruit may stimulate the uterus (12). However, this has not been reported in humans. Until more is known, avoid using during pregnancy or lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when the whole fruit of the grape, or extracts of the fruit, seed, or leaf, are used orally and appropriately in medicinal amounts. Grape seed extracts have been used with apparent safety in doses up to 200 mg daily for up to 11 months (9182,53016) and in doses up to 2000 mg daily for up to 3 months (53149,53190). Specific grape fruit extracts (Stilvid, Actafarma; Cognigrape, Bionap srl) have been used with apparent safety in doses up to 250-350 mg daily for 3-12 months or 700 mg daily for 6 months (53254,53256,96198). A specific grape leaf extract (AS 195, Antistax, Boehringer Ingelheim) has been used with apparent safety in doses up to 720 mg daily for up to 3 months (2538,52985,53005,53206). A preparation of dehydrated whole grapes, equivalent to 250 grams of fresh grapes daily, has also been used with apparent safety for up to 30 days (18228). A specific grape seed extract (Enovita; Indena SpA) 150 mg twice daily, standardized to provide at least 95% oligomeric proanthocyanins, has been used with apparent safety for up to 16 weeks (108091) ...when used topically and appropriately. Creams and ointments containing grape seed extract 2% or 5% have been used topically with apparent safety for up to 3 weeks (91539,100955). There is insufficient reliable information available about the safety of other grape plant parts when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). However, whole grapes should be eaten with caution in children aged 5 years and under. Whole grapes can be a choking hazard for young children (96193). To reduce the risk of choking, whole grapes should be cut in half or quartered before being given to children. There is insufficient reliable information available about the safety of grape when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of medicinal amounts during pregnancy and breast-feeding; avoid using in amounts greater than what is commonly found in foods.
LIKELY SAFE ...when green tea is consumed as a beverage in moderate amounts (733,6031,9222,9223,9225,9226,9227,9228,14136,90156)(90159,90168,90174,90184,95696). Green tea contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 8 cups of green tea daily, or approximately 400 mg of caffeine, is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). ...when green tea extract cream or ointment is used topically and appropriately, short-term. A green tea extract 3% cream, applied twice daily, has been used with apparent safety for up to 8 weeks, and a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins has been safely used for up to 16 weeks (15067). The safety of treatment for longer durations or multiple treatment courses is not known.
POSSIBLY SAFE ...when green tea extract is used orally. Green tea extract containing 7% to 12% caffeine has been used safely for up to 2 years (8117,37725). Also decaffeinated green tea extract up to 1.3 grams daily enriched in EGCG has been used safely for up to 12 months (90158,97131). In addition, green tea extract has been safely used as part of an herbal mixture also containing garcinia, coffee, and banaba extracts for 12 weeks (90137). ...when used topically and appropriately as a cream or mouthwash (6065,11310,90141,90150,90151).
POSSIBLY UNSAFE ...when consumed as a beverage in large quantities. Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Doses of caffeine greater than 600 mg per day, or approximately 12 cups of green tea, have been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832). These effects would not be expected to occur with the consumption of decaffeinated green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. There is also some speculation that green tea products containing higher amounts of the catechin epigallocatechin gallate (EGCG) might have increased risk of adverse events. Some research has found that taking green tea products containing EGCG levels greater than 200 mg is associated with increased risk of mild adverse effects such as constipation, increased blood pressure, and rash (90161). Other research has found that doses of EGCG equal to or above 800 mg daily may be associated with increased risk of liver injury in humans (95440,95696,97131).
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, and prior caffeine use (11832).
CHILDREN: POSSIBLY SAFE
when used orally by children and adolescents in amounts commonly found in foods and beverages (4912,11833).
Intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). ...when used for gargling three times daily for up to 90 days (90150).
There is insufficient reliable information available about the safety of green tea extract when used orally in children. However, taking green tea extract orally has been associated with potentially serious, albeit uncommon and unpredictable cases, of hepatotoxicity in adults. Therefore, some experts recommend that children under the age of 18 years of age do not use products containing green tea extract (94897).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, pregnant patients should closely monitor their intake to ensure moderate consumption. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,98806). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. Based on animal models, green tea extract catechins are also transferred to the fetus, but in amounts 50-100 times less than maternal concentrations (15010). The potential impact of these catechins on the human fetus is not known, but animal models suggest that the catechins are not teratogenic (15011).
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts providing more than 300 mg caffeine daily.
Caffeine from green tea crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. High maternal doses of caffeine throughout pregnancy have also resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
There is also concern that consuming large amounts of green tea might have antifolate activity and potentially increase the risk of folic acid deficiency-related birth defects. Catechins in green tea inhibit the enzyme dihydrofolate reductase in vitro (15012). This enzyme is responsible for converting folic acid to its active form. Preliminary evidence suggests that increasing maternal green tea consumption is associated with increased risk of spina bifida (15068). Also, evidence from epidemiological research suggests that serum folate levels in pregnant patients with high green tea intake (57.3 mL per 1000 kcal) are decreased compared to participants who consume moderate or low amounts of green tea (90171). More evidence is needed to determine the safety of using green tea during pregnancy. For now, advise pregnant patients to avoid consuming large quantities of green tea.
LACTATION: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, nursing parents should closely monitor caffeine intake. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of green tea might cause irritability and increased bowel activity in nursing infants (6026). There is insufficient reliable information available about the safety of green tea extracts when applied topically during breast-feeding.
LIKELY SAFE ...when guava fruit is consumed as food. Guava fruit has Generally Recognized as Safe (GRAS) status (4912).
POSSIBLY SAFE ...when guava fruit or leaf extract is used orally for medicinal purposes, short-term. Guava fruit has been used with apparent safety at doses of 500-1000 grams daily for 12 weeks (95562). Guava leaf extract has been used with apparent safety at doses of 1 gram daily for 12 weeks or 1.5 grams daily for 3 days (101758,70318). ...when the leaf extract is used topically, short-term. Guava leaf extract has been used safely as a mouth rinse at a dose of 0.15% twice daily for 30 days (101754). Guava leaf extract has been safely used on the skin at a dose of 6% twice daily for 28 days (101757).
PREGNANCY AND LACTATION: LIKELY SAFE
when guava fruit is consumed as food.
There is insufficient reliable information available about the safety of guava fruit or leaf when used for medicinal purposes during pregnancy and lactation.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Hawthorn preparations in doses of up to 1800 mg daily seem to be safe when used for up to 16 weeks. Although hawthorn might be safe for long-term use, current studies have not evaluated safety past 16 weeks (8279,8280,8281,10144,17203,104689). There is insufficient reliable information available about the safety of hawthorn when used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when hemp seed, hemp protein, and hemp seed oil are used orally in food amounts. Hulled hemp seed, hemp seed protein powder, and hemp seed oil are generally recognized as safe (GRAS) in the US (100531).
POSSIBLY SAFE ...when hemp seed oil is used orally and appropriately as medicine, short-term. Hemp seed oil in doses of 2-6.3 grams daily has been safely used for 3-6 months (88183,16791,101145). Hemp seed oil in doses of 30 mL (27.6 grams) daily has been used safely for 2 months (101125). There is insufficient reliable evidence available about the safety of hemp oil, flowers, or leaves.
CHILDREN:
There is insufficient reliable information available about the safety of hemp in children.
Adverse effects have been noted in case reports, but details related to specific hemp products are limited (101153,110287).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. There is insufficient reliable information available about the safety of kale when used orally in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of kale when used orally in medicinal amounts; avoid use.
LIKELY SAFE ...when used orally and appropriately with lactose-containing foods. Lactase has Generally Recognized as Safe (GRAS) status in the US when prepared from Candida pseudotropicalis or Kluyveromyces lactis (104108,104109). Lactase has been used safely in doses up to 9900 international units (IU) and up to 13,500 food chemical codex (FCC) units (2371,2372,2373,106669).
CHILDREN: LIKELY SAFE
when used orally and appropriately with lactose-containing foods.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately with lactose-containing foods.
There is insufficient reliable information available about the safety of lipase.
CHILDREN: POSSIBLY UNSAFE
when recombinant human bile salt-stimulated lipase (rhBSSL) is used orally by premature infants.
Adding rhBSSL to infant formula or pasteurized breast milk increases the risk for serious gastrointestinal adverse effects in premature infants (101940).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately as extracts. A maitake mushroom extract 3 mg/kg twice daily has been used safely for up to 12 weeks (92843). Doses up to 5 mg/kg twice daily of another maitake mushroom extract have been used safely for up to 3 weeks (61239). Maitake mushroom polysaccharides (MMP) 1-1.5 grams daily have also been used safely for up to 2 years (8188).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Noni juice has been used in doses of up to 200 mL daily with apparent safely in small clinical studies for up to 3 months (11944,17169,65173). However, there have been several case reports of increased liver enzymes and hepatotoxicity in people taking some noni products (13107,14341,14468,17170,17171,17172). In three reports, hepatotoxicity was linked to a specific brand of noni juice (Tahitian Noni Juice, Tahitian Noni International) (14341,17171). It is unclear if potential contaminants or hypersensitivity reactions may be the cause of these events. More evidence is needed to determine if noni increases the risk for hepatotoxicity. There is insufficient reliable information available about the safety of noni fruit extract when used orally or the safety of noni when used topically.
PREGNANCY AND LACTATION:
While animal research is conflicting on the teratogenic effects of noni (65205,65206), there is insufficient reliable information available about the safety of noni in humans; avoid using.
LIKELY SAFE ...when used orally and appropriately in food amounts (4960,4969,5792,5797). Oat bran has Generally Recognized as Safe (GRAS) status in the US (4912). Whole grain oats 50-100 grams daily have been used for up to 1 year without serious adverse effects (97520).
POSSIBLY SAFE ...when used topically and appropriately (12). Lotion containing colloidal oat 1% has been used topically without adverse effects for up to 6 weeks (97518,103340). There is insufficient reliable information available about the safety of oats when used orally in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts (5792,5797).
LIKELY SAFE ...when used orally in food amounts. Pea protein is commonly consumed as a food (94935,94970,94981).
POSSIBLY SAFE ...when pea protein is used orally in medicinal amounts, short term. Pea protein has been used with apparent safety in doses of up to 50 grams daily for up to 12 weeks (95426,94934,102013,104758,104759). ...when pea protein hydrolysate is used orally, short term. A pea protein hydrolysate has been used with apparent safety at doses of up to 3 grams daily for up to 3 weeks (94973).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those found in food.
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
POSSIBLY SAFE ...when used orally and appropriately. Various proteolytic enzymes have been safely used orally in clinical research (716,964,965,968,969,6252,6253,10622,11457,18281,18284) (91104,91105,91106,91111,96449). Side effects are typically mild to moderate and most often include gastrointestinal effects. See specific monographs for more detailed information related to the safety of individual proteolytic enzymes. ...when used topically and appropriately. Various proteolytic enzymes have been safely used topically in clinical research (67835,67843,67845,91113). Some proteolytic enzymes might cause allergic reactions when used topically. See specific monographs for more detailed information related to the safety of individual proteolytic enzymes.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in food amounts. Quinoa is a common food source for many people (99147,99148,99149). There is insufficient reliable information available about the safety of quinoa when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts.
There is insufficient reliable information available about the safety of quinoa in medicinal amounts; avoid using.
LIKELY SAFE ...when the fruit is used orally in amounts commonly found in foods (13622).
POSSIBLY SAFE ...when the fruit is used orally and appropriately in medicinal amounts (6481,9796). There is insufficient reliable information available about the safety of red raspberry leaf when used orally or topically.
PREGNANCY: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
PREGNANCY: POSSIBLY SAFE
when red raspberry leaf is used orally and appropriately in medicinal amounts during late pregnancy under the supervision of a healthcare provider.
Red raspberry leaf is used by nurse midwives to facilitate delivery. There is some evidence that red raspberry leaf in doses of up to 2.4 grams daily, beginning at 32 weeks' gestation and continued until delivery, can be safely used for this purpose (6481,9796). Make sure patients do not use red raspberry leaf without the guidance of a healthcare professional.
PREGNANCY: LIKELY UNSAFE
when red raspberry leaf is used orally in medicinal amounts throughout pregnancy or for self-treatment.
Red raspberry leaf might have estrogenic effects (6180). These effects can adversely affect pregnancy. Tell pregnant patients not to use red raspberry leaf at any time during pregnancy without the close supervision of a healthcare provider.
LACTATION: LIKELY SAFE
when the fruit is used orally in amounts commonly found in foods (13622).
There is insufficient reliable information available about the safety of red raspberry leaf; avoid using.
POSSIBLY SAFE ...when an extract of reishi mushroom is used orally and appropriately for up to one year (12,5485,70767,70774,70786,70799,70800,70801,70802). ...when whole powdered reishi mushroom is used orally and appropriately for up to 16 weeks (70776,70799,70800,70801,91433,91435,91436,91437,108309).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using
LIKELY SAFE ...when consumed in typical food amounts (6).
POSSIBLY SAFE .... ..when the shiitake mushroom extract AHCC is used orally and appropriately. AHCC 4.5-6 grams daily has been used with apparent safety in clinical trials lasting up to 6 months (22926,30419). Population research identified no safety concerns with the use of AHCC 3 grams daily for up to 9 years (30353,94830).
POSSIBLY UNSAFE ...when shiitake mushroom powder is used orally in medicinal amounts. Ingestion of shiitake mushroom powder 4 grams daily for 10 weeks can cause eosinophilia (1149). ...when uncooked shiitake mushroom is ingested. The lentinan component, which is broken down by heat, can cause toxic reactions, including shiitake dermatitis (94354).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid consuming greater than food amounts.
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when consumed in food amounts (18). Although the fruit contains cyanogenic glycosides, the concentrations are very low (18). There is insufficient reliable information available about the safety of sorghum used in amounts larger than those found in foods.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts. Spinach has been used with apparent safety at a dose of 5 grams daily for up to 12 weeks (96856).
CHILDREN: LIKELY SAFE
when consumed in the amounts commonly found in foods by children older than 4 months of age (18).
CHILDREN: LIKELY UNSAFE
when used orally in infants under 4 months old; the high nitrate content of spinach can cause methemoglobinemia (18).
There is insufficient reliable information available about the safety of spinach in children when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used in amounts commonly found in foods; avoid medicinal amounts.
LIKELY SAFE ...when the fruit is consumed in amounts commonly found in foods (14056,14058,93197,94712). ...when the fruit is used orally in medicinal amounts, short-term. Sweet cherry 280 grams daily for 28 days has been safely used in clinical research (94712). There is insufficient reliable information available about the safety of sweet cherry when used orally in medicinal amounts, long-term.
PREGNANCY AND LACTATION: LIKELY SAFE
when the fruit is consumed in amounts commonly found in foods (14056,14058).
There is insufficient reliable information available about the safety of sweet cherry when used in medicinal amounts during pregnancy or lactation.
LIKELY SAFE ...when sweet orange juice or fruit is used orally in amounts commonly found in foods (1310,3340,15171,92309,114401).
POSSIBLY SAFE ...when the essential oil of sweet orange is inhaled as aromatherapy, short-term (35735,58060,90505,105455). There is insufficient reliable information available about the safety of sweet orange peel when used orally.
CHILDREN: LIKELY SAFE
when sweet orange juice or fruit is used orally in amounts commonly found in foods.
CHILDREN: POSSIBLY UNSAFE
when the sweet orange peel is used orally in excessive amounts.
There have been reports of intestinal colic, convulsions, and death in children given large amounts of sweet orange peel (11).
PREGNANCY AND LACTATION: LIKELY SAFE
when sweet orange juice or fruit is used orally in amounts commonly found in foods (1310,3340).
LIKELY SAFE ...when the ripe or unripe tomato fruit or its products are consumed in amounts found in foods (2406,9439,10418,106653,106654). ...when tomato leaf is consumed in regular food amounts (18).
POSSIBLY SAFE ...when a tomato extract is used orally for medicinal purposes. A specific tomato extract (Lyc-O-Mato, LycoRed Ltd) has been used with apparent safety in clinical studies lasting up to 8 weeks (7898,14287,102182).
POSSIBLY UNSAFE ...when the tomato leaf or unripe green tomato fruit is used orally in excessive amounts. Tomato leaf and unripe green tomatoes contain tomatine, which has been associated with toxicity when consumed in large quantities (18,102957). There is insufficient reliable information available about the safety of the tomato vine.
PREGNANCY AND LACTATION: LIKELY SAFE
when the tomato fruit or its products are consumed in typical food amounts.
There is insufficient reliable information available about the safety of tomato extracts when used during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally or intramuscularly and appropriately. Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe in adults when taken in doses below the tolerable upper intake level (UL) of 10,000 IU (3000 mcg) daily (7135). Higher doses increase the risk of side effects. In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake refer to pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
POSSIBLY SAFE ...when used topically and appropriately, short-term. Retinol up to 0.5% has been used on the skin daily for up to 12 weeks with apparent safety. No serious adverse effects have been reported in clinical trials (103671,103680,114500).
POSSIBLY UNSAFE ...when used orally in high doses. Doses higher than the UL of 10,000 IU (3000 mcg) per day of pre-formed vitamin A (retinol or retinyl ester) might increase the risk of side effects (7135). While vitamin A 25,000 IU (as retinyl palmitate) daily for 6 months followed by 10,000 IU daily for 6 months has been used with apparent safety in one clinical trial (95052), prolonged use of excessive doses of vitamin A can cause hypervitaminosis A (7135). The risk for developing hypervitaminosis A is related to total cumulative dose of vitamin A rather than a specific daily dose (1467,1469). In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). There is insufficient reliable information available about the safety of using sublingual formulations of vitamin A.
CHILDREN: LIKELY SAFE
when used orally or intramuscularly and appropriately.
The amount of pre-formed vitamin A (retinol or retinyl ester) that is safe depends on age. For children up to 3 years of age, doses less than 2000 IU (600 mcg) per day seem to be safe. For children ages 4 to 8, doses less than 3000 IU (900 mcg) per day seem to be safe. For children ages 9 to 13, doses less than 5667 IU (1700 mcg) per day seem to be safe. For children 14 to 18, doses less than 9333 IU (2800 mcg) per day seem to be safe (7135). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount for determining safety.
CHILDREN: POSSIBLY UNSAFE
when pre-formed vitamin A (retinol or retinyl ester) is used orally in excessive doses.
For children up to 3 years of age, avoid doses greater than 2000 IU (600 mcg) per day. For children ages 4 to 8, avoid doses greater than 3000 IU (900 mcg) per day. For children ages 9 to 13, avoid doses greater than 5667 IU (1700 mcg) per day. For children ages 14 to 18, avoid doses greater than 9333 IU (2800 mcg) per day (7135). Higher doses of vitamin A supplementation have been associated with increased risk of side effects such as pneumonia, bone pain, and diarrhea (319,95051). Long-term supplementation with low to moderate doses on a regular basis can cause severe, but usually reversible, liver damage (11978).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally or intramuscularly and appropriately.
Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe during pregnancy and lactation when used in doses less than 10,000 IU (3000 mcg) per day in adults 19 years of age and older and 2800 mcg daily in those 14-18 years of age (7135,16823,107293). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally or intramuscularly in excessive doses.
Daily intake of greater than 10,000 IU (3000 mcg) can cause fetal malformations (3066,7135). Excessive dietary intake of vitamin A has also been associated with teratogenicity (11978). The first trimester of pregnancy seems to be the critical period for susceptibility to vitamin A-associated birth defects such as craniofacial abnormalities and abnormalities of the central nervous system (7135). Pregnant patients should monitor their intake of pre-formed vitamin A (retinol or retinyl ester). This form of vitamin A is found in several foods including animal products, particularly fish and animal liver, some fortified breakfast cereals, and dietary supplements (3066).
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
LIKELY SAFE ...when consumed in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally in medicinal amounts, short-term. Watercress extract 750 mg/kg daily has been used with apparent safety for up to 5 weeks (103891).
POSSIBLY UNSAFE ...when used orally in excessive amounts or long-term (8,12,19). Watercress can cause gastric mucosal irritation (8,12,85599) or damage (19).
CHILDREN: LIKELY UNSAFE
when used orally in medicinal amounts; avoid using in children younger than 4 years old (12,19).
PREGNANCY: LIKELY UNSAFE
when used in medicinal amounts.
Watercress might stimulate menstruation or have abortifacient effects (19).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. White mustard has Generally Recognized as Safe (GRAS) status in the US (4912). There is insufficient reliable information available about the safety of white mustard when used orally or topically for medicinal purposes.
PREGNANCY: LIKELY UNSAFE
when used orally in medicinal amounts.
White mustard is thought to have abortifacient and menstrual-stimulant properties (19).
LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product Meal Replacement Plant Protein Chocolate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, taking acai with antidiabetes drugs might interfere with glycemic control.
|
Theoretically, combining allspice with an antiplatelet or anticoagulant drug might increase the risk of bleeding.
Eugenol, a constituent of allspice, is reported to have antiplatelet activity (12889). However, this interaction has yet not been reported in humans.
|
Theoretically, aloe gel might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
In vitro research shows that aloe gel can inhibit platelet aggregation. This inhibition was greater than that seen with celecoxib, but less than that seen with aspirin (105501).
|
Aloe might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, aloe might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that aloe extract induces CYP1A2 enzymes (111404).
|
Theoretically, aloe latex might increase the risk of adverse effects when taken with cardiac glycosides.
Overuse of aloe latex can increase the risk of adverse effects from cardiac glycoside drugs, such as digoxin, due to potassium depletion. Overuse of aloe, along with cardiac glycoside drugs, can increase the risk of toxicity (19).
|
Theoretically, aloe latex might increase the risk of hypokalemia when taken with diuretic drugs.
Overuse of aloe latex might compound diuretic-induced potassium loss, increasing the risk of hypokalemia (19).
|
Theoretically, aloe latex might increase the risk for fluid and electrolyte loss when taken with stimulant laxatives.
|
Theoretically, aloe latex might increase the risk of bleeding when taken with warfarin.
Aloe latex has stimulant laxative effects. In some people aloe latex can cause diarrhea. Diarrhea can increase the effects of warfarin, increase international normalized ratio (INR), and increase the risk of bleeding. Advise patients who take warfarin not to take excessive amounts of aloe vera.
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of aliskiren.
Pharmacokinetic research shows that coadministration of apple juice 200 mL along with aliskiren 150 mg decreases the bioavailability of aliskiren by 63% (17670). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046,94413). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Theoretically, consuming apple juice with antidiabetes drugs might interfere with blood glucose control.
Clinical research suggests that consuming apples or drinking apple juice can raise blood glucose levels, with the effects of drinking apple juice being more significant than consuming apples (31699).
|
Consuming apple juice with antihypertensive drugs might interfere with blood pressure control.
Some clinical evidence suggests that consuming apple and cherry juice can increase blood pressure in elderly patients (31680).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of atenolol.
Pharmacokinetic research shows that coadministration of apple juice 600-1200 mL decreases levels of atenolol by 58% to 82% in a dose-dependent manner (17999). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of fexofenadine.
Pharmacokinetic research shows that coadministration of apple juice 400-1200 mL along with fexofenadine 60-120 mg decreases bioavailability of fexofenadine by up to 78% (7046,94413). Coadministration with smaller quantities of apple juice (150 mL or less) does not appear to affect the bioavailability of fexofenadine (94421). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046,94413). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
There is some concern that concomitant consumption of apple juice might decrease oral absorption and blood levels of lithium.
In one case report, a patient had an undetectable serum lithium level when lithium citrate was administered with apple juice. When lithium was administered with an alternative beverage, the lithium level became detectable and the patient demonstrated clinical improvement (105342).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of OATP substrates.
Research shows that consuming apple juice inhibits OATP, which reduces bioavailability of oral drugs that are substrates of OATP (7046,17605). Fexofenadine, atenolol, and aliskiren are substrates of OATP. Clinical research shows that coadministration of apple juice decreases bioavailability of fexofenadine by up to 78% (7046,94413), aliskiren by 63% (17670), and atenolol by up to 82% (17999). These effects appear to increase with larger quantities of apple juice. It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Theoretically, taking antibiotics with Bacillus coagulans might decrease the effectiveness of B. coagulans.
B. coagulans preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms. Tell patients to separate administration of antibiotics and B. coagulans preparations by at least two hours.
|
Taking banana may reduce the effectiveness of levodopa.
A case report describes apparent wearing off in a patient with Parkinson disease after eating a banana every day. The wearing off subsided after removing dietary bananas (110618).
|
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Theoretically, bilberry fruit extract might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, bilberry leaf or fruit extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal research suggests that bilberry leaf extract might have blood glucose-lowering activity (1264). Also, one small clinical trial in patients with type 2 diabetes shows that taking bilberry fruit extract 470 mg as a single dose prior to an oral glucose tolerance test lowers plasma glucose levels when compared with placebo (91507).
|
Theoretically, bilberry fruit extract might decrease levels of drugs metabolized by CYP2E1.
Animal research shows that exposure to small concentrations of bilberry extract in drinking water for around one month increased CYP2E1 activity by 31%. However, exposure over a 2-month period did not increase CYP2E1 activity (103191). This effect has not been reported in humans.
|
Theoretically, bilberry fruit extract might reduce the efficacy of erlotinib.
In vitro research suggests that bilberry fruit extract and its constituents, delphinidin and delphinidin-3-O-glucoside, inhibit the activity of erlotinib (97031). This interaction has not been reported in humans.
|
Theoretically, black mustard seed might increase the risk of hypoglycemia when used with antidiabetes drugs.
|
Theoretically, blueberries or blueberry leaf extracts might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, blueberry juice might increase blood levels of buspirone.
In vitro research shows that blueberry juice can inhibit the metabolism of buspirone, possibly by inhibiting cytochrome P450 3A (CYP3A) enzymes. However, pharmacokinetic research in humans shows that drinking 300 mL of blueberry juice 30 minutes before taking buspirone hydrochloride 10 mg does not significantly affect the concentration or clearance of buspirone (92385).
|
Theoretically, blueberry juice might increase blood levels of flurbiprofen.
In vitro research shows that blueberry juice can inhibit the metabolism of flurbiprofen, possibly by inhibiting cytochrome P450 2C9 (CYP2C9) enzymes. However, pharmacokinetic research in humans shows that drinking 300 mL of blueberry juice 30 minutes before taking flurbiprofen 100 mg does not significantly affect the concentration or clearance of flurbiprofen (92385).
|
Theoretically, broccoli might reduce the levels and effects of drugs metabolized by CYP1A2.
|
Theoretically, broccoli might reduce the levels and effects of drugs metabolized by CYP2A6.
Pharmacokinetic research in humans shows that eating 500 grams of broccoli daily for 6 days increases CYP2A6 activity by 135% to 550%. Induction of CYP2A6 activity is attributed to its glucosinolate constituents (19608).
|
Bromelain may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
There is one case report of a patient experiencing minor bruising while taking bromelain with naproxen (14806). Bromelain is thought to have antiplatelet activity (10639,14806,18285,18286,37234). Whether this interaction is of concern with topical bromelain is unclear. Interference with coagulation of burn wounds has been reported in a patient receiving bromelain-based enzymatic debridement. However, observational research has found that topical bromelain debridement is not associated with increases or decreases in laboratory markers of coagulation when compared with surgical debridement (110547).
|
Theoretically, bromelain might increase levels of tetracycline antibiotics.
Laboratory research suggests that bromelain might increase the absorption of tetracycline antibiotics. However, a study in healthy adults reported no difference in tetracycline plasma levels when a 500 mg dose was taken with or without bromelain 80 mg (14296).
|
Cabbage might increase clearance and reduce the effects of acetaminophen.
A small clinical study shows that daily consumption of cabbage and Brussels sprout decreases acetaminophen levels by as much as 16%, with some evidence suggesting that this effect is due to increased elimination through glucuronide conjugation (3952).
|
Theoretically, cabbage might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal and in vivo research suggests that cabbage might have hypoglycemic effects (25424).
|
Theoretically, cabbage might decrease levels of drugs metabolized by CYP1A2.
|
Theoretically, cabbage might increase clearance and decrease the effects of drugs metabolized through glucuronide conjugation.
A small clinical study shows that daily consumption of cabbage and Brussels sprout decreases levels of some drugs metabolized through glucuronide conjugation (3952).
|
Cabbage might increase clearance and reduce the effects of oxazepam.
A small clinical study shows that daily consumption of cabbage and brussels sprout decreases oxazepam levels by as much as 17%, with some evidence suggesting that this effect is due to increased elimination through glucuronide conjugation (3952).
|
Theoretically, cabbage might decrease the anticoagulant effects of warfarin.
Cabbage contains vitamin K. If consumed in large quantities, cabbage might decrease the anticoagulant effects of warfarin (19).
|
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, clove oil may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, concomitant use of clove extracts with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical and laboratory research suggest that polyphenol extracts from clove flower buds might lower blood glucose levels (100595). Dosing adjustments for insulin or oral hypoglycemic agents may be necessary when taken with clove. Monitor blood glucose levels closely.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP1A2.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP1A2 in a dose-dependent manner, (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2C9.
In vitro research shows that eugenol, the principal constituent of clove, inhibits CYP2C9 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP2D6.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP2D6 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, concomitant use of clove may increase levels of drugs metabolized by CYP3A4.
In vitro research shows that eugenol, the principal constituent of clove, can inhibit CYP3A4 in a dose-dependent manner (115900). This effect has not been reported in humans.
|
Theoretically, topical application of clove oil with ibuprofen might increase the absorption and side effects of topical ibuprofen.
Laboratory research shows that topical application of clove oil increases the absorption of topical ibuprofen (98854). This interaction has not been reported in humans.
|
Theoretically, coffee might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Coffee contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level (38172). However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products, be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
|
Coffee reduces alendronate bioavailability.
Separate coffee ingestion and alendronate administration by two hours. Coffee reduces alendronate bioavailability by 60% (11735).
|
Theoretically, coffee may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Coffee contains caffeine. Caffeine is reported to have antiplatelet activity (8028,8029). Theoretically, the caffeine in coffee might increase the risk of bleeding when used concomitantly with these agents. However, this interaction has not been reported in humans. There is some evidence that caffeinated coffee might increase the fibrinolytic activity in blood (8030).
|
Theoretically, concomitant use of coffee and antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, concomitant use of large amounts of coffee might increase cardiac inotropic effects of beta-agonists.
Coffee contains caffeine. Caffeine can increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, cimetidine might increase the effects and adverse effects of caffeine in coffee.
|
Theoretically, coffee might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Coffee contains caffeine. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in coffee.
|
Theoretically, coffee might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Coffee contains caffeine. Caffeine is a methylxyanthine that may inhibit dipyridamole-induced vasodilation (11770,11772,24974,37985,53795). It is recommended that methylxanthines such as caffeine, as well as methylxanthine-containing products such as coffee, be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
Coffee contains caffeine. In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, concomitant use might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk of stimulant adverse effects.
Coffee contains caffeine. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,9740,10307). Tell patients to avoid taking caffeine with ephedrine and other stimulants.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Coffee contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
|
Coffee consumption can decrease the levels and clinical effects of lamotrigine.
A pharmacokinetic study in patients taking lamotrigine shows that consumption of coffee, both caffeinated and decaffeinated, can decrease the area under the concentration-time curve (AUC) and the peak plasma level (Cmax) of lamotrigine. Each additional cup of coffee reduced the AUC and Cmax by 4% and 3%, respectively. It is unclear whether this interaction is due to induction of lamotrigine metabolism or inhibition of lamotrigine absorption (107837).
|
Coffee can reduce the absorption of levothyroxine.
In some patients, coffee can reduce levothyroxine absorption, possibly through the formation of non-absorbable complexes. A pharmacokinetic study in these patients found that 25-30 mL of espresso coffee consumed with levothyroxine tablets delayed the time to peak plasma levels by 38-43 minutes, reduced the peak plasma level (Cmax) by 19% to 36%, and reduced the area under the curve (AUC) by 27% to 36%. Coffee consumed one hour after levothyroxine did not affect absorption (16401). It is not known whether this interaction occurs with other types of coffee. Tell patients to avoid drinking coffee at the same time that they take their levothyroxine, and for up to an hour afterwards.
|
Theoretically, abrupt coffee withdrawal might increase the levels and adverse effects of lithium.
Coffee contains caffeine. Abrupt caffeine withdrawal can increase serum lithium levels (609). Two cases of lithium tremor that worsened with abrupt coffee withdrawal have been reported (609,610). There is also one case of a 2.8-fold increase in blood lithium levels after a patient taking lithium reduced his coffee consumption from 13-20 cups daily to 10 cups daily (97369).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Coffee contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Coffee contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, coffee might reduce the effects of pentobarbital.
Coffee contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine. Also, coffee may bind to phenothiazines and reduce their absorption.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, coffee might increase the levels and clinical effects of pioglitazone.
Coffee contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Coffee contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Coffee contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Coffee contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, coffee might increase the levels and adverse effects of theophylline.
|
Theoretically, TCAs might bind with coffee constituents when taken at the same time.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Coffee contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Coffee charcoal can reduce the absorption of orally administered drugs (2) and should be separated from oral drug administration by at least two hours.
|
Theoretically, cranberry might increase levels and adverse effects of atorvastatin.
In one case report, a patient taking atorvastatin experienced upper back pain, rhabdomyolysis, and abnormal liver function after drinking cranberry juice 16 ounces daily for 2 weeks. Theoretically, this may have been caused by inhibition of cytochrome P450 3A4 (CYP3A4) enzymes by cranberry juice, as atorvastatin is a CYP3A4 substrate. Creatinine kinase and liver enzymes normalized within 2 weeks of stopping cranberry juice (90042). Patients taking atorvastatin should avoid large quantities of cranberry juice.
|
Theoretically, cranberry might increase the levels and adverse effects of CYP2C9 substrates. However, research is conflicting.
There is contradictory evidence about the effect of cranberry on CYP2C9 enzymes. In vitro evidence suggests that flavonoids in cranberry inhibit CYP2C9 enzymes (10452,11115,90048). However, clinical research shows that cranberry juice does not significantly affect the levels, metabolism, or elimination of the CYP2C9 substrates flurbiprofen or diclofenac (11094,90048). Also, in patients stabilized on warfarin, drinking cranberry juice 250 mL daily for 7 days does not significantly increase the anticoagulant activity of warfarin, a CYP2C9 substrate (15374). Additional pharmacokinetic research shows that cranberry juice does not increase peak plasma concentrations or area under the concentration-time curve of warfarin (15393).
|
Theoretically, cranberry might increase the levels and adverse effects of CYP3A4 substrates.
A case of upper back pain, rhabdomyolysis, and abnormal liver function has been reported for a patient taking atorvastatin, a CYP3A4 substrate, in combination with cranberry juice 16 ounces daily for 2 weeks. Creatinine kinase and liver enzymes normalized within 2 weeks of stopping cranberry juice (90042). Also, animal research suggests that cranberry juice, administered intraduodenally 30 minutes prior to nifedipine, a CYP3A4 substrate, inhibits nifedipine metabolism and increases the area under the concentration-time curve by 1.6-fold compared to control (46420).
|
Theoretically, cranberry might modestly increase the levels and adverse effects of diclofenac.
|
Theoretically, cranberry might increase the levels and adverse effects of nifedipine.
Animal research suggests that cranberry juice, administered intraduodenally 30 minutes prior to nifedipine treatment, inhibits nifedipine metabolism and increases the area under the concentration-time curve by 1.6-fold compared to control (46420). This interaction has not been reported in humans.
|
Theoretically, cranberry might increase the levels and adverse effects of warfarin. However, research is conflicting.
There is contradictory evidence about the effect of cranberry juice on warfarin. Case reports have linked cranberry juice consumption to increases in the international normalized ratio (INR) in patients taking warfarin, resulting in severe spontaneous bleeding and excessive postoperative bleeding (10452,12189,12668,21187,21188,21189,46378,46396,46411)(46415,90043). Daily consumption of cranberry sauce for one week has also been linked to an increase in INR in one case report (16816). In a small study in healthy young males, taking a high dose of 3 grams of cranberry juice concentrate capsules, equivalent to 57 grams of fruit daily, for 2 weeks produced a 30% increase in the area under the INR-time curve after a single 25-mg dose of warfarin (16416). However, 3 very small clinical studies in patients stabilized on warfarin reported that cranberry juice 250 mL once or twice daily for 7 days (27% cranberry juice or pure cranberry juice) or 240 mL once daily for 14 days does not significantly increase INR or affect plasma warfarin levels (15374,17124,90045). The reasons for these discrepant findings are unclear. It is possible that the form and dose of cranberry may play a role, as cranberry extracts and juices contain different constituents. Additionally, an in vitro study evaluating 5 different cranberry juices found varying effects, with only a cranberry concentrate, and not diluted cranberry juices, inhibiting CYP2C9. However, this concentrate did not inhibit CYP2C9 activity in humans (108062).
|
Theoretically, elderberry might interfere with immunosuppressant therapy due to its immunostimulant activity.
Elderberry has immunostimulant activity, increasing the production of cytokines, including interleukin and tumor necrosis factor (10796).
|
Theoretically, elderberry might interact with pazopanib, potentially increasing the risk of adverse effects.
|
Theoretically, antibiotics might interfere with the metabolism of flaxseed constituents, which could potentially alter the effects of flaxseed.
Some potential benefits of flaxseed are thought to be due to its lignan content. Secoisolariciresinol diglucoside (SDG), a major lignan precursor, is found in high concentrations in flaxseed. SDG is converted by bacteria in the colon to the lignans enterolactone and enterodiol (5897,8022,8023,9592). Antibiotics alter the flora of the colon, which could theoretically alter the metabolism of flaxseed.
|
Theoretically, using flaxseed in combination with anticoagulant or antiplatelet drugs might have additive effects and increase the risk of bleeding.
|
Theoretically, flaxseed might have additive effects when used with antidiabetes drugs and increase the risk for hypoglycemia.
|
Theoretically, flaxseed might have additive effects when used with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, taking flaxseed might decrease the effects of estrogens.
Flaxseed contains lignans with mild estrogenic and possible antiestrogenic effects. The lignans seem to compete with circulating endogenous estrogen and might reduce estrogen binding to estrogen receptors, resulting in an anti-estrogen effect (8868,9593). It is unclear if this effect transfers to exogenously administered estrogens.
|
Theoretically, concomitant use of goji fruit polysaccharides or goji root bark with antidiabetes drugs might have additive effects.
Animal and in vitro research show that goji root bark and fruit polysaccharides might have hypoglycemic effects (7126,92118,94667). However, clinical research has only shown that taking goji fruit polysaccharides with or without antidiabetes drugs modestly reduces postprandial glucose when compared with control, with no reports of hypoglycemia (92117).
|
Theoretically, concomitant use of goji root bark, but not goji fruit, with antihypertensive drugs might have additive effects.
|
Theoretically, goji berry might inhibit CYP2C19 and reduce metabolism of CYP2C19 substrates.
In vitro research shows that goji berry tincture and juice inhibit CYP2C19 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2C19 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP2C9 and reduce metabolism of CYP2C9 substrates.
In vitro research shows that goji berry tincture and juice inhibit CYP2C9 enzymes (105486). Additionally, multiple case reports suggest that goji berry concentrated tea and juice inhibit the metabolism of warfarin, a CYP2C9 substrate (7158,105462). Concomitant use with goji may decrease metabolism and increase levels of CYP2C9 substrates.
|
Theoretically, goji berry might inhibit CYP2D6 and reduce metabolism of CYP2D6 substrates.
In vitro research shows that goji berry juice inhibits CYP2D6 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP2D6 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might inhibit CYP3A4 and reduce metabolism of CYP3A4 substrates.
In vitro research shows that goji berry juice inhibits CYP3A4 enzymes (105486). Concomitant use with goji may decrease metabolism and increase levels of CYP3A4 substrates. However, this has not been reported in humans.
|
Theoretically, goji berry might increase the levels and clinical effects of flecainide.
In one case report, a 75-year-old patient stable on flecainide and warfarin presented to the emergency room with fainting and pleomorphic arrhythmia caused by flecainide toxicity. Flecainide toxicity was attributed to drinking 1-2 glasses of concentrated goji tea daily for 2 weeks. Theoretically, goji may have inhibited the cytochrome P450 2D6 (CYP2D6) metabolism of flecainide (105462).
|
Goji can increase the effects of warfarin and possibly increase the risk of bleeding.
There are at least 5 case reports of increased international normalized ratio (INR) in patients stabilized on warfarin who began drinking goji juice, concentrated goji tea, or goji wine (7158,16529,23896,105462,105487). Goji may inhibit the metabolism of warfarin by cytochrome P450 2C9 (CYP2C9) (7158).
|
Theoretically, grape extracts may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Ingesting grape juice with cyclosporine can reduce cyclosporine absorption.
A small pharmacokinetic study in healthy young adults shows that intake of purple grape juice 200 mL along with cyclosporine can decrease the absorption of cyclosporine by up to 30% when compared with water (53177). Separate doses of grape juice and cyclosporine by at least 2 hours to avoid this interaction.
|
Theoretically, grape juice might reduce the levels of CYP1A2 substrates.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of CYP1A2 (2539).
|
It is unclear if grape juice or grape seed extract inhibits CYP2C9; research is conflicting.
In vitro evidence shows that grape seed extract or grape juice might inhibit CYP2C9 enzymes (11094,53011,53089). However, a small pharmacokinetic study in healthy adults shows that drinking 8 ounces of grape juice once does not affect the clearance of flurbiprofen, a probe-drug for CYP2C9 metabolism (11094). The effects of continued grape juice consumption are unclear.
|
Theoretically, grape seed extract may increase the levels of CYP2D6 substrates.
In vitro evidence suggests that grape seed extract might inhibit CYP2D6 enzymes (53011). However, this interaction has not been reported in humans.
|
Theoretically, grape seed extract might increase the levels of CYP2E1 substrates.
In vitro and animal research suggests that grape seed proanthocyanidin extract inhibits CYP2E1 enzymes (52949). However, this interaction has not been reported in humans.
|
It is unclear if grape seed extract inhibits or induces CYP3A4; research is conflicting.
|
Theoretically, long-term intake of grape seed extract might decrease the effects of midazolam.
Animal research shows that subchronic ingestions of grape seed extract can increase the elimination of intravenous midazolam by increasing hepatic CYP3A4 activity. Single doses of grape seed extract do not appear to affect midazolam elimination (53011).
|
Grape juice might decrease phenacetin absorption.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of cytochrome P450 1A2 (CYP1A2) (2539).
|
Theoretically, high doses of green tea might increase the effects and side effects of 5-fluorouracil.
Animal research shows that taking green tea in amounts equivalent to about 6 cups daily in humans for 4 weeks prior to receiving a single injection of 5-fluorouracil increases the maximum plasma levels of 5-fluorouracil by about 2.5-fold and the area under the curve by 425% (98424).
|
Theoretically, green tea might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine doesn't seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Concomitant use of alcohol and caffeine can increase caffeine serum concentrations and the risk of caffeine adverse effects. Alcohol reduces caffeine metabolism (6370).
|
Theoretically, green tea may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Conflicting reports exist regarding the effect of green tea on bleeding risk when used with anticoagulant or antiplatelet drugs; however, most evidence suggests that drinking green tea in moderate amounts is unlikely to cause a significant interaction. Green tea contains small amounts of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects. Furthermore, the catechins and caffeine in green tea are reported to have antiplatelet activity (733,8028,8029,12882,100524).
|
Theoretically, taking green tea with antidiabetes drugs might interfere with blood glucose control.
|
Green tea extract seems to reduce the levels and clinical effects of atorvastatin.
In healthy humans, taking green tea extract 300 mg or 600 mg along with atorvastatin reduces plasma levels of atorvastatin by approximately 24%. The elimination of atorvastatin is not affected (102714). Atorvastatin is a substrate of organic anion-transporting polypeptides (OATPs). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs. Some OATPs are expressed in the small intestine and are responsible for the uptake of drugs and other compounds, which may have resulted in reduced plasma levels of atorvastatin (19079). It is not clear if drinking green tea alters the absorption of atorvastatin.
|
Green tea contains caffeine. Theoretically, concomitant use of large amounts of caffeine might increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, green tea might interfere with the effects of bortezomib.
In vitro research shows that green tea polyphenols, such as epigallocatechin gallate (EGCG), interact with bortezomib and block its proteasome inhibitory action. This prevents the induction of cell death in multiple myeloma or glioblastoma cancer cell lines (17212). Advise patients taking bortezomib, not to take green tea.
|
Theoretically, green tea might reduce the effects of carbamazepine and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, green tea might reduce the levels and clinical effects of celiprolol.
In a small human study, taking green tea daily for 4 days appears to decrease blood and urine levels of celiprolol by at least 98% (104607). This interaction is possibly due to the inhibition of organic anion transporting polypeptide (OATP). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is found in the intestine (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in green tea.
Green tea contains caffeine. Cimetidine can reduce caffeine clearance by 31% to 42% (11736).
|
Theoretically, green tea might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Animal research suggests that, although green tea extract does not affect the elimination of clozapine, it delays the time to reach peak concentration and reduces the peak plasma levels (90173). Also, concomitant administration of green tea and clozapine might theoretically cause acute exacerbation of psychotic symptoms due to the caffeine in green tea. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in green tea.
Green tea contains caffeine. Oral contraceptives can decrease caffeine clearance by 40% to 65% (8644).
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Caffeine is metabolized by cytochrome P450 1A2 (CYP1A2) (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from green tea and increase caffeine levels.
|
Green tea is unlikely to produce clinically significant changes in the levels and clinical effects of CYP3A4 substrates.
|
Theoretically, green tea might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine might inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using green tea with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, green tea might reduce the effects of ethosuximide and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of felbamate and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Green tea can decrease blood levels of fexofenadine.
Clinical research shows that green tea can significantly decrease blood levels and excretion of fexofenadine. Taking green tea extract with a dose of fexofenadine decreased bioavailability of fexofenadine by about 30%. In vitro, green tea inhibits the cellular accumulation of fexofenadine by inhibiting the organic anion transporting polypeptide (OATP) drug transporter (111029). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates (19079,102714,102730).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, green tea might increase the levels and adverse effects of flutamide.
Green tea contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). Theoretically, concomitant use of caffeine and flutamide might increase serum concentrations of flutamide and increase the risk adverse effects.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
|
Theoretically, green tea might reduce the levels and clinical effects of imatinib.
In animal research, a single dose of green tea extract reduces the area under the curve (AUC) of imatinib by up to approximately 64% and its main metabolite N-desmethyl imatinib by up to approximately 81% (104600). This interaction has not been shown in humans. The mechanism of action is unclear but may involve multiple pathways.
|
Theoretically, green tea might reduce the levels and clinical effects of lisinopril.
Preliminary clinical research shows that a single dose of green tea extract reduces plasma concentrations of lisinopril. Compared to a control group, peak levels and area under the curve (AUC) of lisinopril were reduced by approximately 71% and 66%, respectively (104599). This may be due to inhibition of organic anion transporting polypeptides (OATP) by green tea catechins (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, abrupt green tea withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). Theoretically, concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Methoxsalen can reduce caffeine metabolism (23572). Concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Mexiletine can decrease caffeine elimination by 50% (1260).
|
Theoretically, green tea might increase the levels and adverse effects of midazolam.
Animal research suggests that green tea extract can increase the maximum plasma concentration, but not the half-life, of oral midazolam. This effect has been attributed to the inhibition of intestinal cytochrome P450 3A4 (CYP3A4) and induction of hepatic CYP3A4 enzymes by green tea constituents (20896). However, it is unlikely that this effect is clinically significant, as the dose used in animals was 50 times greater than what is commonly ingested by humans.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Green tea contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Green tea seems to reduce the levels and clinical effects of nadolol.
Preliminary clinical research shows that green tea consumption reduces plasma concentrations of nadolol. Compared to a control group, both peak levels and total drug exposure (AUC) of nadolol were reduced by approximately 85% in subjects who drank green tea daily for two weeks. Drinking green tea with nadolol also significantly reduced nadolol's systolic blood pressure lowering effect (19071). Other clinical research shows that a single dose of green tea can affect plasma nadolol levels for at least one hour (102721). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is involved in the uptake of nadolol in the intestine (19071,19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, green tea might increase the levels and adverse effects of nicardipine.
Green tea contains EGCG. Animal research shows that EGCG increases the area under the curve (AUC) and absolute oral bioavailability of nicardipine. The mechanism of action is thought to involve inhibition of both intestinal P-glycoprotein and hepatic cytochrome P450 3A (90136). The effect of green tea itself on nicardipine is unclear.
|
Theoretically, concomitant use might increase the risk of hypertension.
Green tea contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Green tea seems to reduce the levels of nintedanib.
Clinical research shows that green tea can significantly decrease blood levels of nintedanib. Taking green tea extract twice daily for 7 days 30 minutes prior to a meal along with nintedanib with the meal decreased the 12-hour area under the curve (AUC) values for nintedanib by 21%. There was no effect on the maximum concentration of nintedanib (111028).
|
Theoretically, green tea might reduce the absorption of organic anion-transporting polypeptide (OATP) substrates.
OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds. Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates, including lisinopril,and celiprolol (19079,102714,102730).
|
Green tea might increase the levels and adverse effects of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that green tea inhibits drug efflux by P-gp, potentially increasing serum levels of P-gp substrates. Case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking green tea and certain P-gp substrates (111644).
|
Theoretically, green tea might decrease the effects of pentobarbital.
Green tea contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, green tea might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, green tea might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, green tea might increase the levels and clinical effects of pioglitazone.
Green tea contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Green tea contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2, and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, green tea extract might alter the absorption and distribution of rosuvastatin.
In animal research, giving green tea extract with rosuvastatin increased plasma levels of rosuvastatin. Rosuvastatin is a substrate of organic anion-transporting polypeptide (OATP)1B1, which is expressed in the liver. The increased plasma levels may have been related to inhibition of OATP1B1 (102717). However, in humans, taking EGCG with rosuvastatin reduced plasma levels of rosuvastatin, suggesting an inhibition of intestinal OATP (102730). It is not clear if drinking green tea alters the absorption of rosuvastatin.
|
Theoretically, concomitant use might increase stimulant adverse effects.
Green tea contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, green tea might increase the levels and adverse effects of theophylline.
Green tea contains caffeine. Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, green tea might increase the levels and adverse effects of tiagabine.
Green tea contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, concomitant use might increase the levels and adverse effects of both verapamil and caffeine.
Animal research suggests that the green tea constituent EGCG increases the area under the curve (AUC) values for verapamil by up to 111% and its metabolite norverapamil by up to 87%, likely by inhibiting P-glycoprotein (90138). Also, theoretically, concomitant use of verapamil and caffeinated beverages such as green tea might increase plasma caffeine concentrations and the risk of adverse effects, due to the caffeine contained in green tea. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, green tea may increase the risk of bleeding if used with warfarin.
Conflicting reports exist regarding the potential of green tea to antagonize the effect of warfarin; however, most evidence suggests that drinking green tea in moderation is unlikely to cause a significant interaction. Green tea contains a small amount of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects (1460,1461,1463,8028). Therefore, use of green tea in moderate amounts is unlikely to antagonize the effects of warfarin; however, very large doses should be avoided.
|
Theoretically, concomitant use with antidiabetes drugs might have additive effects and increase the risk of hypoglycemia. Animal research shows that guava leaf extract or guava fruit can have hypoglycemic effects (101781). Monitor blood glucose levels closely. Medication dose adjustments may be necessary. Some antidiabetes drugs include glimepiride (Amaryl), glyburide (Diabeta, Glynase PresTab, Micronase), insulin, metformin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Theoretically, hawthorn may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
In vitro and animal research shows that hawthorn can inhibit platelet aggregation (95528,95529,95530,95531). However, its effect in humans is unclear. One observational study shows that patients taking hawthorn shortly before undergoing coronary artery bypass graft (CABG) surgery or valve replacement surgery have a 10% incidence of postoperative bleeding, compared with 1% in those who never consumed hawthorn extract (95527). However, clinical research shows that taking a specific preparation of dried hawthorn leaves and flowers (Crataesor, Soria Natural Lab) 800 mg three times daily for 15 days does not affect platelet aggregation or levels of thromboxane B2, the metabolite of thromboxane A2, in healthy humans (54664).
|
Theoretically, concomitant use might cause additive effects on blood pressure and heart rate.
|
Theoretically, concomitant use might cause additive coronary vasodilation and hypotensive effects.
|
Theoretically, hawthorn might potentiate the effects and adverse effects of digoxin.
Hawthorn appears to improve cardiac output (12595); however, hawthorn does not appear to affect digoxin pharmacokinetics (19249). Case reports suggest that at least one species of hawthorn root extract (Crataegus mexicana) may produce adverse effects similar to digoxin and can cross-react with digoxin assays, leading to falsely elevated plasma digoxin levels (113112,113113).
|
Theoretically, concomitant use might cause additive coronary vasodilatory effects.
|
Theoretically, concomitant use might result in additive vasodilation and hypotension.
Hawthorn might inhibit PDE-5 and cause vasodilation (12595).
|
Theoretically, consuming hemp seed protein isolate with ACE inhibitors might have additive effects and increase the risk of hypotension.
|
Theoretically, hemp seed might increase the risk of bleeding when used concomitantly with anticoagulant/antiplatelet drugs.
|
Theoretically, hemp seed protein may have additive effects with antihypertensive drugs.
In a hypertensive animal model, hemp seed protein hydrolysate reduced systolic blood pressure by a mechanism possibly involving the inhibition of renin and angiotensin converting enzyme (ACE) activities. However, there was no effect of hemp seed protein on blood pressure in normotensive animals (101136). Furthermore, hempseed oil consumption does not seem to reduce blood pressure in humans (101144).
|
Theoretically, hemp might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that hemp induces CYP1A2 enzymes (111404).
|
Theoretically, hemp might decrease the levels and clinical effects of CYP3A4 substrates.
In vitro research shows that hemp induces CYP3A4 enzymes (111404).
|
Theoretically, hemp might interfere with hormone therapy due to its estrogenic effects.
In an ovariectomized animal model, a diet containing hemp seed 1%, 2%, or 10% resulted in normalized plasma levels of 17-beta-estradiol (101132). The mechanism of action for this effect is unclear.
|
Theoretically, combining maitake mushroom with antidiabetes drugs might increase the risk of hypoglycemia.
Clinical research shows that taking maitake mushroom polysaccharide (MMP) can lower blood glucose levels in patients with types 2 diabetes (8188).
|
Theoretically, combining maitake mushroom with antihypertensive drugs might increase the risk of hypotension.
|
There is limited evidence that maitake mushroom may increase the anticoagulant effects of warfarin.
In a case report, a patient previously stabilized on warfarin developed an elevated international normalized ratio (INR) of 5.1 after taking maitake mushroom (Grifron-Pro Maitake D-Fraction) 1 drop/kg daily in three divided doses for one week. The elevated INR resolved after holding warfarin for two days, then reducing the dose by 11%. It is thought that the beta-glucan constituent of maitake mushroom might cause warfarin dissociation from proteins, resulting in increased free warfarin levels and increased warfarin effects (17209).
|
Theoretically, combining noni and ACE inhibitors might increase the risk of hyperkalemia.
Noni juice contains significant amounts of potassium, about 6 mEq/100 mL juice (1298). This may increase the risk for hyperkalemia when used in conjunction with ACE inhibitors, which can also increase potassium levels.
|
Theoretically, combining noni and ARBs might increase the risk of hyperkalemia.
Noni juice contains significant amounts of potassium, about 6 mEq/100 mL juice (1298). This may increase the risk for hyperkalemia when used in conjunction with ARBs, which can also increase potassium levels.
|
Theoretically, noni may increase the risk of hypotension when used in combination with antihypertensive drugs.
Preliminary clinical research suggests that drinking noni juice can reduce blood pressure in individuals with hypertension (65231).
|
Theoretically, taking noni with hepatotoxic drugs might increase the risk of liver damage.
|
Theoretically, taking noni fruit juice concomitantly with phenytoin may lower phenytoin levels and increase the risk of seizures.
In one case report, an adult taking phenytoin for partial seizures experienced low serum phenytoin levels while taking noni juice 90-200 mL daily. Serum phenytoin levels increased after decreasing noni juice consumption; similarly, serum phenytoin levels decreased after increasing noni juice consumption. Some researchers believe noni juice may induce cytochrome P450 2C9 enzymes, which would decrease phenytoin levels, but this has not been well studied. Patients may need additional monitoring when starting or stopping noni juice supplementation (106057).
|
Theoretically, combing noni and a potassium-sparing diuretic might increase the risk of hyperkalemia.
Noni juice contains significant amounts of potassium, about 6 mEq/100 mL juice (1298). This may increase the risk for hyperkalemia when used in conjunction with potassium-sparing diuretics, which can also increase potassium levels.
|
Taking noni fruit with ranitidine might increase the levels and clinical effects of ranitidine.
Clinical evidence shows that taking an aqueous extract of noni fruit 30 minutes prior to taking a single oral dose of ranitidine can increase the rate of absorption and plasma concentration of ranitidine (23387).
|
Theoretically, taking noni juice concomitantly with warfarin might decrease the effectiveness of warfarin.
In one case, a 41-year-old patient stabilized on warfarin had a decreased international normalized ratio (INR) following consumption of a specific commercial noni juice product (Noni juice 4 Everything). While the patient was still taking noni juice, an increase in warfarin dose did not produce an increase in INR (14434). However, it should be noted that this particular product contained extracts and derivatives from more than 115 components, many of which contained vitamin K. Furthermore, vitamin K was listed as a separate ingredient of the product, suggesting that the product was possibly fortified with vitamin K. It has not been verified that noni fruit alone contains a significant amount of vitamin K or interacts with warfarin.
|
Theoretically, oats may have additive effects with antidiabetic agents and might increase the risk of hypoglycemia.
|
Concomitant use of oats and insulin might increase the risk of hypoglycemia.
In patients with insulin-dependent type 2 diabetes, taking oats 100 grams daily for 2 days reduces the insulin dose required to achieve metabolic control (103336).
|
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Theoretically, taking red raspberry leaf with anticoagulant/antiplatelet drugs might increase the risk of bleeding.
In vitro research suggests that red raspberry leaf extract has antiplatelet activity and enhances the in vitro effects of the antiplatelet medication cangrelor (96300). This interaction has not been reported in humans.
|
Red raspberry leaf might reduce glucose levels in patients being treated with insulin.
In one case report, a 38-year-old patient with gestational diabetes, whose blood glucose was being controlled with medical nutrition therapy and insulin, developed hypoglycemia after consuming two servings of raspberry leaf tea daily for 3 days beginning at 32 weeks' gestation. The patient required an insulin dose reduction. The hypoglycemia was considered to be probably related to use of red raspberry leaf tea (96299).
|
Theoretically, high doses of reishi mushroom might increase the risk of bleeding.
|
Theoretically, reishi mushroom might have additive effects with antidiabetes drugs.
|
Theoretically, concurrent use of reishi mushroom with antihypertensive drugs might increase the risk of hypotension.
|
Theoretically, shiitake mushroom might decrease levels of drugs metabolized by CYP2D6.
|
Theoretically, taking shiitake mushroom might decrease the effects of immunosuppressive therapy.
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Spinach contains vitamin K, which can interfere with the activity of warfarin.
In human research, although eating spinach with one meal does not result in coagulation test results outside the therapeutic range, daily consumption for one week necessitates dose adjustment of warfarin (19600). Individuals using anticoagulants should consume a consistent daily amount of spinach to maintain the effect of anticoagulant therapy (19).
|
In vitro and animal research suggests that strawberry extract can inhibit platelet aggregation due to its phenolic content (76472,76488). Theoretically, strawberry might increase the risk of bleeding when used with antiplatelet or anticoagulant drugs.
Some anticoagulant or antiplatelet drugs include aspirin, clopidogrel (Plavix), dalteparin (Fragmin), enoxaparin (Lovenox), heparin, ticlopidine (Ticlid), warfarin (Coumadin), and others.
|
In vitro research suggests that strawberry extract can inhibit p-glycoprotein efflux (76474,76476). Theoretically, strawberry might inhibit p-glycoprotein mediated drug efflux and potentially increase levels of drugs that are substrates of p-glycoprotein. Until more is known, strawberry should be used cautiously in people taking p-glycoprotein substrates.
Drugs that might be affected include some chemotherapeutic agents (etoposide, paclitaxel, vinblastine, vincristine, vindesine), antifungals (ketoconazole, itraconazole), protease inhibitors (amprenavir, indinavir, nelfinavir, saquinavir), H2 antagonists (cimetidine, ranitidine), some calcium channel blockers (diltiazem, verapamil), corticosteroids, erythromycin, cisapride (Propulsid), fexofenadine (Allegra), cyclosporine, loperamide (Imodium), quinidine, and others.
|
Consuming sweet orange with celiprolol can decrease oral absorption of celiprolol.
A pharmacokinetic study in healthy volunteers shows that celiprolol levels, after a single dose of 100 mg, are decreased by up to 90% in people who drink sweet orange juice 200 mL three times daily. It's not known if lower consumption of sweet orange juice will have the same effect. Theoretically, this occurs due to short-term inhibition of organic anion transporting polypeptide (OATP) (12115,17603,17604). Recommend separating drug administration and consumption of sweet orange by at least 4 hours (17603,17604).
|
Consuming sweet orange juice with fexofenadine can decrease oral absorption of fexofenadine.
Clinical research shows that coadministration of sweet orange juice 1200 mL decreases bioavailability of fexofenadine by about 72% (7046,17604). In an animal model, sweet orange juice decreased bioavailability of fexofenadine by 31% (17605). Fexofenadine manufacturer data indicates that concomitant administration of sweet orange juice and fexofenadine results in larger wheal and flare sizes in research models. This suggests that sweet orange reduces the clinical response to fexofenadine (17603). Theoretically, this occurs due to short-term inhibition of organic anion transporting polypeptide (OATP) (7046). Recommend separating drug administration and consumption of sweet orange by at least 4 hours (17603,17604).
|
Consuming sweet orange juice with ivermectin can decrease the oral absorption of ivermectin.
A pharmacokinetic study in healthy volunteers shows that taking ivermectin orally with sweet orange juice 750 mL over 4 hours reduces the bioavailability of ivermectin. This effect does not seem to be related to effects on P-glycoprotein. The effect on ivermectin is more pronounced in males compared to females (12154).
|
Consuming sweet orange juice can decrease oral absorption of OATP substrates. Separate administration by at least 4 hours.
Clinical research shows that consuming sweet orange juice inhibits OATP, which reduces bioavailability of oral drugs that are substrates of OATP (17603,17604). For example, sweet orange juice decreases bioavailability of fexofenadine, a substrate of OATP, by about 72% and of celiprolol, another OATP substrate, by up to 90% (7046,12115). Since sweet orange juice seems to affect OATP for a short time, recommend separating drug administration and consumption of sweet orange juice by at least 4 hours (17603,17604).
|
Sweet orange juice seems to modulate P-glycoprotein (P-gp), which might affect the blood levels of P-gp substrates.
Animal and in vitro research suggest that orange juice extract inhibits drug efflux by P-gp, increasing absorption and levels of P-gp substrates (12116,15327). In contrast, pharmacokinetic research in humans shows that drinking large amounts of sweet orange juice decreases absorption and levels of the P-gp substrate celiprolol. This suggests that orange juice actually induces drug efflux by P-gp or affects drug levels by another mechanism such as inhibiting the gut drug transporter called organic anion transporting polypeptide (OATP) (7046,12115). Until more is known, sweet orange juice should be used cautiously in people taking P-gp substrates.
|
Consuming sweet orange juice with pravastatin can increase the absorption of pravastatin.
A small pharmacokinetic study in healthy volunteers shows that consuming sweet orange juice 800 mL over 3 hours, including before, during, and after taking pravastatin 10 mg, increases pravastatin levels by about 149%, without affecting pravastatin elimination. Theoretically this effect might be due to modulation of organic anion transporting polypeptides (OATPs) by sweet orange juice (14348). Sweet orange juice does not seem to affect simvastatin levels, but it is not known if sweet orange affects any of the other statins.
|
Calcium-fortified sweet orange juice might reduce quinolone absorption.
|
Theoretically, taking high doses of vitamin A in combination with other potentially hepatotoxic drugs might increase the risk of liver disease.
|
Concomitant use of retinoids with vitamin A supplements might produce supratherapeutic vitamin A levels.
Retinoids, which are vitamin A derivatives, could have additive toxic effects when taken with vitamin A supplements (3046).
|
Theoretically, taking tetracycline antibiotics with high doses of vitamin A can increase the risk of pseudotumor cerebri.
Benign intracranial hypertension (pseudotumor cerebri) can occur with tetracyclines and with acute or chronic vitamin A toxicity. Case reports suggest that taking tetracyclines and vitamin A concurrently can increase the risk of this condition (10545,10546,10547). Avoid high doses of vitamin A in people taking tetracyclines chronically.
|
Theoretically, high doses of vitamin A could increase the risk of bleeding with warfarin.
Vitamin A toxicity is associated with hemorrhage and hypoprothrombinemia, possibly due to vitamin K antagonism (505). Advise patients taking warfarin to avoid doses of vitamin A above the tolerable upper intake level of 10,000 IU/day for adults.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Watercress might reduce the metabolism of chlorzoxazone and increase its effects and side effects. Clinical research in healthy volunteers shows that a single ingestion of watercress 50 grams increases the chlorzoxazone plasma concentration-time curve by about 56% and increases its half-life by about 53% (4018).
|
Watercress is thought to have diuretic properties (18). Theoretically, due to these potential diuretic effects, watercress might reduce excretion and increase levels of lithium.
|
Watercress contains vitamin K. Consuming large amounts of watercress might antagonize the anticoagulant effects of warfarin (11285).
|
Below is general information about the adverse effects of the known ingredients contained in the product Meal Replacement Plant Protein Chocolate. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General ...Orally, acai seems to be well tolerated.
Other ...Raw acai fruit and juice can be contaminated with a parasitic protozoan called Trypanosoma cruzi, which causes American trypanosomiasis or Chagas Disease. A Brazilian outbreak of this disease in 2006 was linked to consumption of acai juice (17194,30245).
General ...Orally, allspice is well tolerated when consumed in the amounts typically found in foods. There is limited reliable information available about the adverse effects of allspice when used in larger amounts as medicine; a thorough evaluation of safety outcomes has not been conducted.
Immunologic ...Orally and topically, allspice can cause allergic dermatitis in sensitive people (12635,30654). A case report describes a 41-year-old female with a history of allergic reactions to certain foods and drinks, with symptoms including lip angioedema, generalized hives and urticaria, vomiting, difficulty breathing, sneezing, ocular pruritus, and lacrimation, which responded to oral diphenhydramine. Skin testing and oral challenge identified positive reactions to allspice (109925).
General
...Orally and topically, aloe products are generally well tolerated when used in typical doses.
However, oral aloe latex is associated with a greater risk of adverse effects, especially when used in high doses or long-term.
Most Common Adverse Effects:
Orally: Aloe latex may cause abdominal pain, cramps, and diarrhea.
Topically: Burning, erythema, and itching. Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Aloe latex is associated with serious adverse effects when taken in high doses or long-term. Cases of acute hepatitis due to a hypersensitivity reaction to aloe leaf extract has been reported.
Dermatologic ...Topically, aloe gel has occasionally been associated with burning (12164,19741,30697,30706), itching (12164,19741,30697), eczema (90122), erythema (19748,30706,90123), contact dermatitis (12163,12164,30695,30736,30737,30738,30740), popular eruption (30732), and urticaria (30712). Also, a case of generalized nummular and popular dermatitis attributed to hypersensitivity has been reported for a 47-year-old male who used aloe leaf gel, both topically and orally, for 4 years (30740).
Endocrine ...A case of severe hypokalemia has been reported for a male breast cancer patient who was undergoing chemotherapy and using aloe vera 1 liter daily orally for 2 weeks. The hypokalemia was attributed to the cathartic effects of aloe and resolved once aloe use was discontinued (30704).
Gastrointestinal
...Orally, aloe latex can cause abdominal pain and cramps.
Long-term use or abuse of aloe latex can cause diarrhea, sometimes with hypokalemia, albuminuria, hematuria, muscle weakness, weight loss, arrhythmia, and pseudomelanosis coli (pigment spots in intestinal mucosa). Pseudomelanosis coli is believed to be harmless, and usually reverses with discontinuation of aloe. It is not directly associated with an increased risk of developing colorectal adenoma or carcinoma (6138). Orally, aloe gel may cause nausea, stomach cramps, and other gastrointestinal complaints in some patients (104174,111921,111663).
Topically, applying aloe gel in the mouth may cause nausea within 5 minutes of application in some patients (90124).
Hematologic ...A case of Henoch-Schonlein purpura, characterized by abdominal pain, purpura, and severe arthralgia, has been reported in a 52-year-old male who drank aloe juice prepared from four to five leaflets for 10 days prior to symptom development (91598).
Hepatic ...Cases of acute hepatitis have been reported after ingestion of aloe leaf extracts for between 3 weeks and 5 years. This is thought to be a hypersensitivity reaction (15567,15569,16386,17419,90126,91598). A case of acute hepatitis has also been reported for a 45-year-old female who drank two ounces of Euforia juice (Nuverus International), a product containing green tea, noni, goji, and aloe, daily for one month (90125). However, one small clinical trial in healthy individuals shows that taking aloe gel 2 ounces twice daily for 60 days does not impair liver function (104174).
Renal ...Orally, aloe latex can cause hemorrhagic gastritis, nephritis, and acute kidney failure following prolonged use of high doses (1 gram daily or more) (8961).
General ...Orally, amaranth seed and amaranth oil have been used with apparent safety in clinical research (6188,5063,31069,92235,104835,104835,104836,104837); however, most studies have not conducted a thorough evaluation of safety outcomes. One case of anaphylaxis related to consumption of amaranth seed from Amaranthus cruentus has been reported (99233).
Immunologic ...Orally, a case of anaphylaxis in a 60-year-old female was confirmed to be related to consumption of amaranth seed from Amaranthus cruentus (99233).
General
...Orally, apple fruit is well tolerated.
Apple seeds, which contain cyanide, may cause serious adverse effects when consumed in large amounts.
Most Common Adverse Effects:
Orally: Bloating, flatulence.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis. Ingestion of large amounts of apple seeds may cause cyanide poisoning, leading to death.
Gastrointestinal ...Orally, apple products, including whole apples, apple puree, and apple juice, may cause bloating and flatulence in some people (104184).
Immunologic ...Patients allergic to other fruits in the Rosaceae family, including apricot, almond, plum, peach, pear, and strawberry, can also be allergic to apples (7129). Rarely, the allergy has resulted in anaphylaxis (94425).
Other ...Orally, ingestion of large amounts of apple seeds, which contain hydrogen cyanide (HCN), may cause cyanide poisoning, leading to death. One death is attributed to ingestion of a cupful of apple seeds. To release cyanide, seeds must be hydrolyzed in the stomach, and several hours may elapse before poisoning symptoms occur (6).
General
...Orally, Bacillus coagulans is well tolerated.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Immunologic ...Since many probiotic preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. Bacteremia and sepsis have been reported in patients with indwelling or central venous catheters or patients who are severely ill and/or immunocompromised, including preterm infants, that were using probiotic products (4380,8561,13008,13070,90298,102416,103444,105138,105140,105141)(107543,107597,107599,111610,111612,111613,111850,111852,111853). However, reports of pathogenic colonization in relatively healthy patients with intact immune systems who do not have indwelling or central venous catheters are extremely rare (4380,4389,4390,4391,4393,4398,105139,107543,107545,107546,107547).
General
...Orally, bananas are well tolerated when consumed as food.
Most Common Adverse Effects:
Orally: Bloating, cramping, gas.
Topically: Urticaria.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, intestinal obstruction.
Endocrine ...In one case report, an adolescent girl who consumed nothing other than 20 bananas daily developed hyperkalemia and hyperdopaminemia. These changes in the blood resulted in pseudoaldosteronism and dysthymia (93780).
Gastrointestinal
...Orally, banana starch isolated from green bananas has resulted in bloating, gas, cramping, and softer feces (93448,93449,110619).
When consumed prior to exercise, fullness and bloating during exercise have been reported (93459). In children, nausea, vomiting, and abdominal distension have been reported when banana is used in the treatment of diarrhea (93461). Cases of intestinal obstruction due to banana seeds have been reported (93777).
In one case report, food protein-induced enterocolitis syndrome (FPIES) has been associated with banana consumption (93778).
Immunologic ...Orally, banana has been reported to cause allergic reaction, including urticaria and redness, abdominal pain and nausea, dyspnea (93779,93781,93782,93797,93798,93803), and anaphylaxis (93783,93793,93802,93803). Topically, contact urticara has also been reported (93784). Skin testing is not always accurate, even for patients with severe banana allergy (93793).
Psychiatric ...Orally, high banana consumption has been associated with a higher likelihood of depressive symptoms in females, but not males, in a cross-sectional study of the general Chinese adult population (106471).
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, bilberry fruit, juice, and extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Dark-colored stools, flatulence, and gastrointestinal discomfort.
Gastrointestinal
...In one small clinical trial, mild-to-moderate flatulence was reported in 33% of patients taking sieved bilberries and concentrated bilberry juice (91506).
However, the patients in this study had ulcerative colitis, and the study lacked a control group, limiting the validity of this finding. In another small clinical study of males with age-related cognitive impairment, temporary adverse gastrointestinal (GI) effects were reported in 13% of patients drinking a combination of bilberry and grape juice. However, the adverse GI effect rate was identical in patients drinking a placebo juice (110641). A post-marketing surveillance report of 2295 patients using bilberry extract (Tegens) found that 1% of patients complained of GI discomfort and less than 1% experienced nausea or heartburn (35500).
Theoretically, fresh bilberry fruit may have laxative effects. One clinical trial noted an increased frequency of bowel movements following the administration of a combination formulation containing aerial agrimony parts, cinnamon quills, powdered bilberry fruit, and slippery elm bark (35462). It is unclear if these effects were due to bilberry, other ingredients, or the combination.
Other ...Orally, bilberry may cause discoloration of feces and the tongue. In one study, a dark-bluish to black discoloration of both the feces and the tongue was observed following consumption of sieved bilberries and concentrated bilberry juice. In one patient, a slight discoloration of the teeth has also been observed (91506). In another study, 50% of patients reported dark green stools after taking bilberry extract 700 mg twice daily for 4 weeks (104194).
General ...Orally, black mustard is generally well tolerated when used in amounts found in foods. Very large amounts of black mustard seed can cause serious adverse effects.
Cardiovascular ...Orally, taking very large amounts of black mustard seed can lead to cardiac failure and possibly death (18).
Dermatologic ...Topically, black mustard oil or powder containing allyl isothiocyanate can cause skin irritation or burns, especially if applied for an extended period of time (6,11,12,18).
Endocrine ...Orally, the isothiocyanate constituents contained in black mustard have been linked to endemic goiters (6,11).
Gastrointestinal ...Orally, taking very large amounts of black mustard seed can lead to vomiting, stomach pain, and diarrhea (18).
Neurologic/CNS ...Orally, taking very large amounts of black mustard seed can lead to somnolence and coma (18).
Pulmonary/Respiratory ...Orally, taking very large amounts of black mustard seed can lead to breathing difficulties and possibly death (18). In a case report, a 15 month-old male developed acute, severe respiratory distress after ingesting and aspirating ground black mustard seeds (64387).
General
...Orally, blueberry is generally well tolerated.
Most Common Adverse Effects:
Orally: Constipation, diarrhea, nausea, and vomiting with freeze-dried blueberries.
Gastrointestinal ...Orally, freeze-dried blueberries may cause constipation, diarrhea, nausea, and vomiting. In one clinical trial, 26% of patients taking freeze-dried blueberries 50 grams daily dropped out in the first week of the study due to gastrointestinal complaints (107278).
General ...Broccoli is well tolerated when consumed as food. A thorough evaluation of safety outcomes when broccoli is taken as medicine has not been conducted.
Dermatologic ...Topically, allergic reactions to broccoli have caused contact dermatitis (14158).
Gastrointestinal ...Orally, loose stools, diarrhea, abdominal pain, and abdominal cramping have been reported following intake of broccoli seed and sprout extracts, particularly at high doses (114753).
Hepatic ...In one case report, a 56-year-old adult developed elevated transaminases, with alanine aminotransferase (ALT) 5. 8 times above normal, aspartate aminotransferase (AST) 2.4 times above normal, and gamma-glutamyl transpeptidase (GGT) 5.1 times above normal. This was thought to be related to the consumption of 800 mL of broccoli juice daily over a 4-week period. Values returned to normal 15 days after cessation of juice consumption (96191).
Immunologic ...Topically, allergic reactions to broccoli have caused contact dermatitis (14158).
General
...Orally, bromelain seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea, flatulence, gastric upset, headache.
Topically: Pruritus, urticaria.
Dermatologic
...Topically, bromelain may cause dermal allergic reactions including urticaria, pruritus, and skin swelling (9184).
Redness, swelling, burning, pain at the application site, and cellulitis have also been reported rarely (108148,113513). In one case, a fixed drug eruption with pruritis near the groin was reported in a 33-year-old male taking bromelain 50 mg orally daily for 10 days. After discontinuation of bromelain and treatment with topical corticosteroid, the lesion resolved. Upon re-challenge with bromelain, the lesion reappeared in the same area (103300).
In another case report, a 61-year-old male with a history of chronic lower leg ulceration secondary to chronic venous hypertension and recurrent deep vein thrombosis on rivaroxaban presented with a deep-dermal burn on his lower calf. Bromelain-based topical enzymatic debridement agent Nexobrid 2 grams was applied to the burn site. Thirty minutes later, the patient experienced two instances of hemorrhage at the site of debridement. The patient was stabilized and treated with fluids, packed red cells, and tranexamic acid, and then the Nexobrid was removed (111656). Caution should be used in patients with underlying coagulopathies.
Gastrointestinal ...Orally, bromelain may cause gastrointestinal disturbances, including diarrhea, nausea, vomiting, flatulence, and abdominal pain (9184,18274,18282,96216,113513).
Immunologic
...Immunoglobulin E (IgE)-mediated allergic reactions to bromelain may occur (9184).
If inhaled, bromelain may cause sensitization and allergic reactions such as asthma (37199,37215,37233). In case reports of occupational inhalation of bromelain, additional allergic symptoms included difficulty swallowing, throat itching, eye irritation, and rhinitis (37214).
General ...Orally, buckwheat seems to be well tolerated (11438,11442). However, allergic reactions to buckwheat can occur in some adults and children. Symptoms can include skin sensitization, allergic rhinitis, asthma, conjunctivitis, nausea, vomiting, and anaphylaxis (11435,11436,11437,96060,96061). Occupational exposure to buckwheat, or household exposure through sleeping on a buckwheat husk stuffed-pillow can cause sensitization, of which symptoms include allergic rhinitis and asthma (11437,11443).
Immunologic
...Orally, buckwheat seems to be well tolerated (11438,11442).
However, allergic reactions to buckwheat can occur in some adults and children. Symptoms can include skin sensitization, allergic rhinitis, asthma, conjunctivitis, nausea, vomiting, and anaphylaxis (11435,11436,11437,96060,96061).
Occupational exposure to buckwheat, or household exposure through sleeping on a buckwheat husk stuffed-pillow can cause sensitization, of which symptoms include allergic rhinitis and asthma (11437,11443).
General ...Topically, cabbage leaf seems to be well-tolerated.
Dermatologic ...Some preliminary clinical research shows that application of cabbage leaf wraps to knee joints for at least 2 hours daily for 4 weeks is generally well-tolerated. Of the 27 patients using cabbage leaf wraps in this study, one patient reported an itching and burning sensation during the application. This patient was later found to have shingles, which may explain the adverse event (93671). However, in another case, a patient applying fresh Savoy cabbage leaves on his knee to reduce joint pain reported pain and burning after 4 hours of use. Skin patch and prick tests did not indicate an allergic reaction, and the patient's lesion improved with wet dressings, topical antibiotics, and oral antibiotics (93675).
Immunologic ...Topically, cabbage may cause contact dermatitis (93675). Allergic reactions to cabbage-related vegetables are rare. However, anaphylactic reactions to broccoli and cauliflower have been reported. Because the surface proteins believed to cause allergic reactions to brocolli are also found in cabbage, some patients allergic to brocolli or other vegetables in the Brassicaceae family may also be allergic to cabbage (92516).
Other ...Topical application of cabbage leaves to the breasts has been reported to stain clothes and put off an unpleasant smell (6781,6782).
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General ...There is currently a limited amount of information on the adverse effects of camu camu. A thorough evaluation of safety outcomes has not been conducted.
General
...Orally, carrot is well tolerated when consumed as a food.
It also seems to be generally well-tolerated when consumed as a medicine. Some people are allergic to carrot; allergic symptoms include anaphylactic, cutaneous, respiratory, and gastrointestinal reactions such as hives, swelling of the larynx, asthma, or diarrhea (25820,93606,106560). In infants, excessive consumption of carrot products in nursing bottles has been reported to cause extensive caries in the primary teeth (25817).
Topically, carrot has been associated with a case of phytophotodermatitis (101716).
Dental ...Orally, feeding carrot juice to infants, with or without sugar- or acid-containing beverages, has been reported to damage teeth and cause dental caries (25817).
Dermatologic ...Orally, excessive consumption of carrots or carrot-containing products can cause yellowing of the skin, which results from increased beta-carotene levels in the blood (25817). Carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306).
Gastrointestinal ...Orally, carrots may cause allergic reactions in some patients. Allergic responses to carrot-containing foods can include gastrointestinal symptoms, such as diarrhea (25820).
Immunologic
...Orally, carrots may cause allergic reactions in some patients (25820,96306,106560).
Allergic responses to carrot-containing foods can include skin reactions such as hives, erythema, swelling, and/or papules (25820,96306). For one patient, treatment of skin lesions resolved after a month of oral antihistamines and topical steroids, and avoiding further contact with carrot (96306). Allergic responses to carrot-containing foods can also include gastrointestinal symptoms, such as diarrhea, and respiratory symptoms, such as swelling of the larynx or asthma (25820). In one case, a patient with a history of allergic rhinitis and asthma who had been successfully treated with subcutaneous immunotherapy and was tolerant of consumption of raw and cooked carrots developed rhinoconjunctivitis when handling carrots. Inhalation of dust particles and aerosols produced by food processing activities and containing allergens from the peel and pulp of carrots is thought to have sensitized the airway, producing a distinct form of respiratory food allergy in which there are typically no symptoms with ingestion (106560).
Topically, a female runner developed phytophotodermatitis, which was considered possibly associated with the inclusion of carrot in a sunscreen (Yes To Carrots Daily Facial Moisturizer with SPF 15; Yes to, Inc.) (101716).
Psychiatric ...Compulsive carrot eating is a rare condition in which the patient craves carrots. According to one case report, withdrawal symptoms include nervousness, cravings, insomnia, water brash, and irritability (25821).
General
...Orally and topically, chia seems to be well tolerated.
Most Common Adverse Effects:
Orally: Flatulence and soft stools.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...Chia contains a high concentration of alpha-linolenic acid (ALA). There is some concern that ALA might increase triglyceride levels more than other omega-3 fatty acids (12918); however, clinical research with a specific variety of chia called Salba shows that it does not significantly increase triglyceride levels (16124).
Gastrointestinal ...Orally, chia might cause mild gastrointestinal adverse effects. Some patients consuming chia 40 grams daily for up to 6 months reported mild and transient gastrointestinal adverse effects such as flatulence and soft stools; however, the frequency of these adverse effects was similar to patients consuming an oat bran control (97940). Bloating and flatulence have been reported with a chia flour-based sports beverage (112385).
Immunologic ...Orally, chia might cause anaphylaxis in sensitive individuals. A single case of IgE-mediated anaphylactic reaction has been reported for a patient who consumed chia seeds. Symptoms, including pruritus in the mouth, urticaria, facial angioedema, shortness of breath, and dizziness, developed a few days after consuming chia seeds. The reaction was attributed to sensitivity to proteins in chia seeds (91517).
Oncologic ...Chia seeds contain a high concentration of alpha-linolenic acid (ALA). Epidemiologic research suggests that high dietary intake of ALA might increase risk for prostate cancer (1337,2558,7823,7147,12978). Other research suggests high intake or serum levels of ALA does not increase the overall risk of prostate cancer (12961,15736); however, it might increase the risk of advanced prostate cancer (12961). Association with prostate cancer appears to depend on the sources of ALA. Dairy and meat sources have been positively associated with prostate cancer, whereas plant sources, such as chia seed, don't seem to affect prostate cancer risk (12909). According to a clinical trial, intake of ALA does not appear to increase levels of prostate specific antigen (PSA) (91402).
General
...Orally, clove is well tolerated when consumed as a spice; however, clove oil in doses of only 5-10 mL can be toxic in children.
Topically, clove is generally well tolerated. When inhaled or used intravenously, clove may be unsafe.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, dental decay, itching, mucous membrane irritation, tingling, ulcers.
Inhaled: Dental decay, hypertension, itching, tachycardia.
Serious Adverse Effects (Rare):
Orally: Liver failure, respiratory distress.
Inhaled: Pneumonitis, pulmonary edema, respiratory distress.
Cardiovascular ...Smoking clove cigarettes increases heart rate and systolic blood pressure (12892).
Dental ...Population research has found that the risk of dental decay is increased in clove cigarette smokers (43332). Repeated topical application of clove in the mouth can cause gingival damage and skin and mucous membrane irritation (4,272,512). Eugenol, a constituent of clove and a material commonly found in dentistry, has been associated with side effects including gum inflammation and irritation (43365,43373,43522).
Dermatologic ...The American Dental Association has accepted clove for professional use, but not nonprescription use, due to potential damage to soft tissue that may be induced by clove application. In clinical research, small aphthous-like ulcers appeared in the area of the mouth where clove gel was applied in four participants (43448). Skin irritation and stinging have been reported with clove oil application (43338,43626). In a 24-year-old, exposure to a clove oil spill resulted in permanent local anesthesia and anhidrosis, or lack of sweating, at the affected area (43626).
Endocrine ...A case of hypoglycemia and metabolic acidosis have been reported after administration of one teaspoon of clove oil to a seven-month-old infant (43457). A case of electrolyte imbalance following accidental ingestion by a seven-month-old has also been reported (6).
Hematologic ...A case of disseminated intravascular coagulation has been reported in a 2-year-old patient after consuming between 5-10 mL of clove oil. The patient was treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III. On the fifth day, the patient started to improve and made a full recovery (43652).
Hepatic ...There are three cases of hepatic failure occurring in children after ingestion of 5-10 mL of clove oil (43395,43419,43652). Liver injury also occurred in a 3-year-old male (96949). These patients were successfully treated with N-acetylcysteine. The course of liver injury seems to be milder and shorter with early N-acetylcysteine treatment (43395,43419,96949). Another patient, who also presented with disseminated intravascular coagulation, was successfully treated with heparin, fresh frozen plasma, protein C, factor VII, and antithrombin III (43652).
Immunologic ...Contact dermatitis and urticaria has been reported following topical exposure to clove oil or eugenol, a constituent of clove oil (12635,43339,43606,43346).
Neurologic/CNS ...CNS depression has been reported in a 7-month-old who was given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457). A case of confusion and inability to speak has been reported secondary to oral exposure to clove oil and alcohol. The patient required intubation and was successfully treated with thiamine and normal saline (43580). Seizure and coma have been reported in a two-year-old male after ingesting 5-10 mL of clove oil (43652).
Pulmonary/Respiratory
...Clove cigarettes have been associated with throat and chest tightness (43337), pulmonary edema (43618), and fatal aspiration pneumonitis (43599).
The causative factor may be clove alone or clove along with other substances found in cigarettes. Clove cigarettes contain significant amounts of nicotine, tar, and carbon monoxide and increase plasma levels of nicotine and exhaled carbon monoxide, which might cause long-term health effects similar to tobacco smoking (12892). According to the American Medical Association, inhaling clove cigarette smoke has been associated with severe lung injury in a few susceptible individuals with prodromal respiratory infection. Also, some individuals with normal respiratory tracts have apparently suffered aspiration pneumonitis as the result of a diminished gag reflex induced by a local anesthetic action of eugenol, which is volatilized into the smoke (43602).
Intravenous injection of clove oil in a 32-year-old female resulted in hypoxia, acute dyspnea, interstitial and alveolar infiltrates, and non-cardiogenic pulmonary edema. The patient was managed with supplemental oxygen and recovered over the next seven days (16384).
Occupational exposure to eugenol, a constituent of clove, has also been reported to cause asthma and rhinitis (43492).
Renal ...Proteinuria and other urinary abnormalities were observed in a seven-month-old infant given one teaspoon of clove oil accidentally in place of mineral oil for diarrhea. The patient was successfully treated with supportive care and gastric lavage (43457).
General
...Orally, caffeinated or decaffeinated coffee is well tolerated in moderate amounts.
Most Common Adverse Effects:
Orally: Drinking coffee containing caffeine can cause agitation, anxiety, chest pain, diuresis, gastric distress, headache, insomnia, nervousness, premature heart rate, ringing in the ears, and vomiting. These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly). With chronic caffeine use, especially in large amounts, habituation, tolerance, and psychological dependence can occur.
Abrupt discontinuation of caffeine may result in physical withdrawal symptoms, including anxiety, decreased physical energy, depressed mood, difficulty concentrating, drowsiness, fatigue, headache, irritability, reduced alertness, and rhinorrhea.
Rectally: Coffee enemas have been linked to proctocolitis, severe electrolyte abnormalities, and septicemia leading to death.
Cardiovascular
...Orally, coffee containing caffeine can cause chest pain and premature heartbeat (8042,111045).
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042). Excessive doses of caffeine can cause massive catecholamine release and subsequent sinus tachycardia (11832,11838,13734,13735).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in hypertensive patients (1451,1452,2722,13739,105312). Drinking one or more cups of caffeinated coffee daily also doesn't seem to increase the risk of developing hypertension in habitual coffee drinkers (8033,13739,111037).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily, or approximately 4 cups of caffeinated coffee, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,105310), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453,105310), or cardiovascular disease (CVD) in general (37805,98806,104882). However, some observational research suggests that drinking at least 1 cup of coffee per week is associated with a 40% increased risk of atrial fibrillation, with the highest incidence of atrial fibrillation occurring in adults consuming at least 6 cups daily (111042). Also, one large, observational study found a J-shaped association between regular coffee consumption and the risk of developing acute coronary syndromes. Moderate consumption of less than 300 mL daily (about 1.3 cups) was associated with a lower risk of developing acute coronary syndromes, whereas regular consumption of 300 mL daily or more was associated with an increased risk (11318). In contrast, other observational research in people without a history of CVD has found that drinking more than 6 cups of coffee daily does not appear to be associated with an increased risk of developing coronary heart disease (14343). Also, in people with a history of CVD, population research has found that coffee consumption is associated with a reduction in CVD-related mortality (97373,97374,103997,103998,104594,104595,104882,105308,105311,105313,105314); however not all research agrees (112735). However, in current smokers with a history of acute coronary syndrome, consuming more than 3 cups of coffee daily is associated with more than a two-fold increased risk of overall mortality (105313). Also, population research in patients with severe hypertension, but not mild hypertension, suggests that drinking at least two cups of coffee daily is associated with a 2-fold increase in CVD mortality compared with non-coffee drinkers (111027).
Caffeine intake may pose a greater cardiovascular risk to subjects who are not regular caffeine users. Population research suggests that drinking caffeinated coffee might trigger a myocardial infarction (MI) in some people. People who drink one or fewer cups of coffee daily and are sedentary and have multiple risk factors for heart disease have a significantly increased risk of MI within an hour after drinking coffee. However, this risk appears diminished in people who routinely consume greater amounts of coffee on a daily basis (14497). In another population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects who didn't regularly drink coffee (38102).
Boiled coffee that is prepared without a filter appears to increase serum cholesterol and triglyceride levels (1353,4200,8036,8539). Drinking one liter of strong, unfiltered coffee daily for two weeks can raise serum cholesterol by 10% and serum triglycerides by 36% (1353). Tell patients to use coffee filters since these effects do not seem to occur with filtered coffee (4200,8036,8539).
Coffee can adversely affect homocysteine levels. Higher homocysteine levels have been associated with CVD. One liter of unfiltered strong coffee daily for two weeks can increase plasma homocysteine levels by 10% (1353). The same amount of filtered strong coffee appears to raise plasma homocysteine levels by 20%, although there have been no head-to-head comparisons of filtered versus unfiltered coffee (3344).
Dermatologic ...Some researchers suggest symptoms such as flushed face occur during caffeine withdrawal. However, withdrawal symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Endocrine
...Orally, excessive doses of caffeine can cause massive catecholamine release and subsequent metabolic acidosis, hyperglycemia, and ketosis (13734).
Other symptoms include hypokalemia and respiratory alkalosis (11832,11838,13735).
Some evidence shows that caffeine, a constituent of coffee, is associated with fibrocystic breast disease, breast cancer, and endometriosis in females; however, this is controversial since findings are conflicting (8043). Restricting caffeine intake in patients with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). Population research suggests that exposure to caffeine is not associated with an increased risk of endometriosis (91035).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as coffee, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Gastrointestinal
...Orally, coffee containing caffeine can cause gastric distress and vomiting.
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). There is also some evidence that consumption of three or more cups of caffeinated coffee might increase the risk of Helicobacter pylori infection (8034).
Caffeine withdrawal symptoms such as nausea and vomiting have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Rectally, at least 5 cases of proctocolitis related to the use of coffee enemas have been reported (96868,103273).
Genitourinary ...The caffeine found in coffee is a known diuretic and may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In males with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily has been associated with increased severity of premenstrual syndrome (38177).
Hematologic
...There is evidence that coffee containing caffeine shortens whole blood fibrinolysis time (8030).
Rectally, coffee enemas have been linked to severe electrolyte abnormalities leading to death (3026,3347,3349,6652)
Hepatic ...Boiled coffee that is prepared without a filter appears to increase liver aminotransferase enzymes. Tell patients to use coffee filters since these effects do not seem to occur with filtered coffee (8539).
Immunologic
...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Rectally, coffee enemas have been linked to septicemia leading to death (3026,3347,3349,6652).
Musculoskeletal
...Orally, there is preliminary evidence that use of greater than four cups of coffee daily can increase the risk of rheumatoid factor positive rheumatoid arthritis, but this association has not been confirmed (6482).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg daily does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317,98806).
Caffeine withdrawal symptoms, such as muscle tension and muscle pains, have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Neurologic/CNS
...Orally, coffee containing caffeine can cause agitation, headache, insomnia, and nervousness, .
These effects are more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,11832,11838,13734,13735).
Combining ephedra with coffee can increase the risk of adverse effects, due to the caffeine contained in coffee. Jitteriness, seizures, and temporary loss of consciousness have been associated with the combined use of ephedra and caffeine (2729).
Some researchers suggest that symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nervousness, and restlessness have also been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Ocular/Otic ...Orally, coffee containing caffeine can cause ringing in the ears. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). Coffee containing caffeine also increases intraocular pressure, starting about 30 minutes after consumption and persisting for at least 90 minutes. Decaffeinated coffee does not appear to affect intraocular pressure (8540).
Oncologic
...The association between consumption of coffee and pancreatic cancer is controversial.
Coffee may increase the incidence of some types of pancreatic cancers, but it may decrease other types (8535,8536,8537). Some studies do not support this association, especially in patients that have never smoked (8038,8040,93878,103999). Patients who are at risk of pancreatic cancer (pancreatitis) should limit their consumption of coffee.
People who consume 2-4 or more cups of caffeinated coffee dail might have a significantly increased risk of developing lung cancer (13191,90177). But drinking decaffeinated coffee seems to be associated with a decreased risk of lung cancer (13191).
Coffee consumption has also been associated at various times with an increased risk of breast cancer, bladder cancer, colon cancer, and other types of cancers, but there's no good evidence that coffee consumption increases cancer risk (8039,8040,8041). Most human studies that have examined caffeine or coffee intake have found that they do not play a role in the development of various cancers, including breast or most gastric cancers (91054,91076,98806). However, drinking caffeinated coffee might increase the risk of gastric cardia cancer (91076).
Psychiatric ...Orally, coffee containing caffeine can cause anxiety. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734). With chronic use, especially in large amounts, habituation, tolerance, and psychological dependence can occur (3719). Other researchers suggest symptoms such as depressed mood are typical of caffeine withdrawal (13738). However, withdrawal symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...Caffeine withdrawal symptoms such as rhinorrhea have been described. However, these symptoms may be due to nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Renal ...Orally, coffee containing caffeine can cause diuresis. This is more likely with increasing intake of caffeine and in certain populations (e.g., children, elderly) (8042,13734).
General ...Orally, coffee charcoal seems to be well tolerated (2,93653). However, a thorough evaluation of safety outcomes has not been conducted. In clinical studies, a combination product containing coffee charcoal, myrrh, and chamomile extract (MYRRHINIL-INTEST, Repha GmbH) has been used for up to 12 months without reported adverse effects (93653,104593).
General
...Orally, cranberry seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea and gastrointestinal discomfort.
Dermatologic ...Orally, skin redness and itching has been reported in one patient (46389).
Gastrointestinal ...In very large doses, for example 3-4 L per day of juice, cranberry can cause gastrointestinal upset and diarrhea, particularly in young children (46364). There are reports of abdominal and gastrointestinal discomfort after taking cranberry tablets, extracts, and juice in clinical trials (16720,46379,111407). Nausea, vomiting, and diarrhea have also been reported with consumption of lower doses of cranberry juice cocktail, 16 ounces per day, equivalent to about 4 ounces cranberry juice, for several weeks (16415).
Genitourinary ...Vulvovaginal candidiasis has been associated with ingestion of cranberry juice (46374). Clinical research suggests that ingestion of cranberry juice may be associated with vaginal itching and vaginal dryness (46471). One patient in clinical research stopped taking dried cranberry juice due to excessive urination (46437), and an isolated case of nocturia following ingestion of cranberry tablets has been reported (16720).
Hematologic ...Thrombocytopenia has been reported as an adverse event to cranberry juice (46459).
Other ...An isolated case of sensitive swollen nipples after taking cranberry tablets has been reported (16720).
General
...Orally, elderberry extracts prepared from ripe fruit seem to be well tolerated.
Most Common Adverse Effects:
Orally: When adverse effects occur, they are likely due to ingestion of raw and unripe elderberries, or seeds, leaves, and other plant parts. Due to cyanogenic glycosides, these may cause nausea, vomiting, severe diarrhea, weakness, dizziness, numbness, and stupor. Cooking eliminates the toxin.
Gastrointestinal
...Orally, nausea and vomiting have been reported after consuming a specific elderberry and echinacea product
Vogel Bioforce AG) (95650). However, it is unclear if this was due to the elderberry or Echinacea contained in the product.
Raw and unripe elderberries, and the seeds, leaves, and other elder tree parts might cause nausea, vomiting, or severe diarrhea due to cyanogenic glycosides (17020,17021). Cooking eliminates the toxin.
Hepatic ...In one case report, a 60-year-old female with underlying autoimmune disease presented with autoimmune hepatitis after taking elderberry at an unknown dose for several years. The patient presented with nausea, jaundice, abdominal pain, and abdominal distention. Liver function tests returned to baseline 4 weeks after initiating treatment with prednisone 40 mg daily and discontinuing elderberry (110123).
Immunologic ...Elder tree pollen might cause an allergic reaction characterized by rhinitis and dyspnea in some patients who are allergic to grass pollen. These patients might also experience an allergic reaction to elderberry extracts (11095).
Neurologic/CNS ...Raw and unripe elderberries might cause weakness, dizziness, numbness, and stupor due to cyanogenic glycosides (17020,17021). Cooking eliminates the toxin.
General
...Orally, flaxseed is usually well-tolerated.
Most Common Adverse Effects:
Orally: Bloating, diarrhea, gastrointestinal complaints.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions such as and anaphylaxis.
Gastrointestinal
...Integrating flaxseed in the diet can cause digestive symptoms similar to other sources of dietary fiber including bloating, fullness, flatulence, abdominal pain, diarrhea, constipation, dyspepsia, and nausea (12910,16761,16765,21198,21200,22176,22179,65866,101943).
Higher doses are likely to cause more gastrointestinal side effects. Flaxseed can significantly increase the number of bowel movements and the risk for diarrhea (6803,8021,16765). Doses greater than 45 grams per day may not be tolerated for this reason (6802). Metallic aftertaste and bowel habit deterioration have also been reported in a clinical trial (21198).
There is some concern that taking large amounts of flaxseed could result in bowel obstruction due to the bulk forming laxative effects of flaxseed. Bowel obstruction occurred in one patient in a clinical trial (65866). However, this is not likely to occur if flaxseed is consumed with an adequate amount of fluids.
Immunologic ...Occasionally, allergic and anaphylactic reactions have been reported after ingestion of flaxseed (16761). Handling and processing flaxseed products might increase the risk of developing a positive antigen test to flaxseed and hypersensitivity (6809,12911,26471,26482).
Oncologic ...Flaxseed contains alpha-linolenic acid (ALA). High dietary intake of ALA has been associated with increased risk for prostate cancer (1337,2558,7823,7147,12978). However, ALA from plant sources, such as flaxseed, does not seem to increase this risk (12909).
Other ...Orally, partially defatted flaxseed, which is flaxseed with less alpha-linolenic acid, might increase triglyceride levels (6808). Raw or unripe flaxseed contains potentially toxic cyanogenic glycosides (linustatin, neolinustatin, and linamarin). These chemicals can increase blood levels and urinary excretion of thiocyanate in humans. However, these glycosides have not been detected after flaxseed is baked (5899).
General
...Orally, FOS are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, flatulence.
Gastrointestinal ...Orally, FOS may cause flatulence, belching, abdominal pain, intestinal sounds, constipation, and bloating. These symptoms can occur commonly in some patients, but are generally mild at doses under 10 grams per day (745,750,8509,98651,107931). However, a meta-analysis of 8 small clinical studies shows that taking FOS at doses ranging from 2.5 grams to 15 grams daily for up to 8 weeks does not increase the rate of abdominal pain, bloating, flatulence, or intestinal sounds when compared with control groups (110710).
General
...Orally, goji fruit seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions including anaphylaxis.
Dermatologic ...A case of photosensitivity secondary to consumption of goji berries has been reported. The patient presented with a pruriginous eruption that had lasted for 2 weeks. The patient had been taking goji berries for 5 months and cat's claw for 3 months. Upon testing, it was revealed that the patient tested positive to goji berries in a photoprovocation test, but not to cat's claw (40263).
Hepatic ...Orally, consumption of goji berries has been associated with a single case report of autoimmune hepatitis (52541). A case of acute hepatitis has also been reported in a female who consumed 2 ounces of a specific combination product (Euforia, Nuverus International) containing goji berry, pomegranate, curcumin, green tea, noni, acai berry, aloe vera, blueberry, resveratrol, mangosteen, and black seed, daily for one month. It is unclear whether the liver injury was caused by goji berry, other ingredients, or the combination (90125).
Immunologic ...Several cases of allergic reactions secondary to consumption of goji berries have been reported. Symptoms included facial angioedema with dyspnea, pharyngeal itching, itching in the mouth, ears, and axilla, labial angioedema, and perioral skin rash (92116). Anaphylaxis has also been reported (52538).
General
...Orally, the whole fruit, as well as the seed, fruit, and leaf extracts, seem to be well tolerated.
Topically, grape seed extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, dry mouth, dyspepsia, headache, joint pain, and nausea.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to grape skin has been reported.
Dermatologic ...Orally, mild hair thinning has been reported in a patient taking a specific grape leaf extract AS195 KG) (2538). Urticaria (hives) has also been reported with this same extract (53206). Cases of contact dermatitis have been reported in grape workers, including those working in California vineyards (53270,53272,53275).
Gastrointestinal ...Orally, abdominal pain and nausea have been reported with use of grape seed extract, but these effects typically occur at rates similar to placebo (9182,13162). In a case report of a 57-year-old man, intermittent nausea, vomiting, and diarrhea occurred over a 10-day period and improved once grape seed extract was stopped (96764). Gastrointestinal adverse effects have also been reported with use of a different grape seed extract (Entelon, Hanlim Pharm). However, the specific types of gastrointestinal effects were not described (100954). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused flatulence, mild constipation, gastrointestinal discomfort, diarrhea, dyspepsia, dry mouth, and retching (2538,52985,53206). Diarrhea, gastrointestinal distress, indigestion, and aversion to taste have been reported with use of Concord grape juice (52972,53166,53175,53181,53199). Loose stools have been reported in a clinical trial of grape pomace (99270). Bowel obstruction caused by intact grapes and grape seeds has been described in case reports (53241,53284,53278). Excessive consumption of grapes, dried grapes, raisins, or sultanas might cause diarrhea due to laxative effects (4201).
Hematologic ...Orally, one case of leg hematoma following a minor trauma was reported in a person using grape leaf extract (2538). Also, one case of bruising was reported in a person drinking Concord grape juice daily for 2 weeks (52972).
Immunologic ...Orally, there is one report of an anaphylactic reaction to oral grape skin extract, which included urticaria and angioedema (4073).
Musculoskeletal ...Orally, musculoskeletal disorders, including back pain, have been reported with use of a specific grape leaf extract AS195 KG) (2538,53206). Joint pain and lumbago have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (91541).
Neurologic/CNS ...Orally, headache has been reported with use of grape seed extract, but this effect occurs at rates similar to placebo (9182,91541). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused dizziness, tiredness, headache, and sleep problems (2538,53206). As a class, nervous system adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of adverse neurologic effects were not described (100954).
Ocular/Otic ...Orally, ocular adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of ocular adverse effects were not described (100954).
Pulmonary/Respiratory ...Orally, nasopharyngitis and oropharyngeal pain have been reported with use of a specific grape leaf extract AS195 KG) (53206). Sore throat, cough, allergic rhinitis, and nasopharyngitis have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (9182,91541). One case report describes a 16-year-old female who developed increased levels of immunoglobulin E (IgE) following skin-prick exposure to grape vine pollen, as well as positive test responses following bronchial and conjunctival provocation (53301). Reduced forced vital capacity has been described in California grape workers (53080,53081). Occupational eosinophilic lung was diagnosed in a grape grower with a history of asthma. Respiratory exposure to sulfites in grape was implicated as the cause of the adverse reaction (53285).
Other
...Orally, grape products can cause adverse effects due to contamination with pesticides or mycotoxins.
Some evidence has shown that pesticides used in vineyards may remain on grape surfaces post-harvesting. For example, the fungicide folpet sprayed on grapevines has been shown to remain on the grape surface. Although there was minimal penetration of the epicuticular wax, it showed high resistance to washing (52935). Carbaryl has been identified in over 58% of juice samples collected in Canada. This pesticide reportedly occurred more frequently in grape than in other juices. However, estimates of short-term intake were below proposed acute reference doses (53003).
Ochratoxin A is a mycotoxin that is suspected to be nephrotoxic, teratogenic, hepatotoxic and carcinogenic and has been identified in grape juice, frozen grape pulps, and red and white wine sold in Rio de Janeiro, Brazil. However, the highest levels identified in grape products were lower than the established virtually safe dose of 5 ng/kg of body weight daily (53010,53004). Ochratoxin A has also been identified in red, but not white, grape juice marketed in Switzerland, Canada, and the U.S. (53292,53020).
General
...Orally, green tea is generally well tolerated when consumed as a beverage in moderate amounts.
Green tea extract also seems to be well tolerated when used for up to 12 months.
Most Common Adverse Effects:
Orally: Bloating, constipation, diarrhea, dyspepsia, flatulence, and nausea.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, hypokalemia, and thrombotic thrombocytopenic purpura have been reported rarely.
Cardiovascular
...Acute or short-term oral administration of green tea may cause hypertension (53719,54014,54065,54076,102716).
The risk may be greater for green tea products containing more than 200 mg epigallocatechin gallate (EGCG) (90161). However, consumption of brewed green tea does not seem to increase blood pressure or pulse, even in mildly hypertensive patients (1451,1452). In fact, some evidence suggests that habitual tea consumption is associated with a reduced risk of developing hypertension (12518). Also, epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension or with cardiovascular disease mortality in patients with hypertension (13739,111027). Rarely, green tea consumption may cause hypotension (53867).
Epidemiological research suggests that regular caffeine intake of up to 400 mg per day, or approximately 8 cups of green tea, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, and temporary loss of consciousness has been associated with the combined use of ephedra and caffeine (2729). There is also a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for 6 weeks (1275). In theory, combining caffeinated green tea with ephedra would have similar effects.
In a case report, the EGCG component of a specific weight loss supplement (Hydroxycut) was thought to be responsible for atrial fibrillation (54028). The patient was given two doses of intravenous diltiazem and was loaded with intravenous digoxin. Thirty-six hours after the last product dose, she spontaneously converted to normal sinus rhythm. The authors suggested that the block of the atrial-specific KCNA5 potassium channel likely played a role in this response.
A case of thrombotic thrombocytopenic purpura has been reported for a patient who consumed a weight loss product containing green tea (53978). She presented at the emergency department with a one-week history of malaise, fatigue, and petechiae of the skin. Twelve procedures of plasmapheresis were performed, and corticosteroid treatment was initiated. She was discharged after 20 days.
Dermatologic ...Orally, green tea may cause skin rashes or skin irritation (53731,54038,90161,90187,102716). Topically, green tea may cause local skin reactions or skin irritation, erythema, burning, itching, edema, and erosion (53731,54018,97136,104609,111031). A green tea extract ointment applied to the cervix can cause cervical and vaginal inflammation, vaginal irritation, and vulval burning (11310,36442,36438). When applied to external genital or perianal warts, a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins can cause erythema, pruritus, local pain, discomfort and burning, ulceration, induration, edema, and vesicular rash (15067,53907).
Endocrine
...There is some concern that, due to its caffeine content, green tea may be associated with an increased risk of fibrocystic breast disease, breast cancer, and endometriosis.
However, this is controversial since findings are conflicting (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as green tea, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
A case of hypoglycemia has been reported for a clinical trial participant with type 2 diabetes who used green tea in combination with prescribed antidiabetes medication (54035).
Gastrointestinal ...Orally, green tea beverage or supplements can cause nausea, vomiting, abdominal bloating and pain, constipation, dyspepsia, reflux, morning anorexia, increased thirst, flatulence, and diarrhea. These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,36398,53719,53867,53936,54038,54076,90139,90140)(90161,90175,90187,97131,97136,102716).
Hepatic
...There is concern that some green tea products, especially green tea extracts, can cause hepatotoxicity in some patients.
In 2017, the regulatory agency Health Canada re-issued a warning to consumers about this concern. The updated warning advises patients taking green tea extracts, especially those with liver disease, to watch for signs of liver toxicity. It also urges children to avoid taking products containing green tea extracts (94897). In 2020, the United States Pharmacopeia (USP) formed an expert panel to review concerns of green tea extract-related hepatotoxicity. Based on their findings, USP determined that any products claiming compliance with USP quality standards for green tea extract must include a specific warning on the label stating "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)" (102722).
Numerous case reports of hepatotoxicity, primarily linked to green tea extract products taken in pill form, have been published. A minimum of 29 cases have been deemed at least probably related to green tea and 38 have been deemed possibly related. In addition, elevated liver enzymes have been reported in clinical research (14136,15026,53740,53746,53775,53859,54027,90139,90162,90164)(93256,94898,94899,102716,102720,102722,107158,111020,111644). Most cases of toxicity have had an acute hepatitis-like presentation with a hepatocellular-elevation of liver enzymes and some cholestasis. Onset of hepatotoxic symptoms usually occurs within 3 months after initiation of the green tea extract supplement, and symptoms can persist from 10 days to 1 year (95439,94897,94898,107158). Some reports of hepatotoxicity have been associated with consumption of green tea-containing beverages as well (15026,53742,54016,90125,90143).
In most cases, liver function returned to normal after discontinuation of the green tea product (14136,15026,53859,93256,107158). In one case, use of a specific ethanolic green tea extract (Exolise, Arkopharma) resulted in hepatotoxicity requiring a liver transplant. Due to concerns about hepatotoxicity, this specific extract was removed from the market by the manufacturer (14310). Since then, at least 5 cases of liver toxicity necessitating liver transplantation have been reported for patients who used green tea extracts (94898,107158). In another case, use of green tea (Applied Nutrition Green Tea Fat Burner) in combination with whey protein, a nutritional supplement (GNC Mega Men Sport), and prickly pear cactus resulted in acute liver failure (90162).
Despite the numerous reports of hepatotoxicity associated with the use of green tea products, the actual number of hepatotoxicity cases is low when the prevalence of green tea use is considered. From 2006 to 2016, liver injury from green tea products was estimated have occurred in only 1 out of 2.7 million patients who used green tea products (94897,95440).
In addition to the fact that green tea hepatotoxicity is uncommon, it is also not clear which patients are most likely to experience liver injury (94897,95440). The hepatotoxicity does not appear to be an allergic reaction or an autoimmune reaction (94897). It is possible that certain extraction processes, for example, ethanolic extracts, produce hepatotoxic constituents. However, in most cases, the presence of contaminants in green tea products has not been confirmed in laboratory analyses (90162).
Although results from one analysis of 4 small clinical studies disagrees (94899), most analyses of clinical data, including one conducted by the European Food Safety Association, found that hepatotoxicity from green tea products is associated with the dose of EGCG in the green tea product. Results show that daily intake of EGCG in amounts greater than or equal to 800 mg per day is associated with a higher incidence of elevated liver enzymes such as alanine transaminase (ALT) (95440,95696,97131). However, it is still unclear what maximum daily dose of EGCG will not increase liver enzyme levels or what minimum daily dose of EGCG begins to cause liver injury. In many cases of liver injury, the dose of green tea extract and/or EGCG is not known. Therefore, a minimum level of green tea extract or EGCG that would cause liver injury in humans cannot be determined (102722). Keep in mind that daily intake of green tea infusions provides only 90-300 mg of EGCG daily. So for a majority of people, green tea infusions are likely safe and unlikely to cause liver injury (95696). Also, plasma levels of EGCG are increased when green tea catechins are taken in the fasting state, suggesting that green tea extract should be taken with food (102722).
Until more is known, advise patients that green tea products, especially those containing green tea extract, might cause liver damage. However, let them know that the risk is uncommon, and it is not clear which products are most likely to cause the adverse effect or which patients are most likely to be affected. Advise patients with liver disease to consult their healthcare provider before taking products with green tea extract and to notify their healthcare provider if they experience symptoms of liver damage, including jaundice, dark urine, sweating, or abdominal pain (102722).
Immunologic ...Orally, matcha tea has resulted in at least one case of anaphylaxis related to green tea proteins. A 9-year-old male experienced systemic redness and hives, nausea, and anaphylaxis 60 minutes after consuming matcha tea-flavored ice cream (107169). The caffeine found in green tea can also cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Orally, the ingestion of the green tea constituent epigallocatechin gallate (EGCG) or a decaffeinated green tea polyphenol mixture may cause mild muscle pain (36398).
There is some concern regarding the association between caffeinated green tea products and osteoporosis. Epidemiological evidence regarding the relationship between caffeinated beverages such as green tea and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg per day, or about 8 cups of green tea, doesn't seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Neurologic/CNS
...Orally, green tea can cause central nervous system stimulation and adverse effects such as headache, anxiety, dizziness, insomnia, fatigue, agitation, tremors, restlessness, and confusion.
These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,53719,90139,102716). The green tea constituent epigallocatechin gallate (EGCG) or decaffeinated green tea may also cause mild dizziness and headache (36398).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729).
Topically, green tea extract (Polyphenon E ointment) may cause headache when applied to the genital area (36442).
Psychiatric ...Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, and psychological dependence (11832). The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Other researchers suggest symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...A case of granulomatous alveolitis with lymph follicles has been reported for a 67-year-old female who used green tea infusions to wash her nasal cavities for 15 years (54088). Her symptoms disappeared 2 months after stopping this practice and following an undetermined course of corticosteroids. In a case report, hypersensitivity pneumonitis was associated with inhalation of catechin-rich green tea extracts (54025). Occupational exposure to green tea dust can cause sensitization, which may include nasal and asthmatic symptoms (11365).
Renal ...There are two cases of hypokalemia associated with drinking approximately 8 cups daily of green tea in an elderly couple of Asian descent. The hypokalemia improved after reducing their intake by 50%. It is possible that this was related to the caffeine in the green tea (98418).
Other ...Orally, intake of a specific green tea extract product (Polyphenon E) may cause weight gain (90139).
General ...Orally, guava leaf extract may cause transient abdominal pain or nausea (101782). Topically, guava leaf extract may cause contact dermatitis (95560).
Dermatologic ...Topically, guava leaf extract may cause contact dermatitis and worsen atopic dermatitis. Exacerbation of atopic dermatitis has been reported for a 17-year-old male who added tea bags containing guava leaf 30 grams to his bath to help treat his condition. His eczema worsened after bathing with the guava tea bags and improved after discontinuation of use. Based on laboratory testing, the exacerbation of eczema was attributed to positive skin reactions of the patient to a protein and tannins found in guava leaf extract (95560).
Gastrointestinal ...Orally, transient abdominal pain or nausea has been reported in a clinical trial (101782).
General
...Orally, hawthorn seems to be well tolerated when used appropriately.
Topically, no adverse effects have been reported, although a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Multiorgan hypersensitivity reactions resulting in acute renal failure have been reported rarely.
Cardiovascular
...Orally, tachycardia (with facial pains) of uncertain relationship to hawthorn was reported in a multicenter clinical trial (54640).
Palpitations (19244) were reported in three patients in a large surveillance trial of 3,664 patients with cardiac failure (54692) and in 11 patients with congestive heart failure (CHF) in a literature review of 5,577 patients (19247). Circulation failure has been reported in two patients with CHF in a literature review of 5,577 patients (19247). Incidences of hospitalization, hospitalization due to CHF, worsening of CHF, angina, and atrial fibrillation have also been reported with the use of hawthorn extract WS 1442 (Crataegutt forte), although it is unclear if these events are related to hawthorn supplementation or existing CHF (19222). In clinical trials, chest pain (8281), short-term increases in blood pressure (19240), and other non-specific heart problems (17203) have also been reported following the use of various hawthorn preparations (e.g. WS 1442, Korodin).
Orally, severe bradycardia, bradypnea, and Mobitz type 1 second degree heart block have been reported in a 16-year-old female who consumed Hawthorn root extract. Blood tests indicated plasma digoxin levels in the therapeutic range, despite no history of digoxin use. Medical treatment for digoxin cardiotoxicity did not improve symptoms. Symptoms gradually normalized over 3 days after discontinuation of the product (113112). Similarly, a 40-year-old female presented with bradycardia and elevated plasma digoxin levels after taking hawthorn root extract 196 mg daily for 2 days with no history of digoxin use. Symptoms resolved within 24 hours (113113).
Dermatologic ...Orally, erythematous rash has been reported in patients with CHF in a literature review of 5,577 patients (19247). Non-specific rashes and itching (19222,19243) as well as toxiderma from the fruits of hawthorn (54670) have also been reported.
Gastrointestinal ...Orally, rare abdominal discomfort of uncertain relationship to hawthorn has been reported in a large clinical trial, surveillance study, case reports, and a literature review (19247,54640,54692,113112). Digestive intolerance (19241), diarrhea (19243,113112), flatulence (8281), gastroenteritis (8281), increased bowel movements (19243), obstipation (8281), mild and rare nausea (10144,19247,19244), vomiting (113112), nutritional and metabolic problems (17203), and other non-specific gastrointestinal effects (19222), have also been reported. Furthermore, gastrointestinal hemorrhage has been reported in two patients with CHF in a literature review of 5,577 patients (19247).
Musculoskeletal ...In clinical trials, arthritis (8281), back pain (8281), weakness (19243), and other non-specific musculoskeletal effects (19222) have been reported following the use of various hawthorn preparations g. WS 1442, CKBM-A01). Additionally, in a case report, myalgia has been reported following use of hawthorn root extract (113113).
Neurologic/CNS ...Orally, headache and dizziness/vertigo were reported in 2 patients in a large surveillance trial of 3,664 patients with cardiac failure (54692), in 15 patients with CHF as reported in a literature review of 5,577 patients (19247), in a varying number of clinical trial participants (8281,19222,19244), and in case reports (113112,113113). Incidences of fainting (19222), fever (17203), and infrequent, mild and transient sleepiness have also been reported (19221,54692).
Psychiatric ...Orally, agitation was reported in a large surveillance trial of 3,664 patients with cardiac failure (54692).
Pulmonary/Respiratory ...Orally, bronchitis has been reported following the use of hawthorn extract WS 1442 (8281), and bradypnea has been reported following the use of hawthorn root extract (113112).
Renal ...A case of multiorgan hypersensitivity reaction and acute renal failure following the consumption of C. orientalis has been reported (54654).
Other ...Flu-like syndrome (8281) and other non-specific infections have been reported following the use of the hawthorn extract WS 1442 (17203,19222). Hawthorn has also been reported to cause nosebleeds (8281,10144).
General
...Orally, hemp products are generally well tolerated in food amounts.
In larger amounts, hemp seed oil seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Rare cases of anaphylaxis have been reported. Long QT syndrome, torsades de pointes, and syncope have also been reported rarely.
Cardiovascular ...Acquired long QT syndrome, torsades de pointes, and syncope have been reported in a 56-year-old woman following the intake of supplements containing hemp oil. The hemp supplements provided cannabidiol (CBD), and possibly cannabigerol (CBG). Although the exact dose is unknown, up to six times the recommended dose had been used for approximately 6 weeks, in combination with a supplement containing berberine. While hospitalized, intravenous magnesium and saline were used to stabilize heart rhythm. It is unknown whether this adverse effect was related to the hemp oil, berberine, or their interaction (110104).
Hepatic ...Orally, there is a case report of elevated liver enzymes and hepatitis in a two-year-old boy given hemp extract 2. 5 mL, providing 125 mg phytocannabinoid, five to eight times daily for infantile spasms and refractory seizures. The total dose of phytocannabinoids was approximately 60-100 mg/kg daily (110287).
Immunologic
...Orally, there are case reports of allergy to hemp seed, although this is uncommon (101140,101154).
A 44-year-old male developed hives during a meal of hemp seed-crusted seafoods. Later, he developed facial swelling, shortness of breath, and problems speaking. Evaluation revealed allergy to a specific protein in hemp seed. He did not react to smoked cannabis (101140). In other cases, anaphylaxis, facial swelling, and worsening asthma have been reported in association with a first exposure to hemp seed, although some had smoked cannabis previously (101154).
Topically, a case of patch-test confirmed allergic contact dermatitis to hemp seed oil has been reported in a 22-year-old woman. The initial rash started at the application point on her back and spread to her arms, hands, and neck (110288).
Airborne exposure to hemp pollen is a relatively common cause of allergic respiratory symptoms in some locations (101155).
Neurologic/CNS ...Orally, cases of acute cannabinoid toxicity with neurological symptoms in children and adults have been associated with intake of hemp seed oil. There is a case report of decreased alertness, stupor, bloodshot eyes, and fixed gaze in a 2-year-old male probably related to the intake of one teaspoon hemp seed oil (CANAH) containing 0.06% delta-9-tetrahydrocannabinol (THC) twice daily for 3 weeks. After stopping the oil, irritability was reported over the next few days (101153).
General ...Orally, kale is generally well tolerated when consumed in amounts commonly found in foods. No adverse effects have been reported with medicinal use. However, a thorough evaluation of safety outcomes has not been conducted.
General ...Orally, lactase is generally well tolerated.
Immunologic ...A case of lactase-induced contact dermatitis and immunoglobulin E (IgE)-mediated allergic rhinoconjunctivitis has been reported in a worker exposed to powdered lactase. Allergy to lactase was confirmed by prick test, open application test, and chamber challenge test (96348).
General
...No adverse effects have been reported in adults.
However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Gastrointestinal adverse effects, such as necrotizing enterocolitis, when recombinant human bile salt-stimulated lipase is used in premature infants.
Gastrointestinal ...Orally, when added to the formula or pasteurized breast milk consumed by premature infants, recombinant human bile salt-stimulated lipase (rhBSSL) can cause gastrointestinal adverse effects, including abdominal distension, flatulence, constipation, colic, abdominal pain, gastroenteritis, vomiting, regurgitation, and rectal bleeding (101940). Premature infants receiving rhBSSL also had a slightly higher rate of necrotizing enterocolitis (NEC) when compared with those receiving placebo. After review by a panel of experts, it was determined that the rate of confirmed or suspected NEC in infants consuming rhBSSL was 3.3%, compared with 0.5% in those receiving placebo. Although this rate of NEC is lower than the historical rate of occurrence in premature infants (11%), a possible increased risk for NEC cannot be ruled out (101940).
General
...Orally, maitake mushroom is generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal effects, including diarrhea and epigastric pain.
Dermatologic ...In a clinical trial, one patient experienced rash and pruritus after two doses of maitake mushroom polysaccharide extract. The allergic reaction cleared without intervention (61239).
Gastrointestinal ...In clinical research of a polysaccharide extract from maitake mushroom, one patient reported nausea (61239) and 2 out of 26 reported epigastric pain (17131). In a clinical trial of a liquid extract from maitake mushroom, 2 out of 21 patients experienced diarrhea, and one experienced nausea. One patient withdrew from the study due to diarrhea (92843).
Immunologic ...In a clinical trial of a liquid extract from maitake mushroom, 4 out of 21 patients experienced eosinophilia (92843).
Musculoskeletal ...In a clinical trial of a polysaccharide extract from maitake mushroom, one patient reported joint swelling (61239).
Pulmonary/Respiratory ...There is one case of occupational hypersensitivity pneumonitis (HP) caused by maitake mushroom spores (61228).
General
...Orally and topically, noni seems to be generally well tolerated; however, high quality studies of adverse effects have not been conducted.
Most Common Adverse Effects:
Orally: Abdominal discomfort, nausea.
Serious Adverse Effects (Rare)::
Orally: Hepatotoxicity, including liver failure. However, studies have not conclusively identified whether noni, or contaminants in noni products, were responsible for this toxicity.
Gastrointestinal ...Orally, dehydrated noni fruit has been reported to cause nausea and abdominal discomfort (65173).
Hepatic
...Noni has been associated with several cases of hepatotoxicity in previously healthy patients ranging in age from 14 to 62 years (13107,14341,14468,17170,17171,17172).
In two cases, the patients had used a tea or other herbal products containing noni (13107,17172); five had consumed noni juice, specifically Tahitian Noni Juice (Tahitian Noni International) (14341,16648,17171); and two cases involved energy drinks containing several herbal ingredients including noni (17170,90125). Symptoms of liver dysfunction and elevated liver function tests (LFTs) were seen between 2 weeks and 4 months after starting noni. The LFTs started to improve within 2 days of stopping noni and generally normalized within 1 month (13107,14468,17171). Biopsy findings included acute hepatitis, inflammation, hepatocyte necrosis, and hepatocellular cholestasis (14341,17170). One patient, who had a history of prior mild acetaminophen toxicity, had rapidly progressive liver failure after noni ingestion and required transplantation (14341).
Potential product contamination was not ruled out in these case reports. Some researchers theorize that anthraquinones contained in noni could potentially cause hepatotoxicity. Other products containing anthraquinones, such as senna, have been linked to cases of hepatotoxicity. However, analyses of a noni juice product associated with reports of liver damage (Tahitian Noni Juice, Tahitian Noni International) have not detected anthraquinone content (14444). Another analysis of noni fruit puree from which the seeds and skin had been removed had no detectable anthraquinones (92201). However, products containing seed or leaf material had detectable amounts of anthraquinones (92201). The part of the noni plant used might affect hepatotoxicity risk. More evidence is needed to determine if noni causes hepatotoxicity.
General
...Orally, oats are well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, bloating, flatulence, and unpleasant taste.
Topically: Burning, contact dermatitis, itching, and redness.
Dermatologic ...Topically, oat-containing preparations can cause contact dermatitis (12515). Redness, burning, and itchiness have also been reported (103340).
Gastrointestinal
...When consumed orally, oats provide fiber.
Increasing fiber in the diet can cause flatulence, bloating, abdominal distention, and unpleasant taste. To minimize side effects, doses should be slowly titrated to the desired level. These adverse effects usually subside with continued use (12514).
In patients who have difficulty chewing food, or those with conditions that decrease small bowel motility, oat bran may cause bezoars (concretions) and intestinal obstruction. Oats and oat bran are unlikely to cause obstruction without other causative factors (4979,4985).
Immunologic ...In a case report, a 45-year-old male developed acute generalized urticaria, facial angioedema, and dyspnea immediately after consuming oat flour. The reaction resolved after emergency care for anaphylaxis. Further investigation revealed an IgE-mediated hypersensitivity reaction to oat proteins (113490).
General
...Orally, pea protein seems to be well tolerated.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Immunologic ...Orally, pea protein may cause allergic reactions in individuals sensitive to other foods. A case series describes 6 children who had anaphylactic reactions to pea protein present in a number of food items. Other symptoms included angioedema, urticaria, and asthma. All the children had a history of allergies to other foods including peanuts, tree nuts, chickpeas, lentils, or kidney beans (102012).
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Orally, proteolytic enzymes are generally well tolerated.
See specific monographs for detailed safety information related to individual proteolytic enzymes.
Most Common Adverse Effects:
Orally: Gastrointestinal upset.
Serious Adverse Effects (Rare):
Topically: Allergic reactions.
Gastrointestinal ...Orally, some patients taking proteolytic enzymes may have gastrointestinal complaints (101517).
Immunologic ...Proteolytic enzymes are commonly found in laundry detergents and pre-spotter products. Rarely, protease specific IgE positive tests possibly related to these products have occurred. Exposure may be airborne or topical (102705). In addition, in case reports, occupational exposure to the airborne proteolytic enzyme pepsin has resulted in allergic rhinoconjunctivitis or asthma (102706,102707).
General ...Orally, quinoa seems to be well-tolerated. Rarely, quinoa can cause allergic reaction in some individuals, including anaphylaxis (99150,99151,96062).
Immunologic ...Orally, allergic reactions to quinoa have been reported (99150,96062). Anaphylaxis and pruritic reactions have occurred in at least two individuals, a 29-year-old female and a 52-year-old male. Quinoa allergy was confirmed in both patients via skin-prick testing with quinoa extract (99150,99151).
General
...Orally, red raspberry fruit is well tolerated.
There is currently a limited amount of information on the adverse effects of red raspberry leaf.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal upset, and epigastric pain. However, these adverse effects do not commonly occur with typical doses.
Dermatologic ...A liquid containing red raspberry leaf cell culture extract 0. 0005%, vitamin C 20%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to red raspberry leaf, the other ingredients, or the combination.
Gastrointestinal ...Orally, red raspberry may cause gastrointestinal upset, diarrhea, and epigastric pain (112127).
Pulmonary/Respiratory ...A case of occupational asthma due to the inhalation of red raspberry powder has been reported for a 35-year-old female. Symptoms included wheezing and shortness of breath (70370).
General
...Orally, reishi mushroom is generally well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, dry mouth, itching, nausea, rash, and stomach upset.
Dermatologic ...Orally, reishi mushroom can cause itching, rash, and other skin reactions (12,5479).
Gastrointestinal ...Orally, reishi mushroom can cause dryness of the mouth, throat, or nasal cavity, nausea, stomach upset, and, more rarely, diarrhea (12,70779,91438,108309).
Hematologic ...Orally, reishi mushroom can cause nosebleed and bloody stools (12,91438).
Hepatic ...One case of hepatotoxicity and one case of fatal fulminant hepatitis have been reported in patients who had used reishi mushroom powder for 1-2 months (70766). There is a case report of a 61-year-old male with hypereosinophilia associated with hepatic nodules following the use of reishi mushroom powder for about 2 months. Symptoms resolved after discontinuation of the product. Although these side effects were thought to be associated with the use of reishi mushroom powder, it is unclear if other factors played a role. The patient had been taking tegafur, gimeracil, and oteracil potassium for about 4 months following anterior resection for rectal adenocarcinoma but discontinued these agents and initiated reishi mushroom due to liver injury (108312).
Neurologic/CNS ...Orally, reishi mushroom can cause dizziness (91438). Other rare symptoms include insomnia and headache (70776,70779).
Pulmonary/Respiratory ...Respiratory allergy to reishi spores can occur (12,5479). Sore throat and runny nose have also been reported (70776,91438).
General
...Orally, shiitake mushroom is generally well tolerated when cooked and consumed as a food.
Most Common Adverse Effects:
Orally: Abdominal discomfort, bloating, diarrhea, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Consumption of raw shiitake mushroom can cause shiitake dermatitis, a skin eruption resembling whiplash marks which can be accompanied by systemic symptoms. Large pieces that have been inadequately chewed can cause intestinal blockage, occasionally requiring surgery.
Dermatologic
...Orally, shiitake mushrooms can cause shiitake dermatitis, a skin eruption that resembles whiplash marks, usually found on the trunk and limbs.
This dermatitis is thought to be a toxic response to lentinan or other compounds found normally in uncooked or inadequately cooked shiitake mushroom. The rash can be made worse by scratching. Symptom onset is usually within hours to days and can persist for 3-4 weeks before resolving on its own. There is some evidence that treatment with steroids alone or with antihistamines might reduce the duration of the rash by a small amount in some people (1148,1152,74782,74806,94236,94237,94238,94240,94241,94243) (94244,94246,94247,94248,94249,94252,94253,94254,94255,94256)(94257,94259,94261,94262,108302,111909,111912,111913). The dermatitis may include small purple spots from broken capillaries, skin plaques, burning, blanching, and pustules (94256,108302). Rarely the rash may look like measles rather than whiplash (94256). Histologically, there may be evidence of dermal and epidermal edema, lymphocyte infiltration, and skin thickening (94256,94257). Other symptoms associated with the dermatitis include fever, aching, malaise, eosinophilia, diarrhea, prickling in the hands, trouble swallowing, conjunctivitis, and pustules with small ulcers in the mouth (94240,94246,94247,94249,94256,94257,108302). It is likely that the dermatitis and other symptoms are due to a delayed type hypersensitivity reaction (94244,94255). Cooking shiitake mushroom generally prevents shiitake dermatitis, although some cases have occurred in people who have consumed cooked sources (94242,94244). It appears that to inactivate lentinan, cooking temperatures of at least 130°C are needed (94243).
Less common is a photosensitivity reaction associated with oral ingestion, which involves rash and pruritus after sun exposure (1148,94241).
Orally, the shiitake mushroom extract AHCC has been reported to cause mild itching (30375).
Gastrointestinal
...Orally, shiitake mushrooms can cause abdominal discomfort, including bloating, nausea, pain, vomiting, and diarrhea (1149,30365,30375,30419,94241).
Gastrointestinal symptoms, such as diarrhea, problems swallowing, or mouth ulcers have been associated with shiitake dermatitis (94241,94256). Consumption of large pieces of shiitake mushroom with inadequate chewing can cause abdominal obstruction that has resulted in death in one case and surgical intervention in two others. In another case, parenteral nutrition was used exclusively until the shiitake mushroom pieces were passed (1147,94260,103160,108303,108304).
Topically, an oral rinse containing shiitake mushroom extract has been associated with teeth sensitivity, teeth staining, and burning in the mouth (94250).
Hematologic ...Ingestion of shiitake mushroom powder 4 grams daily for 10 weeks caused eosinophilia in 5 of 10 healthy humans (1149). Eosinophilia, and leukocytosis or leukopenia have been reported with shiitake dermatitis (94254,94256,94257).
Immunologic ...Allergic contact dermatitis can occur by contact with shiitake hyphae (filaments) (1153,74785,111913). It appears to be more common in growers or others that handle shiitake mushrooms extensively (94241,94259). Contact or inhalation also results in other symptoms of allergy, such as asthma, rhinitis, conjunctivitis, and pneumonia (94241,94249,94258,94259).
Musculoskeletal ...Orally, the shiitake mushroom extract AHCC has been reported to cause foot cramps and difficulty moving hand joints (30365,30416).
Neurologic/CNS
...In patients experiencing shiitake dermatitis, other symptoms may include prickling in the hands (94256).
Malaise has also been reported following oral intake or contact (1151,94240).
Orally, the shiitake mushroom extract AHCC has been reported to cause mild and transient headache (30365).
Ocular/Otic ...Conjunctivitis has been reported rarely in mushroom growers and handlers, or following oral intake in patients with shiitake dermatitis (94241,94256,94259).
Pulmonary/Respiratory ...In mushroom workers, hypersensitivity pneumonitis due to shiitake spore inhalation has occurred. Symptoms include difficulty breathing, chest pain, a dry cough, asthma, and rhinitis (1150,1151,74776,74813,94239,94241,94258,94259).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General ...Orally, no adverse effects have been reported; however, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, spinach is well tolerated when consumed as a food.
Serious Adverse Effects (Rare):
Orally: In infants under 4 months of age, methemoglobinemia has been reported.
All routes of administration: Allergies in sensitive individuals.
Dermatologic ...Topically, contact dermatitis has been reported from spinach in a 54-year-old female farmer (41757).
Gastrointestinal ...Bagged spinach has been linked to Escherichia coli outbreaks, sometimes causing severe gastrointestinal symptoms and even death (75846,75847,75849,75851,96858).
Hematologic ...Orally, spinach ingestion by infants under 4 months of age can cause methemoglobinemia, due to its high nitrate content (75802,75858,75860,75861,75862).
Immunologic ...Orally, topically, and via inhalation, spinach has been reported to cause allergic reactions in sensitive individuals (75870,96859).
Pulmonary/Respiratory ...Lung inflammation associated with allergic alveolitis has been reported after inhalation of spinach powder (75871). The powder has also been reported to induce occupational asthma in a spinach factory worker (75833).
General
...Orally, strawberry is well tolerated when taken in the amounts commonly found in food.
When taken in medicinal amounts, strawberry seems to be generally well tolerated (100109,100113,100116,100119). Rarely, strawberry has been reported to cause nausea and allergic reactions, including oral allergy syndrome and skin reactions (100113,100119,103880).
Topically, strawberry can cause contact dermatitis (13637).
Gastrointestinal ...Orally, taking freeze-dried strawberry powder 50 grams daily has been reported to cause nausea in clinical trials (100113,100119).
Immunologic ...Orally, consuming strawberry has been reported to cause allergic reactions, including oral allergy syndrome and skin reactions, in some patients. (103880). Topically, strawberry has caused contact urticaria in one case report (13637). Overall, allergy to strawberry appears to be rare (103880).
General ...Orally, sweet cherry is generally well tolerated.
Immunologic ...Orally, sweet cherry can cause allergic reactions in sensitive patients. These reactions can range from mucosal irritation to urticaria, angioedema, dyspnea, cough, and gastrointestinal symptoms (14057).
General ...Orally, sweet orange juice or fruit seem to be well tolerated. Large amounts of sweet orange peel may be unsafe, especially for children. When inhaled, sweet orange essential oil seems to be generally well tolerated.
Gastrointestinal ...There have been reports of intestinal colic in children following ingestion of large amounts of sweet orange peel (11).
Neurologic/CNS ...There have been reports of convulsions in children following ingestion of large amounts of sweet orange peel (11).
General
...Orally, tomato leaves and ripe or unripe tomato fruit are well tolerated in typical food amounts.
Tomato extracts also seem to be well tolerated. Tomatine, a glycoalkaloid found in tomato leaves and unripe green tomatoes, can cause serious side effects when consumed in excessive amounts.
Serious Adverse Effects (Rare):
Orally: Bradycardia, diarrhea, respiratory disturbances, spasms, vomiting, and death with excessive consumption of tomatine, a glycoalkaloid found in tomato leaves and unripe green tomatoes.
Cardiovascular ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause bradycardia when consumed in excessive amounts (18,102957).
Gastrointestinal ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause severe mucous membrane irritation, vomiting, diarrhea, and colic when consumed in excessive amounts (18,102957).
Immunologic ...In a case report, a 31-year-old female working in the supermarket developed an airborne allergy to tomato stem proteins with symptoms of severe rhinoconjunctivitis. This woman did not have a food allergy to tomato fruit (102467).
Neurologic/CNS ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause dizziness, stupor, headache, and mild spasms when consumed in excessive amounts (18,102957).
Pulmonary/Respiratory ...Orally, the glycoalkaloid tomatine in tomato leaf or green tomatoes can cause respiratory disturbances when consumed in excessive amounts. In severe cases, death by respiratory failure might occur (18,102957).
General
...Orally, vitamin A is generally well-tolerated at doses below the tolerable upper intake level (UL).
Serious Adverse Effects (Rare):
Orally: In very high doses, vitamin A can cause pseudotumor cerebri, pain, liver toxicity, coma, and even death.
Dermatologic ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity including dry skin and lips; cracking, scaling, and itchy skin; skin redness and rash; hyperpigmentation; shiny skin, and massive skin peeling (7135,95051). Hypervitaminosis A can cause brittle nails, cheilitis, gingivitis, and hair loss (15,95051). Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause skin redness and generalized peeling of the skin a few days later and may last for several weeks (15).
Gastrointestinal ...There is some evidence that oral vitamin A supplementation might increase the risk of diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with diarrhea in well-nourished children (319). Diarrhea (82326,82389), nausea (7135,100329), abdominal pain (95051), abdominal fullness (100329), and vomiting (7135,82559,95051,109755) have been reported following use of large doses of oral vitamin A. Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause vomiting and diarrhea (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including anorexia, abdominal discomfort, and nausea and vomiting (7135).
Genitourinary ...Hypervitaminosis A can cause reduced menstrual flow (15). Intravaginally, all-trans retinoic acid can cause vaginal discharge, itching, irritation, and burning (9199).
Hematologic ...Hypervitaminosis A can cause spider angiomas, anemia, leukopenia, leukocytosis, and thrombocytopenia (15,95051).
Hepatic ...Since the liver is the main storage site for vitamin A, hypervitaminosis A can cause hepatotoxicity, with elevated liver enzymes such as alanine aminotransferase (ALT, formerly SGPT) and aspartate aminotransferase (AST, formerly SGOT), as well as fibrosis, cirrhosis, hepatomegaly, portal hypertension, and death (6377,7135,95051).
Musculoskeletal
...Vitamin A can increase the risk for osteoporosis and fractures.
Observational research has found that chronic, high intake of vitamin A 10,000 IU or more per day is associated with an increased risk of osteoporosis and hip fracture in postmenopausal adults, as well as overall risk of fracture in middle-aged males (7712,7713,9190). A meta-analysis of these and other large observational studies shows that high dietary intake of vitamin A or retinol is associated with a 23% to 29% greater risk of hip fracture when compared with low dietary intake (107294). High serum levels of vitamin A as retinol also increase the risk of fracture in males. Males with high serum retinol levels are seven times more likely to fracture a hip than those with lower serum retinol levels (9190). Vitamin A damage to bone can occur subclinically, without signs or symptoms of hypervitaminosis A. Some researchers are concerned that consumption of vitamin A fortified foods such as margarine and low-fat dairy products in addition to vitamin A or multivitamin supplements might cause excessive serum retinol levels. Older people have higher levels of vitamin A and might be at increased risk for vitamin A-induced osteoporosis.
Vitamin A's effects on bone resorption could lead to hypercalcemia (95051).
Hypervitaminosis can cause slow growth, premature epiphyseal closure, painful hyperostosis of the long bones, general joint pain, osteosclerosis, muscle pain, and calcium loss from the bones (15,95051). One child experienced severe bone pain after taking vitamin A 600,000 IU daily for more than 3 months (95051). Vitamin A was discontinued and symptoms lessened over a period of 2 weeks. The patient made a full recovery 2 months later.
Neurologic/CNS
...Orally, adverse effects from a single large dose of vitamin A are more common in young children than adults (15).
Headache, increased cerebrospinal fluid pressure, vertigo, and blurred vision have been reported following an acute oral dose of vitamin A 500,000 IU (7135). In children, approximately 25,000 IU/kg can cause headache, irritability, drowsiness, dizziness, delirium, and coma (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including fatigue, malaise, lethargy, and irritability (7135).
There are reports of bulging of the anterior fontanelle associated with an acute high oral dose of vitamin A in infants (7135,90784,95053,95054). In children, approximately 25,000 IU/kg can cause increased intracranial pressure with bulging fontanelles in infants (15). Also, muscular incoordination has been reported following short-term high doses of vitamin A (7135).
A case of intracranial hypertension involving diffuse headaches and brief loss of vision has been reported secondary to topical use of vitamin A. The patient was using over-the-counter vitamin A preparations twice daily including Avotin 0.05% cream, Retin-A gel 0.01%, and Isotrexin gel containing isotretinoin 0.05% and erythromycin 2%, for treatment of facial acne. Upon exam, the patient was noted to have bilateral optic disc edema. The patient discontinued use of topical vitamin A products. Two months later, the patient reported decreased headaches and an improvement in bilateral optic disc edema was seen (95056).
Ocular/Otic ...In children, oral vitamin A approximately 25,000 IU/kg can cause swelling of the optic disk, bulging eyeballs, and visual disturbances (15). Adverse effects from a single ingestion of a large dose of vitamin A are more common in young children than adults (15).
Oncologic ...There is concern that high intake of vitamin A might increase some forms of cancer. Population research suggests high vitamin A intake might increase the risk of gastric carcinoma (9194).
Psychiatric ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity, which can include symptoms that mimic severe depression or schizophrenic disorder (7135).
Pulmonary/Respiratory ...There is some evidence that oral vitamin A supplementation might increase the risk of pneumonia and diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with pneumonia and diarrhea in well-nourished children (319). In preschool children, high-dose vitamin A also increases the risk of respiratory infection (82288).
Other ...Chronic use of large amounts of vitamin A (>25,000 IU daily for more than 6 years or 100,000 IU daily for more than 6 months) can cause symptoms of vitamin A toxicity including mild fever and excessive sweating (7135). High intakes of vitamin A may result in a failure to gain weight normally in children and weight loss in adults (15).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).
General
...Orally, watercress is well-tolerated when consumed in food amounts.
There is limited reliable information available about the adverse effects of watercress when used in medicinal amounts. When excessive doses are used, watercress can cause gastrointestinal irritation (85599). Consuming raw watercress has been associated with the development of fascioliasis, a parasitic fluke disease of the liver (85575,85574,85573,85567,85564,85582,85563,85562,85580,85561,85560)(85554,85558,85596,85579,85571,85569,85583,85586,85584,85588)(85585,85590,85592,85591).
Topically, watercress can cause contact dermatitis (85594,85587).
Dermatologic ...Topically, watercress can cause contact dermatitis, resulting in hives, rash, itching, or swollen skin (85594,85587).
Gastrointestinal ...Orally, large quantities of watercress may cause gastrointestinal irritation (85599).
Hepatic ...Raw, wild watercress can be contaminated with parasitic flukes which, when ingested, cause the liver disease fascioliasis. Symptoms include abdominal pain, fever, vomiting, diarrhea, urticaria, eosinophilia, and hepatomegaly (85575,85574,85573,85567,85564,85582,85563,85562,85580,85561)(85560,85554,85558,85596,85579,85571,85569,85583,85586,85584)(85588,85585,85590,85592,85591). Clinical research shows that taking a standardized extract of watercress orally 750 mg/kg daily for 5 weeks is not associated with increases in liver function enzymes (109666).
Renal ...Orally, excessive or prolonged use of watercress may theoretically cause kidney damage (85598). However, in overweight adults with physical disabilities, taking a watercress extract 750 mg/kg daily for 5 weeks does not cause any change in levels of creatinine or urea (109666).
General
...Orally, some people may be allergic to white mustard (101058).
When taken as medicine, no adverse effects have been reported. However, a thorough safety evaluation has not been conducted. Isothiocyanates, such as those in white mustard, have been linked with endemic goiters (6,11).
Topically, white mustard oil or powder can cause blistering and skin ulceration when left on the skin for an extended period (2,12,18,19). Also, some people are allergic to topical application of white mustard (101057).
Dermatologic ...Topically, white mustard oil or powder can cause blistering and skin ulceration when left on the skin for an extended period (2,12,18,19).
Endocrine ...Orally, isothiocyanates, such as those in white mustard, have been linked with endemic goiters (6,11).
Immunologic ...Orally and topically, white mustard can cause allergic responses (101057,101058). Topically, white mustard can result in allergic contact dermatitis. Symptoms including spreading itching, red, and burning lesions have been observed on the skin of a 48-year-old woman approximately one week after she used a topical Chinese herbal medicine patch consisting of white mustard seed, licorice, ginger, corydalis, and asarabacca. The symptoms continued after discontinuation of the patch. The patient tested positive to white mustard seed in allergen testing. The suspected allergen was 4-(hydroxymethyl) phenol (101057).