Each capsule contains: Pterocarpus marsupium (Indian kino tree, fabaceae family) 195 mg • Gymnema sylvestre (gymnema) 175 mg • Momordica Charantia (bitter melon) 40 mg • Azadirachta Indica (neem) 20 mg • Tinospora cordifolia (heart leaved moonseed) 30 mg • Aegle Marmelos (bael) 40 mg • Syzygium Cumini (jambolan) 50 mg • Cinnamonum Tamala (cinnamon leaf) 20 mg • Trigonella foenum-graecum (fenugreek) 65 mg • Ficus Racemosa (cluster fig) 15 mg.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product AntiBetic Pancreas Tonic. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product AntiBetic Pancreas Tonic. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
There is insufficient reliable information available about the safety of bael.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when the fruit is used orally and appropriately, short-term. Powdered bitter melon fruit 0.5-12 grams daily for up to 4 months has been used (92126,100631,100632,109583). Extracts of bitter melon fruit have also been used safely for up to 3 months (36,15566,106408). There is insufficient reliable information available about long-term use of bitter melon or the safety of bitter melon when used topically.
PREGNANCY: POSSIBLY UNSAFE
when used orally.
Animal research shows that two proteins isolated from the raw fruit of bitter melon possess abortifacient properties (3724,35719,35722,35728). Also, one animal study shows that bitter melon juice significantly reduces the fertility rate of mice (35728). However, these effects of bitter melon have not been assessed in humans.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Fenugreek has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when the seed is used orally in medicinal amounts. Fenugreek seed powder 5-10 grams daily has been used with apparent safety for up to 3 years. Fenugreek seed extract 1 gram daily has been used with apparent safety for up to 3 months (7389,9783,18359,18362,49868,90112,90113,90117,93419,93420)(93421,93422,93423,96065,103285,108704).
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
There is insufficient reliable information available about the safety of fenugreek when used in larger amounts. Unusual body and urine odor has been reported after consumption of fenugreek tea. Although the odor appears to be harmless, it may be misdiagnosed as maple syrup urine disease (9782,96068).
PREGNANCY: LIKELY UNSAFE
when used orally in amounts greater than those found in food.
Fenugreek has potential oxytoxic and uterine stimulant activity (12531). There are case reports of congenital malformations, including hydrocephalus, anencephaly, cleft palate, and spina bifida, after consumption of fenugreek seeds during pregnancy (96068). Consumption of fenugreek immediately prior to delivery may cause the neonate to have unusual body odor. Although this does not appear to cause long-term sequelae, it may be misdiagnosed as maple syrup urine disease (9781,96068).
LACTATION: POSSIBLY SAFE
when used orally to stimulate lactation, short-term.
Although most available clinical studies lack safety testing in the lactating parent or infant (12535,22569,22570), some evidence suggests that taking fenugreek 1725 mg three times daily orally for 21 days does not cause negative side effects in the infant (90115).
POSSIBLY SAFE ...when used orally and appropriately. Gymnema leaf extract has been used safely in doses of 200 mg twice daily for up to 20 months or 300 mg twice daily for 12 weeks (45,46,42604,105346).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Jambolan tea prepared from 2 grams of jambolan leaves per liter of water has been consumed in place of water with apparent safety in clinical research (13092).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when neem bark extract is used orally and appropriately, short-term. Neem bark extract has been used safely in clinical research at doses up to 60 mg daily for up to 10 weeks (12822). ...when neem leaf and twig extract is used orally and appropriately, short-term. Neem leaf and twig extract has been used safely in clinical research at doses up to 500 mg twice daily for up to 12 weeks (104181). ...when neem leaf extract gel is used intraorally for up to 6 weeks (12824,64845,64850,94567). ...when neem oil, cream, or face wash is used topically on the skin for up to 2 weeks (64876,64878,64882,102867,107883).
POSSIBLY UNSAFE ...when neem or neem oil is used orally in large amounts or long-term. Preliminary clinical research suggests neem might be toxic to the kidneys or liver with high-dose or chronic use. Cardiac arrest has also been reported (12835,64870,64873).
CHILDREN: POSSIBLY SAFE
when neem extract is used topically.
It has been used with apparent safety as a shampoo, with one or two total applications (97928).
CHILDREN: LIKELY UNSAFE
when neem oil or seeds are used orally.
There are reports of infants who were severely poisoned and died after oral use of neem (3473,3474,3476,64855,64875).
PREGNANCY: LIKELY UNSAFE
when neem oil or leaf is used orally.
Neem oil and leaf have been used as abortifacients (12825,12835,64884,64889).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when the stem extract is used orally and appropriately, short-term. Tinospora cordifolia aqueous stem extract has been used with apparent safety at a dose of 900 mg daily for up to 8 weeks (15085). Powdered stem extract has also been used with apparent safety at a dose of up to 3 grams daily for up to 2 weeks or a dose of 1500 mg daily for up to 26 weeks (92230,106846,111503). There is insufficient reliable information available about the safety of other parts of Tinospora cordifolia when used orally or when any part of the plant is used topically.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product AntiBetic Pancreas Tonic. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Evidence from animal research suggests that extracts of bael seed and leaf can reduce blood glucose levels (33316,33325). Theoretically, bael might have additive effects with antidiabetes drugs and increase the risk of hypoglycemia. Monitor blood glucose levels closely. Dose adjustments might be necessary.
Details
Some antidiabetes drugs include glimepiride (Amaryl), glyburide (DiaBeta, Glynase PresTab, Micronase), insulin, pioglitazone (Actos), rosiglitazone (Avandia), and others.
|
Bael leaf extract shows acetylcholinesterase (AChE) inhibitory activity in vitro (99296). Theoretically, bael might have additive effects with cholinergic drugs and increase the risk of cholinergic side effects.
Details
Cholinergic drugs include bethanechol (Urecholine), donepezil (Aricept), echothiophate (Phospholine Iodide), edrophonium (Enlon, Reversol, Tensilon), neostigmine (Prostigmin), physostigmine (Antilirium), pyridostigmine (Mestinon, Regonol), succinylcholine (Anectine, Quelicin), and tacrine (Cognex).
|
Bael extract and its constituent marmesinin inhibited cytochrome P450 1A2 (CYP1A2) activity in vitro (99300). So far, this interaction has not been reported in humans. Theoretically, bael might increase levels of drugs metabolized by CYP1A2.
Details
Some drugs metabolized by CYP1A2 include amitriptyline (Elavil), haloperidol (Haldol), ondansetron (Zofran), propranolol (Inderal), theophylline (Theo-Dur, others), verapamil (Calan, Isoptin, others), and others. Use bael cautiously or avoid in patients taking these drugs.
|
Bael and its constituents marmelosin and marmesinin inhibited cytochrome P450 3A4 (CYP3A4) activity in vitro (99300). So far, this interaction has not been reported in humans. Theoretically, bael might increase levels of drugs metabolized by CYP3A4.
Details
Some drugs metabolized by CYP3A4 include lovastatin (Mevacor), ketoconazole (Nizoral), itraconazole (Sporanox), fexofenadine (Allegra), triazolam (Halcion), and numerous others. Use bael cautiously or avoid in patients taking these drugs.
|
Taking bitter melon with antidiabetes drugs might increase the risk of hypoglycemia.
Details
|
Theoretically, bitter melon might increase levels of P-glycoprotein substrates.
Details
Bitter melon might inhibit the p-glycoprotein (P-gp) intestinal pump and increase intracellular levels of P-gp substrates. In vitro research in intestinal cells shows that 1-monopalmitin, a constituent of bitter melon, increases levels of daunomycin, a P-gp substrate (97509). Additionally, drinking bitter melon juice has been associated with a case of acute pancreatitis in a patient who had been taking pazopanib, a P-gp substrate, for 8 years. Researchers theorize that inhibition of P-gp led to increased levels of pazopanib, resulting in pazopanib-induced pancreatitis (109581).
|
Theoretically, bitter melon might increase levels of pazopanib, potentially increasing the risk of adverse effects.
Details
In one case, a 65-year-old patient taking pazopanib for 8 years for renal cell carcinoma experienced signs and symptoms consistent with acute pancreatitis 4 days after drinking bitter melon juice at a dose of 100-150 mL daily. The patient's symptoms, amylase levels, and lipase levels improved upon discontinuation of bitter melon and pazopanib. Pazopanib treatment was re-initiated with no further evidence of pancreatitis. Researchers theorize that inhibition of P-glycoprotein by bitter melon led to increased levels of pazopanib, a P-glycoprotein substrate, resulting in pazopanib-induced pancreatitis (109581).
|
Theoretically, fenugreek might have additive effects when used with anticoagulant or antiplatelet drugs.
Details
Some of the constituents in fenugreek have antiplatelet effects in animal and in vitro research. However, common fenugreek products might not contain sufficient concentrations of these constituents for clinical effects. A clinical study in patients with coronary artery disease or diabetes shows that taking fenugreek seed powder 2.5 grams twice daily for 3 months does not affect platelet aggregation, fibrinolytic activity, or fibrinogen levels (5191,7389,49643).
|
Theoretically, fenugreek seed might have additive hypoglycemic effects when used with antidiabetes drugs.
Details
|
Theoretically, fenugreek seed might alter the clinical effects of clopidogrel by inhibiting its conversion to the active form.
Details
Animal research shows that fenugreek seed 200 mg/kg daily for 14 days increases the maximum serum concentration of clopidogrel by 21%. It is unclear how this affects the pharmacokinetics of the active metabolite of clopidogrel; however, this study found that concomitant use of fenugreek seed and clopidogrel prolonged bleeding time by an additional 11% (108701).
|
Theoretically, fenugreek seed might have additive hypotensive effects when used with metoprolol.
Details
Animal research shows that fenugreek seed 300 mg/kg daily for 2 weeks decreases systolic and diastolic blood pressure by 9% and 11%, respectively, when administered alone, and by 15% and 22%, respectively, when given with metoprolol 10 mg/kg (108703).
|
Theoretically, fenugreek might decrease plasma levels of phenytoin.
Details
Animal research shows that taking fenugreek seeds for 1 week decreases maximum concentrations and the area under the curve of a single dose of phenytoin by 44% and 72%, respectively. This seems to be related to increased clearance (110905). So far, this interaction has not been reported in humans.
|
Theoretically, concurrent use of sildenafil and fenugreek might reduce levels and therapeutic effects of sildenafil.
Details
Animal research shows that taking fenugreek seeds for 1 week reduces maximum concentrations and the area under the curve of a single dose of sildenafil by 27% and 48%, respectively (110898). So far, this interaction has not been reported in humans.
|
Theoretically, fenugreek may reduce the levels and clinical effects of theophylline.
Details
Animal research shows that fenugreek 50 grams daily for 7 days reduces the maximum serum concentration (Cmax) of theophylline by 28% and the area under the plasma drug concentration-time curve (AUC) by 22% (90118).
|
Theoretically, fenugreek might have additive effects with warfarin and increase the international normalized ratio (INR).
Details
|
Theoretically, taking gymnema with antidiabetes drugs might increase the risk of hypoglycemia.
Details
Gymnema reduces blood glucose levels in some human and animal research. In human studies, it has been shown to enhance the blood glucose lowering effects of hypoglycemic drugs (45,46,92119,92121,92123). However, other research in adults with prediabetes or metabolic syndrome suggests that gymnema does not reduce fasting levels of blood glucose (96235,105346). Until more is known, monitor blood glucose levels closely.
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP1A2.
Details
Animal and in vitro research shows that gymnema can inhibit the CYP1A2 enzyme (96236,96237,96238). In one animal study, oral administration of gymnema for 7 days increased the plasma concentrations of phenacetin, a CYP1A2 substrate, by about 1.4-fold and reduced the clearance of phenacetin by about 29% (96237).
|
Theoretically, gymnema might increase or decrease levels of drugs metabolized by CYP2C9.
Details
|
Theoretically, gymnema might increase levels of drugs metabolized by CYP3A4.
Details
One in vitro study using rat liver microsomes shows that gymnema can modestly inhibit the CYP3A4 enzyme (96238). However, other in vitro research using human liver microsomes shows that gymnema does not affect CYP3A4 activity (96236). Animal research also shows that gymnema does not alter the function of CYP3A4. In one study in rats, oral administration of gymnema for 7 days did not alter the clearance of amlodipine, a CYP3A4 substrate (96237).
|
Theoretically, taking gymnema with phenacetin might increase the levels of phenacetin.
Details
|
Theoretically, taking gymnema with tolbutamide might the decrease levels of tolbutamide.
Details
Animal research shows that gymnema, administered orally for 7 days, increases the clearance of tolbutamide by 2.4-fold when compared to control (96237).
|
Animal research shows that jambolan seed and bark extracts can lower blood glucose levels (13599,13600,13601,104282). Theoretically, jambolan might have additive effects when used with antidiabetes drugs. This might increase the risk of hypoglycemia in some patients. Monitor blood glucose levels closely.
|
There is some in vitro evidence that jambolan can inhibit CYP2C9 (99067). Theoretically, concomitant use of jambolan with CYP2C9 substrates may increase levels of drugs metabolized by CYP2C9.
|
Animal research shows that jambolan seed extract reduces the sitagliptin maximum plasma concentration and area under the curve by 39% and 22%, respectively. However, blood glucose levels were actually reduced to a greater extent in mice taking jambolan and sitagliptin in combination when compared with either product taken alone (104282). Theoretically, jambolan seed extract might alter the clearance of sitagliptin, although this may not alter the clinical effects of sitagliptin.
|
Neem might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP2C8 substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits CYP2C8 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP2C9 substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits CYP2C9 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem leaf extract might increase the levels and clinical effects of CYP3A4 substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits CYP3A4 enzymes (111593). So far, this reaction has not been reported in humans.
|
Theoretically, neem might decrease the effectiveness of immunosuppressants.
Details
Animal research suggests that neem might have immunostimulant effects (12825).
|
Theoretically, neem leaf extract might increase the levels and clinical effects of P-glycoprotein substrates.
Details
In vitro research shows that neem leaf methanol extract inhibits renal P-glycoprotein transport activity (107850). So far, this reaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Details
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP1A2.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP1A2 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2C19.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP2C19 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2C9.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP2C9. Animal research shows that Tinospora cordifolia extract 400 mg/kg twice daily for 14 days reduces the clearance and increases plasma levels of glyburide, a CYP2C9 substrate (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might increase levels of drugs metabolized by CYP2D6.
Details
In vitro research shows that Tinospora cordifolia extract inhibits CYP2D6 at high concentrations (98225). However, this interaction has not been reported in humans.
|
Theoretically, Tinospora cordifolia might reduce the effectiveness of immunosuppressants.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product AntiBetic Pancreas Tonic. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, bitter melon is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal discomfort, constipation, diarrhea, dizziness, fatigue, flatulence, headache, heartburn, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Hypoglycemic coma and seizures (in children).
Dermatologic ...In one clinical study, two out of 31 patients taking bitter melon 4 grams daily experienced skin rash. Reports of skin rashes did not occur for patients taking bitter melon 2 grams daily (92126).
Endocrine ...Two cases of hypoglycemic coma have occurred in children after administration of a bitter melon tea (15568).
Gastrointestinal ...The most common adverse effects associated with bitter melon in clinical studies are gastrointestinal, such as heartburn, anorexia, nausea, vomiting, diarrhea, constipation, flatulence, and abdominal discomfort (92126,100632,100633,106408). In one study, these events occurred in about 3% to 16% of patients taking bitter melon (92126).
Neurologic/CNS ...Headaches, dizziness, and fatigue have been reported after the ingestion of bitter melon (15568,92126,100633,112372). In one clinical study, about 5% of patients taking bitter melon 2-4 grams daily reported dizziness (92126). Two cases of seizures have occurred in children after administration of a bitter melon tea (15568).
Renal ...In one case report, a 60-year-old female was diagnosed with acute interstitial nephritis after a gradual decline in renal function over 9 months. The patient later admitted to taking bitter melon extract 600 mg daily for 3 months followed by 1200 mg daily for 4 months for diabetes. Upon discontinuation of bitter melon and treatment with prednisolone, serum creatinine levels returned to baseline within 3 months (109582).
General
...Orally, fenugreek seed is generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, bloating, diarrhea, dyspepsia, flatulence, hypoglycemia, and nausea.
Serious Adverse Effects (Rare):
All ROA: Severe allergic reactions including angioedema, bronchospasm, and shock.
Endocrine ...Orally, large doses of fenugreek seed, 100 grams daily of defatted powder, have caused hypoglycemia (164,96068).
Gastrointestinal ...Orally, fenugreek seed can cause mild gastrointestinal symptoms, such as diarrhea, dyspepsia, abdominal distention and pain, nausea, and flatulence, especially when taken on an empty stomach (622,12534,18349,93421,96065,96068,105016).
Immunologic ...Fenugreek can cause allergic reactions when used orally and topically, and when the powder is inhaled (719,96068). Orally, fenugreek has caused bronchospasm, diarrhea, and itching, and skin reactions severe enough to require intravenous human immunoglobulin (96068). Topically, fenugreek paste has resulted in facial swelling, wheezing, and numbness around the head (719,96068). When used both orally and topically by a single individual, asthma and rhinitis occurred (96068). Inhalation of fenugreek powder has resulted in fainting, sneezing, runny nose, and eye tearing (719,96068).
Neurologic/CNS ...Orally, loss of consciousness has occurred in a 5 week-old infant drinking tea made from fenugreek (9782). Dizziness and headaches have been reported in clinical research of fenugreek extract (49551,93419). However, these events are rare.
Renal ...Orally, fenugreek aqueous see extract may increase the frequency of micturition, although this even appears to be rare (49551).
Other
...Consumption of fenugreek during pregnancy, immediately prior to delivery, may cause the neonate to have an unusual body odor, which may be confused with maple syrup urine disease.
It does not appear to cause long-term sequelae (9781). This unusual body odor may also occur in children drinking fenugreek tea. A case of a specific urine and sweat smell following oral fenugreek extract use has been reported for a patient in one clinical trial (18349).
In 2011, outbreaks of enteroaggregative hemorrhagic Escherichia coli (EATEC) O104:H4 infection occurred in Germany and Spain. Epidemiological studies linked the outbreaks to fenugreek seeds that had been imported from Africa. However, laboratory analyses were unable to isolate the causative strain of bacteria from fenugreek seed samples (49776,49777,49781,90114).
General ...Orally, gymnema seems to be well tolerated.
Hepatic ...A case of drug-induced hepatitis characterized by weakness, fatigue, jaundice, and elevated liver enzymes, has been reported for a patient who consumed gymnema tea three times daily for 10 days. The patient was administered prednisone 60 mg once daily and was eventually tapered off prednisone and discharged. Laboratory values normalized after 6 months (95005). A case of hepatitis-associated aplastic anemia characterized by jaundice, elevated liver function tests, and pancytopenia has been reported for a patient who consumed gymnema 2 grams twice daily for at least a month. Treatment with ursodeoxycholic acid for 8 weeks led to resolution of cholestatic hepatitis; however, the pancytopenia was not responsive to treatment with immunosuppressive drugs and the patient died 5 months after presentation (110021). The exact reason for these adverse effects is not clear; they may have been idiosyncratic.
General ...No adverse effects have been reported; however, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, neem extracts seem to be well tolerated in adults.
However, high-quality assessment of safety has not been conducted. In children, oral use of neem oil can cause serious adverse effects. Topically, neem seems to be well tolerated in children and adults.
Most Common Adverse Effects:
Topically: Contact dermatitis in sensitive individuals.
Serious Adverse Effects (Rare):
Orally: Cardiac arrest, nephrotoxicity, and ventricular fibrillation with neem leaf in adults. Encephalopathy, hematologic abnormalities, hepatotoxicity, and nephrotoxicity with neem oil in infants and young children.
Cardiovascular ...Orally, neem leaf has been reported to cause ventricular fibrillation and cardiac arrest after ingestion in humans (64873,64870).
Dental ...Topically, use of neem twigs to brush teeth, which is a traditional dental hygiene practice in India, has been associated with vitiligo of the lips. The limonoid constituents in neem, which have been shown to inhibit melanogenesis and have cytotoxic effects, combined with repeated, local trauma from this dental hygiene practice are thought to cause this leucodermic reaction. In a case series of seven patients experiencing vitiligo of the lips from neem twigs, use of toothpaste and topical tacrolimus along with avoidance of neem stopped the progression of depigmentation in all patients. Repigmentation was reported in four of the seven patients 12 months after discontinuing neem-based dental hygiene practices (100958).
Dermatologic ...Topically, neem products have been associated with dermatologic reactions. Some case reports have associated the use of topical neem oil with contact dermatitis (64851,94568,102867). In one case series, the topical application of neem seed extract shampoo was associated with skin irritation, red spots, and a burning feeling of the scalp (64848). Use of neem twigs to brush teeth, which is a traditional dental hygiene practice in India, has been associated with vitiligo of the lips. The limonoid constituents in neem, which have been shown to inhibit melanogenesis and have cytotoxic effects, combined with repeated, local trauma from this dental hygiene practice are thought to cause this leucodermic reaction. In a case series of seven patients experiencing vitiligo of the lips from neem twigs, use of toothpaste and topical tacrolimus along with avoidance of neem stopped the progression of depigmentation in all patients. Repigmentation was reported in four of the seven patients 12 months after discontinuing neem-based dental hygiene practices (100958).
Gastrointestinal ...Orally, neem oil has been reported to cause vomiting and loose stools in infants and small children (3473,3474,3476,64865).
Genitourinary ...Orally, neem leaf has been reported to cause oliguria and anuria in adults (12833,12834). After a single intrauterine instillation, purified neem oil has been reported to cause endometritis in healthy, tubectomised females (64886).
Hematologic
...Orally, neem leaf has been reported to cause hemolysis in adults (12835).
In one case report, a 35-year-old male with diabetes and glucose-6-phosphate dehydrogenase (G6PD) deficiency developed hemolytic anemia and jaundice after drinking several liters of neem tea daily for 3 weeks. All symptoms resolved after discontinuation and supportive treatment (94571). Orally, neem oil has been reported to cause metabolic acidosis, anemia, and polymorphonuclear leukocytosis in infants and young children (3473,3474,3476,64865).
A single intrauterine instillation of purified neem oil has been reported to cause mild transient eosinophilia in healthy, tubectomised females (64886).
Hepatic ...Orally, neem oil has been associated with reports of hepatotoxicity in infants and children. These adverse effects occurred after single doses of neem oil ranging from a few drops to 60 mL. Pathologic findings on liver biopsy reports have been consistent with Reye-like syndrome (3473,3474,3475).
Immunologic ...Topically, a case of aggravated bullous pemphigoid requiring hospitalization is reported in a 47-year-old patient with this autoimmune condition after application of neem oil to blisters for an unknown duration (111715).
Neurologic/CNS ...Orally, single doses of neem oil ranging from a few drops to 60 mL have been associated with reports of encephalopathy in infants and small children. Symptoms include drowsiness, seizure, loss of consciousness, coma, cerebral edema, Reye-like syndrome, and death within hours of ingestion (3473,3474,3476,3476,64855,94750). There is also at least one case report of neurotoxicity in an adult after ingestion of a neem-based pesticide. A 35-year-old female experienced neurotoxicity requiring intensive medical care and ventilation after ingestion of a pesticide containing azadirachtin, a constituent of neem oil (64858).
Ocular/Otic ...In one case report, a 35-year-old female developed toxic optic neuropathy and vision loss in both eyes lasting for two days after consuming 150 mL of neem oil in a suicide attempt five days earlier (64856).
Renal ...Orally, neem leaf has been reported to cause oliguria, anuria, acute tubular necrosis, and nephrotoxicity in adults (12833,12834). There are some case reports of children developing Reye-like syndrome after ingestion of neem oil. Pathologic findings on renal biopsy reports have been consistent with Reye syndrome (3473,3474,3475).
General
...Orally, Tinospora cordifolia seems to be well tolerated.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Headache and nasal pain.
Topically: Burning, erythema, and pruritus.
Serious Adverse Effects (Rare):
Orally: Liver injury has been reported.
Dermatologic ...Topically, Tinospora cordifolia has been reported to cause pruritus, erythema, and burning (92220).
Hepatic
...Orally, liver injury is reported after consumption of Tinospora cordifolia.
In 2 case series, autoimmune hepatitis, acute hepatitis, worsening of chronic liver disease, or acute liver failure is reported in 49 patients after consuming various forms and doses of Tinospora cordifolia alone or in combination with other ingredients for a median of 42-90 days. Of these patients, 2 required a liver transplant and 4 died (110533,110534).
Liver injury is also reported in patients taking combination supplements containing Tinospora cordifolia. One case reports a 50-year-old female who presented with a 2-week history of constant right upper quadrant abdominal pain, nausea, loss of appetite, and fatigue, along with severely elevated alanine transaminase (ALT) and aspartate aminotransferase (AST), after taking a specific combination product containing Tinospora cordifolia 900 mg, stinging nettle 600 mg, and quercetin 600 mg (HistaEze) daily for 4 to 5 weeks (112404). Another case reports a 54-year-old female who developed acute hepatitis with elevated ALT, AST, alkaline phosphatase, gamma-glutamyl transferase, and bilirubin after consuming a multi-ingredient product containing approximately 1900 mg of Tinospora cordifolia and 11 other Ayurvedic herbals daily for 2.5 months (112405). In both cases, liver function returned to normal within 3 months of discontinuing the supplement (112404,112405). It is unclear whether the liver injury in these cases is due to Tinospora cordifolia, other ingredients, or the combination.
Neurologic/CNS ...Orally, Tinospora cordifolia has been reported to cause headache in a clinical trial (15085).
Pulmonary/Respiratory ...Orally, Tinospora cordifolia extract has been reported to cause nasal pain in a clinical trial (15085).