Each tablet contains: Choline Bitartrate 250 mg • L-Glutamine 250 mg • L-Serine 120 mg • Cola Nut extract (cola acuminata, containing 10% caffeine) 100 mg • RNA Complex 60 mg • Gotu Kola leaf 5:1 extract (centella asiatica) 50 mg • Soy Lecithin 50 mg, containing: Phosphatidylcholine 13 mg, Phosphatidylethanolamine 10 mg, Phosphatidylinositol 7 mg • L-Phenylalanine 50 mg • Ginkgo biloba leaf 24:1 extract 40 mg • Phosphatidylserine (soy) 10 mg • Pregnenolone 10 mg. Other Ingredients: Dextrose, Cellulose, Stearic Acid, Sodium Starch Glycolate, Silicon Dioxide, Magnesium Stearate, Ethylcellulose.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
This product has been discontinued by the manufacturer.
This product has been discontinued by the manufacturer.
Below is general information about the effectiveness of the known ingredients contained in the product Vitaline Sharper Focus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Vitaline Sharper Focus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Choline is safe in adults when taken in doses below the tolerable upper intake level (UL) of 3.5 grams daily (3094) ...when used intravenously and appropriately. Intravenous choline 1-4 grams daily for up to 24 weeks has been used with apparent safety (5173,5174).
POSSIBLY UNSAFE ...when used orally in doses above the tolerable upper intake level (UL) of 3. 5 grams daily. Higher doses can increase the risk of adverse effects (3094).
CHILDREN: LIKELY SAFE
when used orally and appropriately (3094).
Choline is safe in children when taken in doses below the tolerable upper intake level (UL), which is 1 gram daily for children 1-8 years of age, 2 grams daily for children 9-13 years of age, and 3 grams daily for children 14-18 years of age (3094).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL.
High doses can increase the risk of adverse effects (3094).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Choline is safe when taken in doses below the tolerable upper intake level (UL), which is 3 grams daily during pregnancy and lactation in those up to 18 years of age and 3.5 grams daily for those 19 years and older (3094,92114). There is insufficient reliable information available about the safety of choline used in higher doses during pregnancy and lactation.
LIKELY SAFE ...when used in amounts commonly found in foods. Cola nut extract has Generally Recognized As Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately, short-term. Cola nut has been used with apparent safety for up to 12 weeks (12811).
POSSIBLY UNSAFE ...when used orally, long-term, or in large amounts. Chewing cola nut is associated with an increased risk of mouth cancer and gastrointestinal cancer (11963). Cola nut also contains caffeine. Chronic use of caffeine, especially in large amounts, can sometimes produce tolerance, habituation, and psychological dependence (3719). Acute use of high doses, typically above 400 mg daily, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Abrupt discontinuance of caffeine can cause physical withdrawal symptoms (11733). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as cola nut, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY SAFE
when used orally in amounts found in foods.
Due to the caffeine content of cola nut, pregnant patients should closely monitor their intake to ensure moderate consumption. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015). In some studies, consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume caffeine in doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 3 cups of coffee or tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as cola nut, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY UNSAFE
when caffeine, a constituent of cola nut, is used orally in amounts over 300 mg daily.
Caffeine crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Advise keeping caffeine consumption from all sources below 300 mg daily (2708). High doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,91033,91048,95949). Keep in mind that only the amount of added caffeine must be stated on product labels. The amount of caffeine found in ingredients such as cola nut, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. In a study that included 2 large cohorts of mother/infant pairs, the first cohort with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, suggests birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg, respectively. In the second cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
LACTATION: POSSIBLY SAFE
when used orally in amounts found in foods.
Due to the caffeine content of cola nut, caffeine intake should be closely monitored while nursing. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations. Minimal consumption would likely result in limited exposure to a nursing infant (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of cola nut might cause sleep disturbances, irritability, and increased bowel activity in nursing infants due to its caffeine content (6026). Large doses or excessive intake of cola nut should be avoided during lactation. It is unknown whether potentially carcinogenic constituents of cola nut are transferred via breast milk.
LIKELY SAFE ...when used orally and appropriately. Standardized ginkgo leaf extracts have been used safely in trials lasting for several weeks up to 6 years (1514,1515,3461,5717,5718,6211,6212,6213,6214,6215)(6216,6222,6223,6224,6225,6490,14383,14499,16634,16635)(16636,16637,17402,17716,17718,87794,87819,87826,87848,87864)(87888,87897,87901,87904,89701,89707,107359,107360). There have been some reports of arrhythmias associated with ginkgo leaf extract. However, it is not yet clear if ginkgo might cause arrhythmia (105253,105254). There is some concern about toxic and carcinogenic effects seen in animals exposed to a ginkgo leaf extract containing 31.2% flavonoids, 15.4% terpenoids, and 10.45 ppm ginkgolic acid, in doses of 100 to 2000 mg/kg five times per week for 2 years (18272). However, the clinical relevance of this data for humans, using typical doses, is unclear. The content of the extract used is not identical to that commonly used in supplement products, and the doses studied are much higher than those typically used by humans. A single dose of 50 mg/kg in rats is estimated to be equivalent to a single dose of about 240 mg in humans (18272).
POSSIBLY SAFE ...when used intravenously, short-term. A standardized ginkgo leaf extract called EGb 761 ONC has been safely administered intravenously for up to 14 days (9871,9872,107360,107452). A Chinese preparation containing ginkgo leaf extract and dipyridamole has been safely administered intravenously for up to 30 days (102881,102882). ...when applied topically, short-term. There was no dermal irritation during a 24-hour patch test using the leaf extract, and no sensitization with repeat applications (112946). When used topically in cosmetics, extracts of ginkgo leaves are reported to be safe, but there is insufficient data to determine the safety of nut and root extracts, and isolated biflavones and terpenoids (112946).
POSSIBLY UNSAFE ...when the roasted seed or crude ginkgo plant is used orally. Consuming more than 10 roasted seeds per day can cause difficulty breathing, weak pulse, seizures, loss of consciousness, and shock (8231,8232). Crude ginkgo plant parts can exceed concentrations of 5 ppm of the toxic ginkgolic acid constituents and can cause severe allergic reactions (5714).
LIKELY UNSAFE ...when the fresh ginkgo seed is used orally. Fresh seeds are toxic and potentially deadly (11296).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is concern that ginkgo might have labor-inducing and hormonal effects. There is also concern that the antiplatelet effects of ginkgo could prolong bleeding time if taken around the time of labor and delivery (15052). Theoretically, ginkgo might adversely affect pregnancy outcome; avoid using during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (87790,89708).
A specific ginkgo dried extract (Ginko T.D., Tolidaru Pharmaceuticals), has been safely used in doses of 80-120 mg daily for 6 weeks in children aged 6-14 years (17112,95669). Another specific combination product containing ginkgo leaf extract and American ginseng extract (AD-FX, CV Technologies, Canada) has also been safely used in children aged 3-17 years for up to 4 weeks (8235).
CHILDREN: LIKELY UNSAFE
when ginkgo seed is used orally.
The fresh seeds have caused seizures and death in children (8231,11296).
LIKELY SAFE ...when used orally and appropriately. Glutamine has been safely used in clinical research in doses up to 40 grams per day or 1 gram/kg daily (2334,2337,2338,2365,5029,5462,7233,7288,7293), (52288,52307,52308,52311,52313,52337,52349,52350,96516,97366). A specific glutamine product (Endari) is approved by the US Food and Drug Administration (FDA) (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 600 mg/kg daily in clinical trials (2363,2366,5448,5452,5453,5454,5458,7293,52272,52275), (52283,52289,52304,52306,52316,52341), (52359,52360,52371,52377,52381,52284,52385,52408,96637,96507,96516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Glutamine has been shown to be safe in clinical research when used in amounts that do not exceed 0.7 grams/kg daily in children 1-18 years old (11364,46657,52321,52323,52363,86095,96517). A specific glutamine product (Endari) is approved by the US Food and Drug Administration for certain patients 5 years of age and older (96520). ...when used intravenously. Glutamine has been safely incorporated into parenteral nutrition in doses up to 0.4 grams/kg daily in clinical research (52338,96508). There is insufficient reliable information available about the safety of glutamine when used in larger amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in foods.
There is insufficient reliable information available about the safety of glutamine when used in larger amounts as medicine during pregnancy or lactation.
POSSIBLY SAFE ...when used topically and appropriately. Gotu kola has been used safely in a cream or ointment for up to 10 weeks (11072,11073,67372,102792,105329,105335). An emulsion containing gotu kola extract 3% and other ingredients has been applied safely to the skin twice daily for up to 60 days (111571). ...when used orally and appropriately. Gotu kola extract has been used with apparent safety in doses of up to 180 mg daily for up to 12 months or 1000 mg daily for 60 days. Dried gotu kola has been used with apparent safety in doses of up to 2200 mg daily for 4 weeks (6887,11062,11063,11064,11065,11066,11067,11068,11069,11070)(11071,99756,99757,99758,105329,105332,105333). A specific gotu kola extract (Centellicum, Horphag Research Ltd) 450-675 mg daily has been used with apparent safety for up to 6 weeks (99756,99757).
PREGNANCY: POSSIBLY SAFE
when used topically and appropriately (11073,13559).
There is insufficient reliable information available about the safety gotu kola when used orally during pregnancy; avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Lecithin has Generally Recognized As Safe (GRAS) status in the US (2619,105544). ...when used orally and appropriately in medicinal amounts. Lecithin has been used safely in doses of up to 30 grams daily for up to 6 weeks (5140,5149,5152,5156,14817,14822,14838,19212). ...when used topically (4914).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts.
Lecithin has Generally Recognized As Safe (GRAS) status in the US (105544). There is insufficient reliable information available about the safety of medicinal amounts of lecithin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when L-phenylalanine is consumed in amounts typically found in foods (11120).
POSSIBLY SAFE ...when L-phenylalanine is used orally in doses up to 100 mg/kg daily for up to 3 months (2463,2464,2466,2467,2469). ...when D-phenylalanine is used orally in doses up to 1 gram daily for up to 4 weeks, or as a single dose of 4-10 grams (2455,2456,2459,68795,104792). ...when DL-phenylalanine is used orally in doses up to 200 mg daily for up to 4 weeks (2468,68795,68825). ...when phenylalanine cream is applied topically, short-term (2461,92704).
PREGNANCY: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with normal phenylalanine metabolism (2020,11120).
PREGNANCY: UNSAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with high serum phenylalanine concentrations, such as those with phenylketonuria (PKU).
Serum levels of phenylalanine greater than 360 micromol/L increase the risk of birth defects (1402,11468). Experts recommend that patients with high phenylalanine serum concentrations follow a low phenylalanine diet for at least 20 weeks prior to conception to decrease the risk for birth defects (1402).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in large doses during pregnancy; avoid using.
There is insufficient reliable information available about the safety of oral D-phenylalanine during pregnancy; avoid using.
LACTATION: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by breast-feeding patients with normal phenylalanine metabolism (2020,11120).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in medicinal amounts during lactation; avoid using. There is insufficient reliable information available about the safety of oral D-phenylalanine during lactation; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Large doses up to 30 grams per day for 6 weeks (5223) and smaller doses of up to 6 grams daily for up to 24 months have been well tolerated (68839,68843,105728). ...when used subcutaneously and appropriately, short-term. Some research suggests that subcutaneous injections of 0.2 mL to 5 mL of a 5% phosphatidylcholine solution do not cause significant serious adverse effects when doses are administered up to five times and spaced apart by 2-4 weeks (15621,15623,15624,15625). ...when used topically as an emulsion also containing niacinamide for up to 12 weeks (93388).
PREGNANCY: POSSIBLY SAFE
when used orally from 18 weeks of gestation at doses of up to 5 grams daily (93386)
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Phosphatidylserine has been used with apparent safety at dose of up to 300 mg daily for up to 6 months (2255,2437,2438,2439,2440,2441,7118,15539,68855).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (7117).
Phosphatidylserine has been used with apparent safety in clinical research in doses of 200-300 mg daily for up to 4 months in children aged 4-18 years (7117,89498).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Pregnenolone has been used safely for up to 12 weeks, with doses titrated up to 500 mg daily (94026,94027,97923,104274). There is insufficient reliable information available about the safety of pregnenolone when used long-term.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
Pregnenolone has been used safely for up to 10 weeks at doses of 200 mg daily in adolescents aged 11-17 years (104275). There is insufficient reliable information available about the safety of pregnenolone in younger children or when used orally for longer durations.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when RNA and DNA are consumed in food. ...when RNA is used in enteral nutrition along with omega-3 fatty acids and L-arginine (5531,5533,5534,5535,5536,7819).
POSSIBLY SAFE ...when RNA is injected subcutaneously (5538) . ..when nucleotides are used sublingually at doses of up to 50 mg daily for up to 14 days (100724,100727). There is insufficient reliable information available about the safety of RNA/DNA supplement combinations.
CHILDREN: LIKELY SAFE
when infant formulas contain nucleotide supplements (5900).
Infant formulas containing RNA or DNA at a dose of up 72 mg/L for up to the first 12 months of life have been used with apparent safety (100729,100730,100731).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally as supplements.
Some evidence suggests some orally ingested DNA might cross the placenta and be mutagenic (5539).
LIKELY SAFE ...when L-serine is used orally in food amounts. Average dietary consumption of L-serine from combined food and supplemental sources ranges from 3.5-8 grams daily (91405).
POSSIBLY SAFE ...when used orally in medicinal amounts. D-serine 30 mg/kg (about 2 grams) orally daily for 6-16 weeks or 60 mg/kg (about 4 grams) daily for 4 weeks has been used with apparent safety (102202,102206,102214,102215,102237). L-serine up to 400 mg/kg (about 25 grams) daily for up to 1 year has been used with apparent safety (102204,102220,108550).
POSSIBLY UNSAFE ...when used orally in large doses. L-serine in doses greater than 400 mg/kg (about 25 grams) daily has caused reversible side effects including nausea, vomiting, nystagmus, and seizures (102204). D-serine 120 mg/kg (about 8 grams) or more daily might increase the risk of nephrotoxicity (102215).
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Animal research in lactating mice shows that dietary L-serine transfers to milk and increases free L-serine while decreasing glutamic acid, L-alanine, D-alanine, and taurine levels in milk. However, this does not affect serine levels in the offspring (102228). It is unknown what effect supplemental serine may have in humans. Avoid using in amounts greater than those found in food.
Below is general information about the interactions of the known ingredients contained in the product Vitaline Sharper Focus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, choline might decrease the effects of atropine in the brain.
Details
Animal research shows that administering choline one hour before administering atropine can attenuate atropine-induced decreases in brain levels of acetylcholine (42240). Theoretically, concomitant use of choline and atropine may decrease the effects of atropine.
|
Theoretically, cola nut might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Details
Cola nut contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products (including cola nut) be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Concomitant use of alcohol and caffeine can increase caffeine serum concentrations and the risk of caffeine adverse effects. Alcohol reduces caffeine metabolism (6370).
|
Theoretically, cola nut may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Details
|
Theoretically, taking cola nut with antidiabetes drugs might interfere with blood glucose control.
Details
|
Theoretically, the caffeine in cola nut might increase the clinical effects of beta-adrenergic agonists.
Details
Cola nut contains caffeine. Theoretically, concomitant use of large amounts of caffeine might increase the cardiac inotropic effects of beta-agonists (15).
|
Theoretically, cola nut might reduce the effects of carbamazepine and increase the risk for convulsions.
Details
Cola nut contains caffeine. Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the effects and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Cimetidine decreases the rate of caffeine clearance by 31% to 42% (11736).
|
Theoretically, cola nut might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Details
Cola nut contains caffeine. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, contraceptive drugs might increase the effects and adverse effects of the caffeine in cola nut.
Details
|
Theoretically, CYP1A2 inhibitors might increase the levels and adverse effects of the caffeine in cola nut.
Details
|
Theoretically, cola nut might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Details
Cola nut contains caffeine. Caffeine may inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products, such as cola nut, be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole than with adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. In human research, disulfiram decreases the rate of caffeine clearance (11840).
|
Theoretically, using cola nut with diuretic drugs might increase the risk of hypokalemia.
Details
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Details
|
Theoretically, estrogens might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, cola nut might reduce the effects of ethosuximide and increase the risk for convulsions.
Details
Cola nut contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans
|
Theoretically, cola nut might reduce the effects of felbamate and increase the risk for convulsions.
Details
Cola nut contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, cola nut might increase the levels and adverse effects of flutamide.
Details
Cola nut contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). This effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, abrupt cola nut withdrawal might increase the levels and adverse effects of lithium.
Details
|
Theoretically, metformin might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571).
|
Theoretically, methoxsalen might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Methoxsalen can reduce caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of the caffeine in cola nut.
Details
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Details
Cola nut contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Details
Cola nut contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, cola nut might decrease the effects of pentobarbital.
Details
Cola nut contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, cola nut might reduce the effects of phenobarbital and increase the risk for convulsions.
Details
|
Theoretically, phenothiazines might increase the levels and adverse effects of the caffeine in cola nut.
Details
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of the caffeine in cola nut.
Details
|
Theoretically, cola nut might reduce the effects of phenytoin and increase the risk for convulsions.
Details
|
Theoretically, cola nut might increase the levels and clinical effects of pioglitazone.
Details
Cola nut contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of the caffeine in cola nut.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Details
Cola nut contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2, and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Details
Cola nut contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. Terbinafine decreases the rate of intravenous caffeine clearance by 19% (11740).
|
Theoretically, cola nut might increase the levels and adverse effects of theophylline.
Details
Cola nut contains caffeine. Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, cola nut might increase the levels and adverse effects of tiagabine.
Details
Cola nut contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of the caffeine in cola nut.
Details
Cola nut contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, cola nut might reduce the effects of valproate and increase the risk for convulsions.
Details
|
Theoretically, concomitant use might increase the levels and adverse effects of both verapamil and caffeine.
Details
Cola nut contains caffeine. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, ginkgo might decrease the levels and clinical effects of alprazolam.
Details
In clinical research, ginkgo extract (Ginkgold) 120 mg twice daily seems to decrease alprazolam levels by about 17%. However, ginkgo does not appear to decrease the elimination half-life of alprazolam. This suggests that ginkgo is more likely to decrease absorption of alprazolam rather than induce hepatic metabolism of alprazolam (11029).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin. Theoretically, ginkgo might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs.
Details
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,578,579,8581,13002,13135,13179,13194,14456,87868). However, population and clinical studies have produced mixed results. Some evidence shows that short-term use of ginkgo leaf does not significantly reduce platelet aggregation and blood clotting (87732). A study in healthy males who took a specific ginkgo leaf extract (EGb 761) 160 mg twice daily for 7 days found no change in prothrombin time (12114). An analysis of a large medical record database suggests that ginkgo increases the risk of a bleeding adverse event by 38% when taken concurrently with warfarin (91326). It has been suggested that ginkgo has to be taken for at least 2-3 weeks to have a significant effect on platelet aggregation (14811). However, a meta-analysis of 18 studies using standardized ginkgo extracts, 80-480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). In addition, a single dose of ginkgo plus clopidogrel (14811) or ticlopidine does not seem to significantly increase bleeding time or platelet aggregation (17111,87846). Also, taking ginkgo leaf extract daily for 8 days in conjunction with rivaroxaban does not affect anti-factor Xa activity; however, this study did not evaluate bleeding time (109526).
|
Theoretically, ginkgo might reduce the effectiveness of anticonvulsants.
Details
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090).
|
Theoretically, taking ginkgo with antidiabetes drugs might alter the response to antidiabetes drugs.
Details
Ginkgo leaf extract seems to alter insulin secretion and metabolism, and might affect blood glucose levels in people with type 2 diabetes (5719,14448,103574). The effect of ginkgo seems to differ depending on the insulin and treatment status of the patient. In diet-controlled diabetes patients with hyperinsulinemia, taking ginkgo does not seem to significantly affect insulin or blood glucose levels. In patients with hyperinsulinemia who are treated with oral hypoglycemic agents, taking ginkgo seems to decrease insulin levels and increase blood glucose following an oral glucose tolerance test. Researchers speculate that this could be due to ginkgo-enhanced hepatic metabolism of insulin. In patients with pancreatic exhaustion, taking ginkgo seems to stimulate pancreatic beta-cells, resulting in increased insulin and C-peptide levels, but with no significant change in blood glucose levels in response to an oral glucose tolerance test (14448).
|
Theoretically, ginkgo might decrease the levels and clinical effects of atorvastatin.
Details
In humans, intake of ginkgo extract appears to increase atorvastatin clearance, reducing the area under the curve of atorvastatin by 10% to 14% and the maximum concentration by 29%. However, this interaction does not appear to affect cholesterol synthesis and absorption (89706). Further, a model in rats with hyperlipidemia suggests that administering ginkgo extract does not impact blood levels of atorvastatin and leads to lower total cholesterol, low-density lipoprotein cholesterol, and triglycerides when compared with rats given atorvastatin alone (111331).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP1A2.
Details
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP2C19.
Details
Some clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce CYP2C19 enzymes and potentially decrease levels of drugs metabolized by these enzymes (13108). However, other clinical research shows that taking ginkgo 120 mg twice daily for 12 days has no effect on levels of drugs metabolized by CYP2C19 (87824).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP2C9.
Details
In vitro, a specific standardized extract of ginkgo leaf (EGb 761) inhibits CYP2C9 activity (11026,12061,14337). The terpenoid (ginkgolides) and flavonoid (quercetin, kaempferol, etc.) constituents seem to be responsible for this effect. Most ginkgo extracts contain some amount of these constituents. Therefore, other ginkgo leaf extracts might also inhibit the CYP2C9 enzyme. However, clinical research suggests that ginkgo might not have a significant effect on CYP2C9 in humans. Ginkgo does not seem to significantly affect the pharmacokinetics of CYP2C9 substrates diclofenac or tolbutamide.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP3A4.
Details
There is conflicting evidence about whether ginkgo induces or inhibits CYP3A4 (1303,6423,6450,11026,87800,87805,111330). Ginkgo does not appear to affect hepatic CYP3A4 (11029). However, it is not known if ginkgo affects intestinal CYP3A4. Preliminary clinical research suggests that taking ginkgo does not significantly affect levels of donepezil, lopinavir, or ritonavir, which are all CYP3A4 substrates (11027,87800,93578). Other clinical research also suggests ginkgo does not significantly affect CYP3A4 activity (10847). However, there are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821,25464).
|
Theoretically, ginkgo might decrease the levels and clinical effects of efavirenz.
Details
There are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. In one case, an HIV-positive male experienced over a 50% decrease in efavirenz levels over the course of 14 months while taking ginkgo extract. HIV-1 RNA copies also increased substantially, from less than 50 to more than 1500. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821). In another case report, a patient stable on antiviral therapy including efavirenz for 10 years, had an increase in viral load from <50 copies/mL to 1350 copies/mL after 2 months of taking a combination of supplements including ginkgo. After stopping ginkgo, the viral load was again controlled with the same antiviral therapy regimen (25464).
|
Theoretically, ginkgo might increase the risk of bleeding when used with ibuprofen.
Details
Ginkgo might have antiplatelet effects and has been associated with several case reports of spontaneous bleeding. In one case, a 71-year-old male had taken a specific ginkgo extract (Gingium, Biocur) 40 mg twice daily for 2.5 years. About 4 weeks after starting ibuprofen 600 mg daily he experienced a fatal intracerebral hemorrhage (13179). However, the antiplatelet effects of ginkgo have been questioned. A meta-analysis and other studies have not found a significant antiplatelet effect with standardized ginkgo extracts, 80 mg to 480 mg taken daily for up to 32 weeks (17179).
|
Theoretically, taking ginkgo with oral, but not intravenous, nifedipine might increase levels and adverse effects of nifedipine.
Details
Animal research and some clinical evidence suggests that taking ginkgo leaf extract orally in combination with oral nifedipine might increase nifedipine levels and cause increased side effects, such as headaches, dizziness, and hot flushes (87764,87765). However, taking ginkgo orally does not seem to affect the pharmacokinetics of intravenous nifedipine (87765).
|
Theoretically, taking ginkgo with omeprazole might decrease the levels and clinical effects of omeprazole.
Details
Clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce cytochrome P450 (CYP) 2C19 enzymes and decrease levels of omeprazole by about 27% to 42% (13108).
|
Theoretically, taking ginkgo with P-glycoprotein substrates might increase the levels and adverse effects of these substrates.
Details
A small clinical study in healthy volunteers shows that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of the P-glycoprotein substrate, talinolol, by 36% in healthy male individuals. However, single doses of ginkgo do not have the same effect (87830).
|
Theoretically, taking ginkgo with risperidone might increase the levels and adverse effects of risperidone.
Details
A single case of priapism has been reported for a 26-year-old male with schizophrenia who used risperidone 3 mg daily along with ginkgo extract 160 mg daily (87796). Risperidone is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4. CYP3A4 activity might be affected by ginkgo. Theoretically, ginkgo may inhibit the metabolism of risperidone and increase the risk of adverse effects.
|
Theoretically, ginkgo might decrease the levels and clinical effects of rosiglitazone.
Details
Animal research shows that ginkgo leaf extract orally 100 or 200 mg/kg daily for 10 days alters the pharmacodynamics of rosiglitazone in a dose-dependent manner. The 100 mg/kg and 200 mg/kg doses reduce the area under the concentration time curve (AUC) of rosiglitazone by 39% and 52%, respectively, and the half-life by 28% and 39%, respectively. It is hypothesized that these changes may be due to induction of cytochrome P450 2C8 by ginkgo (109525).
|
Theoretically, taking ginkgo with drugs that lower the seizure threshold might increase the risk for convulsions.
Details
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,14281).
|
Theoretically, ginkgo might decrease the levels and clinical effects of simvastatin.
Details
Clinical research shows that taking ginkgo extract can reduce the area under the curve and maximum concentration of simvastatin by 32% to 39%. However, ginkgo extract does not seem to affect the cholesterol-lowering ability of simvastatin (89704).
|
Theoretically, ginkgo might increase the levels and clinical effects of sofosbuvir.
Details
Animal research in rats shows that giving a ginkgo extract 25 mg/kg orally daily for 14 days increases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 11%, increases the half-life by 60%, and increases the plasma concentration at 4 hours by 38%. This interaction appears to be related to the inhibition of intestinal P-glycoprotein by ginkgo (109524).
|
Theoretically, ginkgo might increase the blood levels of tacrolimus.
Details
In vitro evidence suggests that certain biflavonoids in ginkgo leaves (i.e. amentoflavone, ginkgetin, bilobetin) may inhibit the metabolism of tacrolimus by up to 50%. This interaction appears to be time-dependent and due to inhibition of cytochrome P450 (CYP) 3A4 by these bioflavonoids. In rats given tacrolimus 1 mg/kg orally, amentoflavone was shown to increase the area under the concentration time curve (AUC) of tacrolimus by 3.8-fold (111330).
|
Taking ginkgo with talinolol seems to increase blood levels of talinolol.
Details
There is some evidence that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of talinolol by 36% in healthy male individuals. However, single doses of ginkgo do not seem to affect talinolol pharmacokinetics (87830).
|
Theoretically, ginkgo might increase the levels and clinical effects of trazodone.
Details
In a case report, an Alzheimer patient taking trazodone 20 mg twice daily and ginkgo leaf extract 80 mg twice daily for four doses became comatose. The coma was reversed by administration of flumazenil (Romazicon). Coma might have been induced by excessive GABA-ergic activity. Ginkgo flavonoids are thought to have GABA-ergic activity and act directly on benzodiazepine receptors. Ginkgo might also increase metabolism of trazodone to active GABA-ergic metabolites, possibly by inducing cytochrome P450 3A4 (CYP3A4) metabolism (6423).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin.
Details
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,576,578,579,8581,13002,13135,13179,13194,14456,87868). Information from a medical database suggests that when taken concurrently with warfarin, ginkgo increases the risk of a bleeding adverse event by 38% (91326). There is also some evidence that ginkgo leaf extract can inhibit cytochrome P450 2C9, an enzyme that metabolizes warfarin. This could result in increased warfarin levels (12061). However, population and clinical research has produced mixed results. Clinical research in healthy people suggests that ginkgo has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176,87727,87889). A meta-analysis of 18 studies using standardized ginkgo extracts, 80 mg to 480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). There is also some preliminary clinical research that suggests ginkgo might not significantly increase the effects of warfarin in patients that have a stable INR (11905).
|
Theoretically, glutamine might antagonize the effects of anticonvulsant medications.
Details
|
Theoretically, taking gotu kola might increase the sedative effects of CNS depressants.
Details
|
Theoretically, taking gotu kola with hepatotoxic drugs might have additive adverse effects.
Details
|
Concomitant intake of phenylalanine may reduce the intestinal absorption of baclofen.
Details
Phenylalanine and baclofen share the same intestinal carrier for absorption; phenylalanine competitively inhibits the absorption of baclofen, reducing its plasma levels (23788).
|
Phenylalanine, especially in high doses, can reduce the effectiveness of levodopa.
Details
|
Theoretically, concomitant use of L-phenylalanine and non-selective MAOIs might increase the risk of hypertensive crisis.
Details
L-phenylalanine is metabolized to tyrosine (2052,9949). Some evidence suggests that L-phenylalanine, given with the non-selective MAOI pargyline, might prevent the elimination of tyramine, increasing the risk of hypertensive crisis (2021). However, this was not reported in a small number of patients when using L-phenylalanine with the partially selective MAO-B inhibitor, selegiline (2469).
|
Theoretically, phosphatidylserine might decrease the effectiveness anticholinergic drugs.
Details
|
Theoretically, phosphatidylserine might have additive effects with cholinergic drugs.
Details
|
Concomitant use of pregnenolone may reduce the effects of benzodiazepines.
Details
Very preliminary clinical research shows that chronic use of pregnenolone reduces sedative effects of diazepam when compared with chronic use of placebo. This effect may be related to the activity of pregnenolone at GABAA receptors (94031).
|
Theoretically, taking pregnenolone might enhance the effects of estrogens.
Details
Pregnenolone is a precursor for several steroid hormones, including estrogens (3008).
|
Theoretically, taking pregnenolone might enhance the effects of progesterone.
Details
|
Theoretically, taking pregnenolone might enhance the effects of progestin.
Details
Pregnenolone is a precursor for several steroid hormones, including progestin (3008).
|
Theoretically, taking pregnenolone might enhance the effects of testosterone.
Details
|
Below is general information about the adverse effects of the known ingredients contained in the product Vitaline Sharper Focus. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, choline is well tolerated when used appropriately.
Adverse effects have been reported with doses exceeding the tolerable upper intake level (UL) of 3.5 grams daily.
Most Common Adverse Effects:
Orally: Fishy body odor. At high doses of at least 9 grams daily, choline has been reported to cause diarrhea, nausea, salivation, sweating, and vomiting.
Cardiovascular ...Orally, doses of choline greater than 7. 5 grams daily may cause low blood pressure (94648).
Gastrointestinal ...Orally, large doses of choline can cause nausea, vomiting, salivation, and anorexia (42275,91231). Gastrointestinal discomfort has reportedly occurred with doses of 9 grams daily, while gastroenteritis has reportedly occurred with doses of 32 grams daily (42291,42310). Doses of lecithin 100 grams standardized to 3.5% choline have reportedly caused diarrhea and fecal incontinence (42312).
Genitourinary ...Orally, large doses of choline greater than 9 grams daily have been reported to cause urinary incontinence (42291).
Neurologic/CNS ...Orally, high intake of choline may cause sweating due to peripheral cholinergic effects (42275).
Oncologic ...In one population study, consuming large amounts of choline was associated with an increased risk of colorectal cancer in females, even after adjusting for red meat intake (14845). However, more research is needed to confirm this finding.
Psychiatric ...Orally, large doses of choline (9 grams daily) have been associated with onset of depression in patients taking neuroleptics. Further research is needed to clarify this finding (42270).
Other ...Orally, choline intake may cause a fishy body odor due to intestinal metabolism of choline to trimethylamine (42285,42275,42310,92111,92112).
General
...Orally, cola nut is well tolerated when eaten in the amounts found in food.
It seems to be well tolerated when used medicinally and appropriately, short-term. However, the caffeine found in cola nut may cause adverse effects when taken in large amounts.
Most Common Adverse Effects:
Orally: Dyspepsia, skin discoloration.
Serious Adverse Effects (Rare):
Orally: Increased risk of oral cancer, gastrointestinal cancer, and West African crystalline retinopathy with long-term use.
Cardiovascular
...Orally, acute administration of caffeine can cause increased blood pressure.
However, regular consumption of caffeine does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722). Epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension (38190). Habitual coffee consumption also doesn't seem to be related to hypertension, but habitual consumption of sugared or diet cola is associated with development of hypertension (13739).
Epidemiological research has also found that regular caffeine intake of up to 400 mg daily is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), or cardiovascular disease in general (37805,98806).
Dermatologic ...Orally, chewing cola nut has been reported to cause bright yellow skin pigmentation (57680).
Endocrine
...Some evidence shows that caffeine, which is found in cola nut, is associated with fibrocystic breast disease, breast cancer, and endometriosis; however, this is controversial since findings are conflicting (8043).
Restricting caffeine in people with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). Also, a population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of two low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Clinical research in healthy adults shows that increased consumption of caffeine results in increased insulin resistance (91023).
Gastrointestinal ...Orally, cola nut may induce gastric acid secretion and cause dyspepsia and peptic ulceration (57672,57674,57683). The caffeine found in cola nut may cause feeding intolerance and gastrointestinal irritation in infants (6023).
Genitourinary ...Orally, the caffeine in cola nut may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In males with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115).
Immunologic ...Cola nut contains caffeine. Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal ...Cola nut contains caffeine. Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females identified with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg daily does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317,98806).
Neurologic/CNS ...Orally, cola nut may prolong sleep latencies and suppress REM and 3rd and 4th stages of sleep (57697). Cola nut has also been reported to cause insomnia in children (10755) and may exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204). Caffeine, a constituent of cola nut, can cause headaches, anxiety, jitteriness, restlessness, and nervousness (36466,37694,37755,37806,37865,37830,37889,38223,95952).
Ocular/Otic
...Orally, cola nut has been associated with an increased risk for West African crystalline retinopathy in one retrospective, observational case series (57667).
Cola nut contains caffeine. In individuals with glaucoma, caffeine intake has been found to increase intraocular pressure. This did not occur in patients without glaucoma (36462,36464,36465,37670). The magnitude of this effect seems to depend on individual tolerance to caffeine. Some research in healthy young adults shows that caffeine increases intraocular pressure to a greater degree in low-consumers of caffeine (i.e., 1 cup of coffee or less daily) when compared to high-consumers (i.e., those consuming 2 cups of coffee or more daily) (100371). The peak increase of intraocular pressure seems to occur at about 1.5 hours after caffeine ingestion, and there is no notable effect 4 hours after ingestion (36462,100371).
Oncologic ...Orally, chewing cola nut has been associated with an increased risk of oral and gastrointestinal cancer. Cola nut contains high amounts of tannins and N-nitroso compounds, which are carcinogenic. The risk may be even higher in smokers (11963).
Psychiatric ...Cola nut contains caffeine. Caffeine may lead to habituation and physical dependence with amounts as low as 100 mg daily (36353,36355). Higher doses of caffeine have caused nervousness, agitation, anxiety, irritability, delirium, depression, sleep disturbances, impaired attention, psychosis, and panic attacks (36505,37717,37818,37839,37857,37982,38004,38017,38028,38072). Abrupt discontinuation of caffeine may result in physical withdrawal symptoms, including headache, fatigue, drowsiness, decreased physical energy, difficulty concentrating, depression, anxiety, irritability, and reduced alertness (13738).
General
...Orally, ginkgo leaf extract is generally well tolerated when used for up to 6 years.
However, the seed and crude plant contain toxic constituents and should be avoided.
Intravenously, ginkgo leaf extract seems to be well tolerated when used for up to 30 days.
Topically, no adverse effects have been reported with ginkgo as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dizziness, gastrointestinal symptoms, headache.
Serious Adverse Effects (Rare):
Orally: Arrhythmia, bleeding, Stevens-Johnson syndrome.
Cardiovascular
...Cardiac arrhythmias suspected to be related to ginkgo have been reported.
Internationally, there are at least 162 reports from 18 countries, with 34% of cases considered serious, involving five deaths and four life-threatening events. Additionally, a report from Canada found that 10 out of 15 cases of arrhythmia were considered serious. Ginkgo was the only suspect ingredient in 57% of all international reports, with symptoms generally presenting within days of initiation. The most common symptoms included palpitations, tachycardia, bradycardia, syncope, and loss of consciousness. Most cases were reported to be related to oral use of ginkgo leaf products; however, some cases were associated with oral use of the seed, and others with intravenous or intramuscular use of the leaf. Documented discontinuation of ginkgo led to recovery in approximately 84% of cases where ginkgo was the sole suspect. Despite these findings, ginkgo cannot be confirmed as the causal agent. It is possible that these reports are confounded by underlying co-morbidities. Of the reported cases, the main reason for ginkgo use was tinnitus, a symptom commonly associated with pre-existing arrhythmias (105253,105254). Despite this large number of reports, only three cases of cardiac arrhythmia have been published in the literature (105253,105254). In one case, frequent nocturnal episodes of paroxysmal atrial fibrillation were reported for a 35-year-old female taking ginkgo extract 240 mg daily orally for 2 months. Arrythmias ceased following discontinuation of ginkgo (87884).
In one clinical trial, the rate of ischemic stroke and transient ischemic attacks was significantly higher in patients taking ginkgo extract orally when compared with placebo (16635). It is unclear if these events were due to ginkgo, other factors, or a combination.
Dermatologic ...Topically, ginkgo fruit pulp can cause contact dermatitis, with intense itching, edema, papules, and pustules which take 7-10 days to resolve after stopping contact (112946).
Gastrointestinal
...Orally, ginkgo extract may cause mild gastrointestinal discomfort or pain (3965,8543,17112,87818,87858), nausea and vomiting (8543,17112,87728,87844,87858), diarrhea (87844), dry mouth (17112), and constipation (5719,87787).
However, post-market surveillance suggests that the incidence of these events is relatively low, occurring in less than 2% of patients (88007).
Fresh ginkgo seeds can cause stomach ache, nausea, vomiting, or diarrhea. Ingesting roasted seeds in amounts larger than the normal food amounts of 8-10 seeds per day, or long-term, can also cause these same adverse reactions (8231,8232).
Genitourinary ...Orally, ginkgo extract has been reported to cause blood in the urine in one patient (87858).
Hematologic
...Spontaneous bleeding is one of the most concerning potential side effects associated with ginkgo.
There are several published case reports linking ginkgo to episodes of minor to severe bleeding; however, not all case reports clearly establish ginkgo as the cause of bleeding. In most cases, other bleeding risk factors were also present including taking other medications or natural medicines, old age, liver cirrhosis, recent surgery, and other conditions. In most cases, bleeding occurred after several weeks or months of taking ginkgo (13135). Large-scale clinical trials and a meta-analysis evaluating standardized ginkgo leaf extracts show that the incidence of bleeding in patients taking ginkgo is not significantly higher than in those taking placebo (16634,16635,17179,17402).
There are several case reports of intracerebral bleeding. Some of these cases resulted in permanent neurological damage and one case resulted in death (244,578,8581,13135,13179,14456,87868,87977).
There are at least 4 cases of ocular bleeding including spontaneous hyphema (bleeding from the iris into the anterior part of the eye) and retrobulbar hemorrhage associated with ginkgo use (579,10450,13135).
There are also cases of surgical and post-surgical complications in patients using ginkgo. Retrobulbar hemorrhage (bleeding behind the eye) during cataract surgery has been associated with ginkgo use (10450). Excessive postoperative bleeding requiring transfusion has also occurred following laparoscopic surgery in a patient who had been taking ginkgo leaf extract (887). There have also been two cases of excessive bleeding during surgery and post-surgical hematoma in patients undergoing rhytidoplasty and blepharoplasty (13002). In another case, an elderly patient taking ginkgo experienced excessive postoperative bleeding following total hip arthroplasty (13194). In another case, use of ginkgo following liver transplantation surgery was associated with subphrenic hematoma requiring evacuation by laparotomy. The patient also subsequently experienced vitreous hemorrhage (14315). In another case, an elderly patient who had taken ginkgo chronically experienced excessive post-operative bleeding following an ambulatory surgical procedure (14453).
In another case, an elderly man experienced nose bleeds and ecchymosis following use of ginkgo. One case of diffuse alveolar hemorrhage in a female taking ginkgo and ginseng for over one year has been reported (95670). These instances of bleeding stopped when ginkgo was discontinued, and recurred when the patient started taking ginkgo again (13135).
Persistent bleeding has also occurred following dental surgery (87862) and laparoscopic cholecystectomy (88000). Nosebleed has also been reported as an adverse effect in a clinical trial (87813).
Immunologic ...Orally, ginkgo leaf extract can cause allergic skin reactions in some patients (14449,15578,112946). In one case, a patient developed acute generalized exanthematous pustulosis 48 hours after taking a single-ingredient ginkgo product. The rash resolved within 10 days after discontinuing ginkgo (14449). In another case, progressive erythema of the face, neck, trunk, and extremities occurred after two 60 mg oral doses of ginkgo extract (112946). There is also a case of Stevens-Johnson syndrome following a second administration of a preparation containing ginkgo leaf extract, choline, vitamin B6, and vitamin B12 (208). In another case, systemic edema and severe arthralgia was reported after contact with a ginkgo tree nut and manifested as multifocal lymphadenopathy associated with an allergic reaction on PET/CT scan imaging (95672).
Musculoskeletal ...Edema has been reported for three patients treated with ginkgo extract 40 mg orally three times daily (87818).
Neurologic/CNS ...Orally, ginkgo extract may cause headache (6220,8543,87818), dizziness (5719,87818), increased desire to sleep (87839), and sedation (10893) in some patients. In addition, although ginkgo leaf and ginkgo leaf extract contain only small amounts of ginkgotoxin, there are anecdotal reports of seizure occurring after use of ginkgo leaf preparations both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,11296,14281).
Ocular/Otic
...Orally, ginkgo extract may cause tinnitus is some patients, although the incidence is rare (8543).
Topically, eye drops containing ginkgo extract and hyaluronic acid may cause stinging sensations in some people (87829).
Psychiatric ...Orally, ginkgo has been associated with a single case of mood dysregulation. A 50-year-old female with schizophrenia developed irritability, difficulty controlling anger, and agitation after one week of taking ginkgo 80 mg twice daily. The mood changes resolved within 2-3 days of discontinuation. When ginkgo was re-trialed at a later date, the same symptoms reappeared, and again dissipated after discontinuation of the ginkgo product. The relationship between ginkgo and mood dysregulation was considered to be "probable" based on the Naranjo adverse drug reaction probability scale (96763); however, the exact mechanism by which ginkgo may have affected mood regulation is unknown.
General
...Orally and intravenously, glutamine is generally well tolerated.
Most Common Adverse Effects:
Orally: Belching, bloating, constipation, cough, diarrhea, flatulence, gastrointestinal pain, headache, musculoskeletal pain, nausea, and vomiting.
Endocrine ...One case of hot flashes has been reported in a patient taking glutamine 5-15 grams orally twice daily for up to 1 year (96520).
Gastrointestinal ...Orally, glutamine has been associated with belching, bloating, constipation, flatulence, nausea, vomiting, diarrhea, and gastrointestinal (GI) pain. Nausea, vomiting, constipation, diarrhea, and GI pain have been reported in clinical trials using high-dose glutamine 10-30 grams (0.3 grams/kg) in two divided doses daily to treat sickle cell disease (99414). One case of dyspepsia and one case of abdominal pain have been reported in patients taking glutamine 5-15 grams twice daily orally for up to 1 year (96520). In a small trial of healthy males, taking a single dose of about 60 grams (0.9 grams/kg of fat free body mass [FFM]) was associated with a 50% to 79% incidence of GI discomfort, nausea, and belching, compared with a 7% to 28% incidence with a lower dose of about 20 grams (0.3 gram/kg FFM). Flatulence, bloating, lower GI pain, and urge to regurgitate occurred at similar rates regardless of dose, and there were no cases of heartburn, vomiting, or diarrhea/constipation (105013). It is possible that certain GI side effects occur only after multiple doses of glutamine.
Musculoskeletal ...Orally, glutamine 30 grams daily has been associated with cases of musculoskeletal pain and non-cardiac chest pain in clinical trials for patients with sickle cell disease (99414).
Neurologic/CNS ...Orally, glutamine has been associated with dizziness and headache. A single case of dizziness has been reported in a patient treated with oral glutamine 0.5 grams/kg. However, the symptom resolved after reducing the dose to 0.25 grams/kg (91356). Mania and hypomania have been reported in 2 patients with bipolar disorder taking commercially purchased glutamine up to 4 grams daily (7291). Glutamine is metabolized to glutamate and ammonia, both of which might have neurological effects in people with neurological and psychiatric diseases or in people predisposed to hepatic encephalopathy (7293).
Oncologic ...There is some concern that glutamine might be used by rapidly growing tumors and possibly stimulate tumor growth. Although tumors may utilize glutamine and other amino acids, preliminary research shows that glutamine supplementation does not increase tumor growth (5469,7233,7738). In fact, there is preliminary evidence that glutamine might actually reduce tumor growth (5469).
Other ...Orally, glutamine has been associated with cough when a powdered formulation is used. It is unclear if this was due to accidental inhalation. One case of a burning sensation and one case of hypersplenism has been reported in a patient taking glutamine 5-15 grams twice daily orally for up to 1 year (96520).
General
...Orally and topically, gotu kola seems to be well tolerated.
Most Common Adverse Effects:
Orally: Gastric irritation and nausea.
Topically: Eczema.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity.
Dermatologic ...Topically, gotu kola may cause eczema (10277,10278). Also, gotu kola can cause allergic contact dermatitis, characterized by erythema, itching, papules, and a burning sensation (4,6887,9789,52875,52887,52896,52902). One specific gotu kola product (Blasteostimulina,Almirall, S. A.) has been reported to cause allergic contact dermatitis. However, not all patients with reactions to this product are sensitive to gotu kola; some patients are sensitive to neomycin, another ingredient in the product (52875). Madecassol ointment (Rona Laboratories Limited) is another gotu kola product that has resulted in allergic contact dermatitis. Controlled testing suggests that this product can cause this adverse effect in about 8% of patients (9789). Centellase cream has also caused allergic contact dermatitis in at least two cases (52887,52888).
Gastrointestinal ...In some patients, gotu kola can extract cause gastrointestinal upset and nausea (780,6887,52894).
Hepatic
...There is concern that gotu kola may cause liver toxicity in some patients.
There are at least four case reports of hepatotoxicity associated with gotu kola; however, hepatotoxic contaminants cannot be ruled out, as laboratory analysis was not conducted on the products used. Additionally, the doses of gotu kola used in these cases were not reported (13182,92506). In a clinical trial where liver function was monitored, taking gotu kola 120 mg daily for 6 months was not associated with changes in liver function (11065).
In one case of hepatotoxicity, a 61-year-old female developed elevated liver transaminase and total bilirubin levels after taking gotu kola tablets for 30 days. Liver biopsy showed granulomatous acute hepatitis. Months later, the patient took gotu kola again and developed elevated liver transaminases after 2 weeks. In another case, a 52-year-old female developed symptoms of hepatitis and increased liver transaminases after taking gotu kola for 3 weeks. Biopsy indicated chronic hepatitis and granulomas, areas of necrosis, and cirrhotic transformation. Liver function normalized after discontinuation of gotu kola. In a third case, a 49-year-old female developed symptoms of hepatitis after taking gotu kola for 2 months. Biopsy revealed granulomatous hepatitis. Liver function normalized after discontinuation of gotu kola (13182). In a fourth case, a 15-year-old female taking an unknown dose of gotu kola and lymecycline for 6 weeks for acne experienced acute liver failure with abdominal pain and vomiting, as well as elevated liver transaminases, bilirubin, international normalized ratio (INR), and prothrombin. Liver function returned to normal after both products were discontinued (92506).
Immunologic ...Topically, gotu kola can cause allergic contact dermatitis, characterized by erythema, itching, papules, and a burning sensation (4,6887,9789,52875,52887,52896,52902). One specific gotu kola product (Blasteostimulina, Almirall, S. A.) has been reported to cause allergic contact dermatitis in some patients. However, not all patients who react to this product are sensitive to gotu kola; some are sensitive to neomycin, another ingredient in the product (52875). Madecassol ointment (Rona Laboratories Limited) is another gotu kola product that has resulted in allergic contact dermatitis. Controlled testing suggests that this product can cause this adverse effect in about 8% of patients (9789). Centellase cream has also caused allergic contact dermatitis in at least two cases (52887,52888).
Psychiatric ...A case of night eating syndrome has been reported for a 41-year-old female who had been taking a gotu kola tincture (dose not specified) for 2 years. Symptoms resolved after gotu kola use was discontinued (52878).
General
...Orally, lecithin is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, fullness, and nausea.
Dermatologic ...Orally, lecithin can cause allergic skin reactions in people with egg or soy allergies (15705).
Gastrointestinal ...Orally, lecithin may cause abdominal pain, diarrhea, fullness, and nausea (5140,6243,14817,14822,14838,19204,59281).
Neurologic/CNS ...Orally, lecithin caused CNS complaints and agitation in one patient in a clinical trial (59261).
General
...Orally, L-phenylalanine and D-phenylalanine are generally well tolerated when used in typical doses.
Most Common Adverse Effects:
Orally: Anxiety, constipation, headache, heartburn, insomnia, nausea, and sedation.
Topically: Burning, erythema, and itching.
Cardiovascular ...One patient in a small case series developed extrasystoles after 10 days of treatment with DL-phenylalanine, but this resolved on the 12th day of treatment without discontinuing phenylalanine (68825).
Dermatologic ...Topically, erythema, itching, and burning have been reported in some patients using an undecylenoyl phenylalanine 2% cream for treatment of age spots (92704).
Gastrointestinal ...Orally, constipation, heartburn, and nausea has been reported in some patients taking phenylalanine (2463,68827,68829,68830).
Neurologic/CNS
...Orally, headaches, which are typically transient and do not require treatment or dosage reduction, have been reported during the first 10 days of treatment with L-, D-, and DL-phenylalanine (68795,68825,68827,68829).
Transient vertigo has also been reported with D- and DL-phenylalanine (68795).
In patients with Parkinson disease, taking DL-phenylalanine, especially in high doses, interferes with levodopa transport into the brain, causing increased rigidity, tremor, and occurrence of the on-off phenomenon. Akinesia has been reported more rarely (3291,3292,3293,3294,68828). In patients with schizophrenia, taking a single dose of L-phenylalanine 100 mg/kg has been associated with worsening of medication-induced tardive dyskinesia (2457).
Psychiatric ...Orally, L-phenylalanine has been associated with anxiety, insomnia, and, more rarely, hypomania (68827,68829). DL-phenylalanine has been associated with fatigue and sedation (9951).
General
...Phosphatidylcholine is generally well tolerated when used orally, subcutaneously, or topically.
Most Common Adverse Effects:
Orally: Altered taste, bloating, diarrhea, itching, nausea, sweating, vomiting.
Subcutaneously: Bruising, burning, edema, erythema, hematoma, itching, pain at the injection site.
Serious Adverse Effects (Rare):
Subcutaneously: Lipoma.
Dermatologic ...When taken orally, phosphatidylcholine may increase sweating (5229) and itching (63244). When given subcutaneously, phosphatidylcholine can cause pain, burning, itching, tenderness to touch, bruising, edema, and erythema at the injection site. The pain, itching and erythema usually resolve within 2 days of treatment; however localized tenderness can last longer (15623,15624,15626,15627,15628). Edema and bruising usually resolve within 10 days of treatment (15621,15623,15625). Some people can also develop nodules or hematoma at the injection site. This usually resolves within 30 days (15627).
Gastrointestinal ...Ingesting large amounts of phosphatidylcholine (30 grams per day) can cause gastrointestinal upset and diarrhea (5223). However, bloating, diarrhea, altered taste, nausea, and vomiting have been reported with smaller doses (63244,68843,93389,93390,105728). Although moderate subcutaneous doses do not usually cause systemic side effects, high doses exceeding 1.2 grams of phosphatidylcholine can cause nausea and abdominal pain in some people (15624).
Musculoskeletal ...Injecting phosphatidylcholine directly into a lipoma can result in a significant inflammatory response and undesirable fibrotic tissue changes (15622).
General
...Orally, phosphatidylserine is generally well tolerated.
Most Common Adverse Effects:
Orally: Flatulence, gastrointestinal upset, headache, insomnia, and nausea.
Gastrointestinal ...Orally, phosphatidylserine can cause gastrointestinal upset such as flatulence or nausea. Gastrointestinal upset can occur at doses of 200-300 mg/day (7116,7121,15539,68862,90711).
Neurologic/CNS ...Orally, phosphatidylserine can cause insomnia. Insomnia is more likely to occur with a higher dose of 600 mg (7121,68844). Headache has also been reported (90711).
General
...Orally, pregnenolone is generally well tolerated.
Most Common Adverse Effects:
Orally: Acne, agitation, diarrhea, drowsiness, excitement, hair loss, skin abscess, sweating, tremor.
Cardiovascular ...A case of palpitations has been reported after oral use of pregnenolone (94031).
Dermatologic ...Orally, pregnenolone has been reported to cause skin abscesses, acne, and hair loss (94027,94031). A case of skin rash accompanied by a burning sensation on the back and sides of the hands has also been reported with oral pregnenolone use, possibly related to a photosensitivity reaction. The rash cleared on its own (94031).
Gastrointestinal ...Orally, pregnenolone may cause diarrhea. Constipation has also been reported after oral use; however, it is not certain if this effect was due to pregnenolone (94026).
Musculoskeletal ...A case of muscle pain/stiffness has been reported after oral use of pregnenolone (94032).
Neurologic/CNS ...Orally, pregnenolone has been reported to cause restlessness, tiredness, sweating, and a case of cold extremities (94026,94032). Sleep problems, drowsiness, and tremor have also been reported; however, it not certain if these effects were due to pregnenolone (94026,94031).
Psychiatric ...Orally, pregnenolone has been reported to cause depressive affect and increased appetite (94026,94031). Increased excitement, agitation, increased motor activity, and anorexia have also been reported; however, it is not certain if these effects were due to pregnenolone (94026).
Pulmonary/Respiratory ...A case of sinusitis has been reported after oral use of pregnenolone (94027).
General ...Orally, RNA and DNA are well tolerated when consumed in food or enteral nutrition (5531,5533,5534,5535,5536,7819). Nucleotides seem to be well tolerated when consumed in medicinal amounts for up to 14 days. No adverse effects have been reported. Subcutaneously, RNA can cause itching, redness, and swelling at the injection site (5538).
Dermatologic ...Subcutaneously, an injection of RNA can cause itching, redness, and swelling at the injection site. In one review, these reactions occurred in 3 out of 83 patients (5538).
General
...Orally, L-serine and D-serine seem to be well tolerated in medicinal doses.
Side effects appear to be dose-dependent.
Most Common Adverse Effects:
Orally: Gastrointestinal distress, including abdominal pain, bloating, dyspepsia, loss of appetite, and nausea.
Serious Adverse Effects (Rare):
Orally: Seizures with high doses of L-serine.
Gastrointestinal ...Orally, D-serine 120 mg/kg (about 8 grams) daily has been reported to cause gastrointestinal distress (102215). L-serine 5-30 grams daily has been reported to cause abdominal pain, dyspepsia, bloating, nausea, and loss of appetite (102204,102220).
Genitourinary ...Orally, D-serine 120 mg/kg (about 8 grams) daily for 4 weeks has been reported to cause proteinuria without glycosuria or creatine elevation. Proteinuria resolved completely after discontinuation of serine (102215).
Hepatic ...Orally, D-serine 120 mg/kg (about 8 grams) daily has been reported to cause asymptomatic transaminitis which resolved after discontinuation of serine (102215).
Immunologic ...Orally, in one very small, exploratory study, patients taking L-serine 400 mg/kg (about 25 grams) daily for one year had a higher rate of localized infections than those taking placebo (102204). Whether ingestion of L-serine caused or increased the risk of these infections is unknown.
Neurologic/CNS ...Orally, D-serine 120 mg/kg (about 8 grams) daily has been reported to cause insomnia after a single dose (102215). Taking L-serine in doses greater than 400 mg/kg (about 25 grams) can cause reversible nystagmus and seizures (102204).