Each bar contains: Organic Medjool Date Organic Almond Butter Omega 3 brand Chia seeds; Organic Honey Original Greens+ brand powder: Non-GMO Soy Lecithin , Organic Hawaiian Spirulina , Organic Apple fiber, Barley Grass powder, Wheat Grass powder, Japanese Chlorella , Hydroponic Soy sprouts, Organic Brown Rice bran, Sprouted Barley malt, Alfalfa grass powder, Dairy-Free Probiotics , Royal Jelly , Montana Bee Pollen , Acerola berry juice, Natural Vitamin E , Licorice root powder, Milk Thistle extract, Echinacea root extract, Siberian Eleuthero root extract, Astragalus root extract, Licorice root extract, Organic Red Beet juice, Dunaliella Salina algae, Organic Nova Scotia Dulse , Organic Ginkgo biloba leaf extract, Organic Japanese Green Tea extract, Grape seed and skin extract, Organic Swedish Bilberry extract Organic Quinoa sprout powder GMO-Free Soy Protein isolate Mixed Tocopherols (natural vitamin E).Chocolate Flavor also contains: Barley Malt Sweetened Chocolate, Cocoa Butter, GMO-Free Soy Lecithin, Vanilla Extract.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Greens+ Omega 3 Chia Energy Bar (natural or chocolate flavor). Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Greens+ Omega 3 Chia Energy Bar (natural or chocolate flavor). Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
POSSIBLY SAFE ...when acerola fruit is used orally and appropriately. Acerola fruit contains an average of 2000 mg vitamin C per 100 grams of fruit, although this content varies widely. Acerola fruit should be consumed in amounts that do not provide more vitamin C than the tolerable upper intake level (UL) of 2000 mg per day for adults (4844).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than found in foods.
POSSIBLY SAFE ...when the leaves are used orally and appropriately, short-term (4,6,12).
LIKELY UNSAFE ...when large amounts are used long-term. Chronic ingestion of alfalfa has been associated with drug-induced lupus effects (381,14828,30602).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Alfalfa contains constituents with possible estrogenic activity (4,11,30592).
LIKELY SAFE ...when used orally in food amounts. Eating apples and consuming apple juice is safe for most people. Apples are a common food source (3470,3472). However, eating apple seeds should be avoided because they can be toxic (6).
CHILDREN: LIKELY SAFE
when used orally in food amounts.
Eating apples and consuming apple juice is safe for most people. Apples are a common food source (3470,3472).
CHILDREN: POSSIBLY SAFE
when apple pectin is used orally and appropriately, short-term.
Preliminary clinical research suggests that combination products containing apple pectin and German chamomile (Diarrhoesan) are safe when used in infants for up to one week (19705,19706).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of apple in amounts greater than those found in foods during pregnancy and lactation; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. Doses of astragalus up to 60 grams daily for up to 4 months have been used without reported adverse effects (32920,33038,95909,114804). ...when used intravenously. Infusion of doses up to 80 grams daily for up to 4 months under the supervision of a medical professional have been used with apparent safety (32811,32812,32828,95909,114688,114804). There is insufficient reliable information available about the safety of astragalus when used topically.
PREGNANCY AND LACTATION:
There is insufficient reliable information in humans.
However, astragaloside, a constituent of astragalus, has maternal and fetal toxic effects in animals (32881). Avoid using.
POSSIBLY SAFE ...when taken orally and appropriately. Bacillus coagulans spores in doses up to 6 billion colony-forming units (CFUs) daily have been used with apparent safety in clinical studies for up to 3 months (92726,92730,92734,92735,92736,92739,92740,104231,105169)(107611,107612,107614). Lower doses of B. coagulans up to 100 million CFUs daily have been used with apparent safety in clinical studies for up to one year (92738). There is insufficient reliable information available about the safety of non-viable, heat-killed B. coagulans formulations when used orally.
CHILDREN: POSSIBLY SAFE
when taken orally and appropriately.
Bacillus coagulans spores in doses up to 100 million colony-forming units (CFUs) daily have been used with apparent safety in clinical studies in infants of most ages for up to one year (92729,92733,92738) and in doses of one billion CFUs in children aged 6-8 years for 3 months (107615). There is insufficient reliable information available about the safety of Bacillus coagulans in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately in food amounts (4819,4820,4821,5104,10166,10435,11134,11463,11986,92818). There is insufficient reliable information available about the safety of barley when used orally in medicinal amounts or when applied topically.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (19).
PREGNANCY: POSSIBLY UNSAFE
when barley sprouts are consumed in relatively high doses.
Excessive amounts of barley sprouts should not be consumed during pregnancy (19).
LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Bee pollen has been safely used in clinical trials lasting up to 30 days (7062,7063,12008,33973). There is also preliminary evidence that taking 2 tablets twice daily of a specific combination product containing royal jelly 6 mg, bee pollen extract 36 mg, and bee pollen plus pistil extract 120 mg (Femal, Natumin Pharma) per tablet for up to 2 months seems to be safe (12008).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is some concern that bee pollen might have uterine stimulant effects (5,6,11); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods.
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes, short term. Beetroot juice has been safely used in clinical trials in doses of up to 500 mL daily for up to 7 days and a beetroot-based nutritional gel has been used safely in doses of up to 100 grams daily for 8 days (94461,94462,94464,100149,100152,100153).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of beets used medicinally during pregnancy and breast-feeding.
LIKELY SAFE ...when used orally and appropriately. Bifidobacterium lactis has been safely used alone or in combination with other probiotics in clinical trials lasting up to 12 weeks (92255,98502,105158,107572,107581,107586,110979,110985,110986,110992)(110993,110998,110999).
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Bifidobacterium lactis has been safely used alone or in combination with other probiotics in infants and children for up to 15 months (3169,3458,92265,95381,95382,98736,105149,107582,107583,107585)(107587,107590,110984,110987,110988,110991,110994,110995). A combination probiotic containing B. lactis and Lactobacillus acidophilus (HOWARU Protect, Danisco) has been used safely for up to 6 months in children aged 3-5 years (16847). A specific combination of B. lactis, Bifidobacterium bifidum, and L. acidophilus (Complete Probiotic Platinum) has also been used safely for up to 18 months in children aged 4 months to 5 years (103436). In addition, in children ages 4-17 years, 1 billion CFUs of a 1:1:1 combination of B. lactis CECT 8145, Lacticasebacillus casei CECT 9104, and Bifidobacterium longum CECT 7347 has been used safely for 12 weeks (107531). There is insufficient reliable information available about the safety of B. lactis in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available.
A meta-analysis of four clinical trials shows that taking probiotics during pregnancy increases the relative risk of pre-eclampsia by 85% when compared with placebo. Although the specific effects of Bifidobacterium lactis are unclear from this analysis, three of the included studies used B. lactis in combination with Lacticaseibacillus rhamnosus (105185). More information is needed to determine if certain patients are at increased risk.
LIKELY SAFE ...when used orally and appropriately in amounts commonly found in foods. Bilberry has Generally Recognized As Safe status (GRAS) for use in foods in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. Bilberry fruit extracts have been used with apparent safety in clinical trials at a dose of up to 160 mg daily for up to 6 months (39,40,8139,9739,14280,35472,35510,35512,103190,104192,104195). A higher bilberry extract dose of 1.4 grams daily has been used with apparent safety for up to 4 weeks (104194). Whole bilberries or bilberry juice have also been consumed with apparent safety in quantities of 100-160 grams daily for up to 35 days (35463,91506).
POSSIBLY UNSAFE ...when the leaves are used orally in high doses or for a prolonged period. Death can occur with chronic use of 1.5 gram/kg daily (2).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts commonly found in foods.
However, there is insufficient reliable information available about the safety of bilberry when used in medicinal amounts during pregnancy and lactation; avoid using.
POSSIBLY SAFE ...when non-contaminated species of spirulina blue-green algae are used orally and appropriately (91713). The blue-green algae species Arthrospira platensis has been used with apparent safety in doses up to 19 grams daily for 2 months, or 10 grams daily for 6 months (18296,18300,18306,75944,91705,99703,104567,109965). The blue-green algae species Arthrospira fusiformis has been used with apparent safety in doses up to 4 grams daily for 3 months, or 1 gram daily for 12 months (15782,91717). Another blue-green algae species, Arthrospira maxima, has been used with apparent safety in a dose of 4.5 grams daily for up to 12 weeks (18297,99654,99655,102688). ...when non-contaminated, non-toxin producing strains of blue-green algae from the Aphanizomenon flos-aquae species are used orally and appropriately. Doses up to 1.6 grams daily have been used with apparent safety for up to 6 months (14842,18310). Some blue-green algae species can produce toxins called microcystins. According to the World Health Organization (WHO), the tolerable daily intake of microcystins in adults is 0.04 mcg/kg (96549).
POSSIBLY UNSAFE ...when contaminated blue-green algae are used orally. Blue-green algae can be contaminated with heavy metals (including mercury, cadmium, lead, or arsenic), neurotoxins, and toxic microcystin-producing cyanobacteria such as Microcystis aeruginosa (9171,75966,91704,91711,96550). Microcystins are most commonly reported in the blue-green algae species Aphanizomenon flos-aquae harvested from Upper Klamath Lake in Oregon. The Oregon Department of Health has set a limit of 1 mcg of microcystin-LR equivalents per gram dry weight of blue-green algae, assuming consumption of about 2 grams/day by adults (91704,91713). However, many samples of Aphanizomenon flos-aquae have been reported to contain higher levels than this (9171,91704). According to the World Health Organization (WHO), the tolerable daily intake of microcystins in adults is 0.04 mcg/kg (96549). When consumed orally, microcystins accumulate in the liver, binding to and inhibiting protein phosphatases, causing hepatocyte damage and possible tumor promotion (9171). Aphanizomenon flos-aquae can also produce neurotoxic compounds that may be present in supplements containing this organism (91704).
CHILDREN: POSSIBLY UNSAFE
when blue-green algae products are used orally.
Blue-green algae can accumulate heavy metals such as lead and mercury (91704,91711). They can also contain toxic microcystins produced by contaminating species of cyanobacteria such a Microcystis aeruginosa (91704). Children are more sensitive to poisoning by microcystins (3536). The Oregon Department of Health has set a limit for microcystins of 1 mcg per gram dry weight of blue-green algae, but some countries have set very low exposure limits of 0.2 mcg per day and 0.8 mcg per day for infants and children, respectively (91704).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Some blue-green algae products, specifically those of the species Aphanizomenon flos-aquae, have been found to contain low amounts of beta-methylamino-L-alanine (BMAA). BMAA is associated with neurodegenerative diseases, and breast milk has been shown to be a potential source of BMAA exposure in infants (96550).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Brown rice has Generally Recognized as Safe (GRAS) status in the US (7705). There is insufficient reliable information available about the safety of brown rice when used orally in medicinal amounts.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in food.
Brown rice has Generally Recognized as Safe (GRAS) status in the US (7705). There is insufficient reliable information available about the safety of brown rice when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (7705).
There is insufficient reliable information available about the safety of brown rice when used in medicinal amounts during pregnancy or lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods (104531,104532).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chia has been used safely at doses up to 40 grams daily for up to 6 months (16124,97940). ...when used topically, short-term. A product containing chia seed oil 4% has been applied to the skin safely for up to 8 weeks (25537).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Tablets and liquids containing chlorella 3-10 grams or 60-100 mL daily have been safely used in clinical studies lasting 2-3 months (5890,92130,92131). Also, chlorella extract 200-1800 mg daily has been safely used in clinical research for 4-6 weeks (10388,92132). There is insufficient reliable information available about the safety of chlorella when used topically.
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately in medicinal amounts for up to approximately 28 weeks.
A commercially available chlorella supplement (Sun Chlorella A, Sun Chlorella Corp.) has been safely used in doses of 6 grams daily, starting during the 12-18th week of gestation and continuing until delivery (95013).
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in food amounts. Dulse has a long history of use as a food ingredient in various parts of the world (103315,103317,103321).
POSSIBLY SAFE ...when used topically and appropriately (103322). There is insufficient reliable information available about the safety of dulse when used in amounts greater than those found in foods.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of dulse when used in medicinal amounts during pregnancy or lactation; avoid amounts greater than those found in foods.
LIKELY SAFE ...when used orally and appropriately, short-term. Various liquid extracts of Echinacea purpurea have been used safely for up to 10 days, including EchinaGuard (Madaus AG) 20 drops every 2 hours for 1 day, then three times daily (10320), or Echinilin (Inovobiologic Inc.) 40 mL in divided doses for 1 day, then 15 mL in divided doses daily thereafter (12355,20062). Other liquid extracts have been used safely for relatively longer periods, including Echinaforce (A. Vogel Bioforce AG) 2.4 grams daily for 4 months or 1.6 grams daily for 6 months (7087,18225), and Echinacin (Madaus AG) 5 mL twice daily for 10 days, or 4 mL twice daily for 8 weeks (3282,10802). Specific solid dosage forms of echinacea that have been used safely for up to 10 days include Echinacea purpurea above-ground parts (EchinaFresh, Enzymatic Therapy) 300 mg daily (11970), and mixtures of Echinacea purpurea and Echinacea angustifolia herb in divided doses of 6 grams to 10.5 grams for 1 day then 3 grams to 5.1 grams daily (10800,17519,20059). A specific Echinacea angustifolia extract (ExtractumPharma ZRT) has also been used with apparent safety at a dose of 40 mg once or twice daily for up to 7 days (20064,103233). An Echinacea purpurea product (Natures Resource) has been used safely at a dose of 1.8 grams daily for 8 weeks (17521), and echinacea (Puritan's Pride) has been used safely at 8 grams daily for 28 days (20066).
POSSIBLY SAFE ...when used topically, short-term. A specific cream (Linola Plus Cream, Dr. August Wolff GmbH & Co.) containing echinacea extract (WO 3260) has been applied to the skin safely 2-3 times daily for up to 12 weeks (97499). There is insufficient reliable evidence about the safety of echinacea when used parenterally.
CHILDREN: POSSIBLY SAFE
when used orally, short-term.
Some clinical research shows that an extract of the above-ground parts of Echinacea purpurea (EC31J2, Echinacin Saft, Madaus AG) in a dose of 3.75 mL twice daily (for ages 2 years to 5 years) or 7.5 mL twice daily (for ages 6 years to 11 years) is safe when used for up to 10 days (4989). However, about 7% of children experienced a rash after taking echinacea, which might have been caused by an allergic reaction (4989). There is concern that allergic reactions could be severe in some children. The Medicines and Healthcare Products Regulatory Agency in the United Kingdom recommends against the use of oral echinacea products in children under 12 years of age due to this risk of allergic reaction (18207). In contrast, another clinical study in children 4-12 years old shows that a specific Echinacea purpurea product (Echinaforce Junior, A. Vogel) does not cause allergic or urticarial reactions more frequently than vitamin C (105719).
PREGNANCY: POSSIBLY SAFE
when used orally, short-term.
There is preliminary evidence that mothers can safely use echinacea in the form of E. purpurea or E. angustifolia solid dosage forms, 250-1000 mg daily, or tinctures, up to 30 drops daily, for 5 days to 7 days during the first trimester without adversely affecting the fetus (7056,13418,15123). There is insufficient reliable information available about the safety of echinacea when used for longer than 7 days.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately, short-term. Eleuthero root extract 300-2000 mg has been used safely in clinical trials lasting up to 3 months (730,1427,2574,7522,11099,15586,91509). There is insufficient reliable information available about the safety of eleuthero when used long-term.
CHILDREN: POSSIBLY SAFE
when used orally in adolescents aged 12-17 years, short-term.
Eleuthero 750 mg three times daily was used for 6 weeks with apparent safety in one clinical trial (75028). There is insufficient reliable information available about the safety of eleuthero in children or adolescents when used long-term.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. Standardized ginkgo leaf extracts have been used safely in trials lasting for several weeks up to 6 years (1514,1515,3461,5717,5718,6211,6212,6213,6214,6215)(6216,6222,6223,6224,6225,6490,14383,14499,16634,16635)(16636,16637,17402,17716,17718,87794,87819,87826,87848,87864)(87888,87897,87901,87904,89701,89707,107359,107360). There have been some reports of arrhythmias associated with ginkgo leaf extract. However, it is not yet clear if ginkgo might cause arrhythmia (105253,105254). There is some concern about toxic and carcinogenic effects seen in animals exposed to a ginkgo leaf extract containing 31.2% flavonoids, 15.4% terpenoids, and 10.45 ppm ginkgolic acid, in doses of 100 to 2000 mg/kg five times per week for 2 years (18272). However, the clinical relevance of this data for humans, using typical doses, is unclear. The content of the extract used is not identical to that commonly used in supplement products, and the doses studied are much higher than those typically used by humans. A single dose of 50 mg/kg in rats is estimated to be equivalent to a single dose of about 240 mg in humans (18272).
POSSIBLY SAFE ...when used intravenously, short-term. A standardized ginkgo leaf extract called EGb 761 ONC has been safely administered intravenously for up to 14 days (9871,9872,107360,107452). A Chinese preparation containing ginkgo leaf extract and dipyridamole has been safely administered intravenously for up to 30 days (102881,102882). ...when applied topically, short-term. There was no dermal irritation during a 24-hour patch test using the leaf extract, and no sensitization with repeat applications (112946). When used topically in cosmetics, extracts of ginkgo leaves are reported to be safe, but there is insufficient data to determine the safety of nut and root extracts, and isolated biflavones and terpenoids (112946).
POSSIBLY UNSAFE ...when the roasted seed or crude ginkgo plant is used orally. Consuming more than 10 roasted seeds per day can cause difficulty breathing, weak pulse, seizures, loss of consciousness, and shock (8231,8232). Crude ginkgo plant parts can exceed concentrations of 5 ppm of the toxic ginkgolic acid constituents and can cause severe allergic reactions (5714).
LIKELY UNSAFE ...when the fresh ginkgo seed is used orally. Fresh seeds are toxic and potentially deadly (11296).
PREGNANCY: POSSIBLY UNSAFE
when used orally.
There is concern that ginkgo might have labor-inducing and hormonal effects. There is also concern that the antiplatelet effects of ginkgo could prolong bleeding time if taken around the time of labor and delivery (15052). Theoretically, ginkgo might adversely affect pregnancy outcome; avoid using during pregnancy.
LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term (87790,89708).
A specific ginkgo dried extract (Ginko T.D., Tolidaru Pharmaceuticals), has been safely used in doses of 80-120 mg daily for 6 weeks in children aged 6-14 years (17112,95669). Another specific combination product containing ginkgo leaf extract and American ginseng extract (AD-FX, CV Technologies, Canada) has also been safely used in children aged 3-17 years for up to 4 weeks (8235).
CHILDREN: LIKELY UNSAFE
when ginkgo seed is used orally.
The fresh seeds have caused seizures and death in children (8231,11296).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when the whole fruit of the grape, or extracts of the fruit, seed, or leaf, are used orally and appropriately in medicinal amounts. Grape seed extracts have been used with apparent safety in doses up to 200 mg daily for up to 11 months (9182,53016) and in doses up to 2000 mg daily for up to 3 months (53149,53190). Specific grape fruit extracts (Stilvid, Actafarma; Cognigrape, Bionap srl) have been used with apparent safety in doses up to 250-350 mg daily for 3-12 months or 700 mg daily for 6 months (53254,53256,96198). A specific grape leaf extract (AS 195, Antistax, Boehringer Ingelheim) has been used with apparent safety in doses up to 720 mg daily for up to 3 months (2538,52985,53005,53206). A preparation of dehydrated whole grapes, equivalent to 250 grams of fresh grapes daily, has also been used with apparent safety for up to 30 days (18228). A specific grape seed extract (Enovita; Indena SpA) 150 mg twice daily, standardized to provide at least 95% oligomeric proanthocyanins, has been used with apparent safety for up to 16 weeks (108091) ...when used topically and appropriately. Creams and ointments containing grape seed extract 2% or 5% have been used topically with apparent safety for up to 3 weeks (91539,100955). There is insufficient reliable information available about the safety of other grape plant parts when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). However, whole grapes should be eaten with caution in children aged 5 years and under. Whole grapes can be a choking hazard for young children (96193). To reduce the risk of choking, whole grapes should be cut in half or quartered before being given to children. There is insufficient reliable information available about the safety of grape when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of medicinal amounts during pregnancy and breast-feeding; avoid using in amounts greater than what is commonly found in foods.
LIKELY SAFE ...when green tea is consumed as a beverage in moderate amounts (733,6031,9222,9223,9225,9226,9227,9228,14136,90156)(90159,90168,90174,90184,95696). Green tea contains caffeine. According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, drinking up to 8 cups of green tea daily, or approximately 400 mg of caffeine, is not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). ...when green tea extract cream or ointment is used topically and appropriately, short-term. A green tea extract 3% cream, applied twice daily, has been used with apparent safety for up to 8 weeks, and a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins has been safely used for up to 16 weeks (15067). The safety of treatment for longer durations or multiple treatment courses is not known.
POSSIBLY SAFE ...when green tea extract is used orally. Green tea extract containing 7% to 12% caffeine has been used safely for up to 2 years (8117,37725). Also decaffeinated green tea extract up to 1.3 grams daily enriched in EGCG has been used safely for up to 12 months (90158,97131). In addition, green tea extract has been safely used as part of an herbal mixture also containing garcinia, coffee, and banaba extracts for 12 weeks (90137). ...when used topically and appropriately as a cream or mouthwash (6065,11310,90141,90150,90151).
POSSIBLY UNSAFE ...when consumed as a beverage in large quantities. Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other significant adverse effects. Doses of caffeine greater than 600 mg per day, or approximately 12 cups of green tea, have been associated with significant adverse effects such as tachyarrhythmias and sleep disturbances (11832). These effects would not be expected to occur with the consumption of decaffeinated green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. There is also some speculation that green tea products containing higher amounts of the catechin epigallocatechin gallate (EGCG) might have increased risk of adverse events. Some research has found that taking green tea products containing EGCG levels greater than 200 mg is associated with increased risk of mild adverse effects such as constipation, increased blood pressure, and rash (90161). Other research has found that doses of EGCG equal to or above 800 mg daily may be associated with increased risk of liver injury in humans (95440,95696,97131).
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg per kilogram). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, and prior caffeine use (11832).
CHILDREN: POSSIBLY SAFE
when used orally by children and adolescents in amounts commonly found in foods and beverages (4912,11833).
Intake of caffeine in doses of less than 2.5 mg/kg daily is not associated with significant adverse effects in children and adolescents (11733,98806). ...when used for gargling three times daily for up to 90 days (90150).
There is insufficient reliable information available about the safety of green tea extract when used orally in children. However, taking green tea extract orally has been associated with potentially serious, albeit uncommon and unpredictable cases, of hepatotoxicity in adults. Therefore, some experts recommend that children under the age of 18 years of age do not use products containing green tea extract (94897).
PREGNANCY: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, pregnant patients should closely monitor their intake to ensure moderate consumption. Fetal blood concentrations of caffeine approximate maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,11733,16014,16015,98806). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014). This increased risk may be most likely to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, most healthy pregnant patients can safely consume doses up to 300 mg daily without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). Advise keeping caffeine consumption below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product. Based on animal models, green tea extract catechins are also transferred to the fetus, but in amounts 50-100 times less than maternal concentrations (15010). The potential impact of these catechins on the human fetus is not known, but animal models suggest that the catechins are not teratogenic (15011).
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts providing more than 300 mg caffeine daily.
Caffeine from green tea crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise keeping caffeine consumption from all sources below 300 mg daily. This is similar to the amount of caffeine in about 6 cups of green tea. High maternal doses of caffeine throughout pregnancy have also resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711). However, some research has also found that intrauterine exposure to even modest amounts of caffeine, based on maternal blood levels during the first trimester, is associated with a shorter stature in children ages 4-8 years (109846). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine found in ingredients such as green tea, which naturally contains caffeine, does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
There is also concern that consuming large amounts of green tea might have antifolate activity and potentially increase the risk of folic acid deficiency-related birth defects. Catechins in green tea inhibit the enzyme dihydrofolate reductase in vitro (15012). This enzyme is responsible for converting folic acid to its active form. Preliminary evidence suggests that increasing maternal green tea consumption is associated with increased risk of spina bifida (15068). Also, evidence from epidemiological research suggests that serum folate levels in pregnant patients with high green tea intake (57.3 mL per 1000 kcal) are decreased compared to participants who consume moderate or low amounts of green tea (90171). More evidence is needed to determine the safety of using green tea during pregnancy. For now, advise pregnant patients to avoid consuming large quantities of green tea.
LACTATION: POSSIBLY SAFE
when used orally in moderate amounts.
Due to the caffeine content of green tea, nursing parents should closely monitor caffeine intake. Breast milk concentrations of caffeine are thought to be approximately 50% of maternal serum concentrations (9892).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Consumption of green tea might cause irritability and increased bowel activity in nursing infants (6026). There is insufficient reliable information available about the safety of green tea extracts when applied topically during breast-feeding.
LIKELY SAFE ...when used orally and appropriately (13160,14319). Concerns about botulism pertain only to children under 12 months of age and not to adults (13160). ...when used topically and appropriately. A specific commercially available wound dressing containing manuka honey (Medihoney) is approved as a medical device by the US Food and Drug Administration (FDA) (16353,16355,16357,16362,16369,16371). Some evidence suggests other honey preparations can also be used safely when applied to the skin or used to rinse the mouth (395,396,397,398,399,7847,7849,13133,14317)(16358,16372,97704,101034,108530).
POSSIBLY SAFE ...when properly diluted honey is used intranasally. Manuka honey 16.5% solution has been used with apparent safety as a nasal rinse twice daily for 14 days (103969). ...when specific, medical-grade honey products are used in eye drops. A specific product (Optimel Manuka Plus Eye Drops, Melcare Biomedical Pty Ltd) has been used safely 2-3 times daily for up to 4 weeks (105231,105234).
LIKELY UNSAFE ...when honey produced from the nectar of rhododendrons is used orally. This type of honey contains grayanotoxins, which may lead to cardiovascular symptoms, such as arrhythmias, hypotension, chest pain, bradycardia, syncope, asystole, various types of heart block, and myocardial infarction (12220,55119,55122,55125,55126,55129,55141,55142,55157)(55163,55170,55171,55180,55183,55190,55224,55233,55234,55239)(55248,55260,55261,55280,55281).
CHILDREN: LIKELY SAFE
when used orally and appropriately, short-term in children at least 12 months of age (15910,17299,55210,55253,97693).
CHILDREN: POSSIBLY UNSAFE
when used orally in children less than 12 months of age.
Ingestion of raw honey contaminated with Clostridium botulinum spores can cause botulism poisoning in infants under 12 months of age (13160,55067,55290,91359). This is not a danger for older children or adults. Medical-grade, sterilized honey has been used with apparent safety in the formula of premature newborns at doses of up to 15 grams daily for up to 2 weeks (97697).
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in food amounts.
The concern about botulism pertains to children under 12 months of age and not to pregnant adults (13160). There is insufficient reliable information available about the safety of honey when used for medicinal purposes when pregnant or breast-feeding.
LIKELY SAFE ...when used orally and appropriately. Lactobacillus acidophilus has been safely used as part of multi-ingredient probiotic products in studies lasting up to nine months (1731,6087,14370,14371,90231,90296,92255,103438,12775,107581)(110950,110970,110979,110998,111785,111793). ...when used intravaginally and appropriately. L. acidophilus has been used safely in studies lasting up to 12 weeks (12108,13176,13177,90265). There is insufficient reliable information available about the safety of non-viable, heat-killed L. acidophilus formulations when used orally.
CHILDREN: LIKELY SAFE
when used orally and appropriately in children of most ages.
Lactobacillus acidophilus has been safely used for up to 5 days (96887). Also, combination probiotics containing L. acidophilus have been used with apparent safety in various doses and durations. L. acidophilus has been combined with Bifidobacterium animalis (HOWARU Protect, Danisco) for up to 6 months in children 3-5 years old (16847), with Bifidobacterium bifidum for 6 weeks (90602,96890), with Bifidobacterium bifidum and Bifidobacterium animalis subsp. lactis (Complete Probiotic Platinum) for 18 months in children 4 months to 5 years of age (103436), and in a specific product (Visbiome, ExeGi Pharma) containing a total of 8 species for 3 months in children 2-12 years old (107497). There is insufficient reliable information available about the safety of L. acidophilus in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
A combination of Lactobacillus acidophilus, Lacticaseibacillus casei, and Bifidobacterium bifidum has been used with apparent safety for 6 weeks, starting at 24-28 weeks' gestation (95416,98430).
LACTATION:
There is insufficient reliable information available about the safety of Lactobacillus acidophilus during lactation.
However, there are currently no reasons to expect safety concerns when used appropriately.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Lecithin has Generally Recognized As Safe (GRAS) status in the US (2619,105544). ...when used orally and appropriately in medicinal amounts. Lecithin has been used safely in doses of up to 30 grams daily for up to 6 weeks (5140,5149,5152,5156,14817,14822,14838,19212). ...when used topically (4914).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts.
Lecithin has Generally Recognized As Safe (GRAS) status in the US (105544). There is insufficient reliable information available about the safety of medicinal amounts of lecithin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Licorice has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes. Licorice flavonoid oil 300 mg daily for 16 weeks, and deglycyrrhizinated licorice products in doses of up to 4.5 grams daily for up to 16 weeks, have been used with apparent safety (6196,11312,11313,17727,100984,102960). ...when licorice products containing glycyrrhizin are used orally in low doses, short-term. Licorice extract 272 mg, containing glycyrrhizin 24.3 mg, has been used daily with apparent safety for 6 months (102961). A licorice extract 1000 mg, containing monoammonium glycyrrhizinate 240 mg, has been used daily with apparent safety for 12 weeks (110320). In addition, a syrup providing licorice extract 750 mg has been used twice daily with apparent safety for 5 days (104558). ...when applied topically. A gel containing 2% licorice root extract has been applied to the skin with apparent safety for up to 2 weeks. (59732). A mouth rinse containing 5% licorice extract has been used with apparent safety four times daily for up to one week (104564).
POSSIBLY UNSAFE ...when licorice products containing glycyrrhizin are used orally in large amounts for several weeks, or in smaller amounts for longer periods of time. The European Scientific Committee on Food recommends that a safe average daily intake of glycyrrhizin should not exceed 10 mg (108577). In otherwise healthy people, consuming glycyrrhizin daily for several weeks or longer can cause severe adverse effects including pseudohyperaldosteronism, hypertensive crisis, hypokalemia, cardiac arrhythmias, and cardiac arrest. Doses of 20 grams or more of licorice products, containing at least 400 mg glycyrrhizin, are more likely to cause these effects; however, smaller amounts have also caused hypokalemia and associated symptoms when taken for months to years (781,3252,15590,15592,15594,15596,15597,15599,15600,16058)(59731,59740,59752,59785,59786,59787,59792,59795,59805,59811)(59816,59818,59820,59822,59826,59828,59849,59850,59851,59867)(59882,59885,59888,59889,59895,59900,59906,97213,110305). In patients with hypertension, cardiovascular or kidney conditions, or a high salt intake, as little as 5 grams of licorice product or 100 mg glycyrrhizin daily can cause severe adverse effects (15589,15593,15598,15600,59726).
PREGNANCY: UNSAFE
when used orally.
Licorice has abortifacient, estrogenic, and steroid effects. It can also cause uterine stimulation. Heavy consumption of licorice, equivalent to 500 mg of glycyrrhizin per week (about 250 grams of licorice per week), during pregnancy seems to increase the risk of delivery before gestational age of 38 weeks (7619,10618). Furthermore, high intake of glycyrrhizin, at least 500 mg per week, during pregnancy is associated with increased salivary cortisol levels in the child by the age of 8 years. This suggests that high intake of licorice during pregnancy may increase hypothalamic-pituitary-adrenocortical axis activity in the child (26434); avoid using.
LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately. A specific milk thistle extract standardized to contain 70% to 80% silymarin (Legalon, Madaus GmbH) has been safely used in doses up to 420 mg daily for up to 4 years (2613,2614,2616,7355,63210,63212,63278,63280,63299,63340)(88154,97626,105792). Higher doses of up to 2100 mg daily have been safely used for up to 48 weeks (63251,96107,101150). Another specific milk thistle extract of silymarin (Livergol, Goldaru Pharmaceutical Company) has been safely used at doses up to 420 mg daily for up to 6 months (95021,95029,102851,102852,105793,105794,105795,113979,114909,114913)(114914). Some isolated milk thistle constituents also appear to be safe. Silibinin (Siliphos, Thorne Research) has been used safely in doses up to 320 mg daily for 28 days (63218). Some combination products containing milk thistle and other ingredients also appear to be safe. A silybin-phosphatidylcholine complex (Silipide, Inverni della Beffa Research and Development Laboratories) has been safely used in doses of 480 mg daily for 7 days (7356) and 240 mg daily for 3 months (63320). Tree turmeric and milk thistle capsules (Berberol, PharmExtracta) standardized to contain 60% to 80% silybin have been safely used twice daily for up to 12 months (95019,96140,96141,96142,97624,101158).
POSSIBLY SAFE ...when used topically and appropriately, short-term. A milk thistle extract cream standardized to silymarin 0.25% (Leviaderm, Madaus GmbH) has been used safely throughout a course of radiotherapy (63239). Another milk thistle extract cream containing silymarin 1.4% has been used with apparent safety twice daily for 3 months (105791,110489). A cream containing milk thistle fruit extract 25% has been used with apparent safety twice daily for up to 12 weeks (111175). A milk thistle extract gel containing silymarin 1% has been used with apparent safety twice daily for 9 weeks (95022). There is insufficient reliable information available about the safety of intravenous formulations of milk thistle or its constituents.
PREGNANCY AND LACTATION:
While research in an animal model shows that taking milk thistle during pregnancy and lactation does not adversely impact infant development (102850), there is insufficient reliable information available about its safety during pregnancy or lactation in humans; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately, short-term.
A milk thistle extract 140 mg three times daily has been used with apparent safety for up to 9 months (88154,98452). A specific product containing the milk thistle constituent silybin (Siliphos, Thorne Research Inc.) has been used with apparent safety in doses up to 320 mg daily for up to 4 weeks in children one year of age and older (63218).
LIKELY SAFE ...when used orally in food amounts. Quinoa is a common food source for many people (99147,99148,99149). There is insufficient reliable information available about the safety of quinoa when used in medicinal amounts.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts.
There is insufficient reliable information available about the safety of quinoa in medicinal amounts; avoid using.
POSSIBLY SAFE ...when used orally and appropriately, short-term. Royal jelly 1-4.8 grams daily for up to 1 year has been used in clinical research without reported adverse effects (95869,95870,102527,102528,105773,105774)....when used topically and appropriately for up to 6 months (71980,102526).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately for up to 6 months.
A specific royal jelly product (Bidro) 150 mg twice daily has been used with apparent safety for 3-6 months in children 5-16 years of age (71968).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately for up to 15 months (155,4347,4350,4351,4352,4353,4354,7140,7646,7652),(12763,14334,14379,14380,14381,72194,72198).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in children of most ages (4347,4356,14334,72145,92806,98734,103451,107603,107605,111102)(111103).
There is insufficient reliable information available about the safety of Saccharomyces boulardii in preterm infants with a birth weight under 1000 grams. Cases of bacteremia have occurred rarely in preterm infants given other probiotics (102416,111610,111612,111613,111850,111852,111853). The US Food and Drug Administration (FDA) has issued a warning about cases of serious infections caused by probiotics reported in very preterm or very low birth weight infants under 1000 grams (111610). Similarly, the American Academy of Pediatrics does not support the routine administration of probiotics to these infants due to conflicting data on safety and efficacy (111608).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when soy protein is used orally and appropriately. Soy protein products in doses up to 60 grams, providing up to 185 mg isoflavones, daily have been safely used in studies lasting up to 16 weeks (842,2293,2294,2296,3025,3402,3977,4755,6412,8530)(10372,11805).
POSSIBLY SAFE ...when soy extracts are used orally and appropriately, short-term. Soy extracts containing concentrated isoflavones in doses of 35-120 mg daily have been used with apparent safety for up to 6 months (4751,6455,7802,12040,12048,13209,95994,95999).
CHILDREN: LIKELY SAFE
when consumed in amounts commonly found in foods or as a component of infant formula (3400,4912,7331).
Soy milk that's not designed for infants should not be used as a substitute for infant formula. Regular soy milk can lead to nutrient deficiencies (12045). Most evidence shows that exposure to soy formula or other soy products in infancy does not cause early onset of puberty or health or reproductive problems later in life (7331,11080,108245). However, some small cohort studies have suggested that higher soy intake during childhood may be associated with an increased risk of precocious puberty (108240) and may be weakly correlated with the development of breasts in children less than 2 years of age (75520). This is in contrast to an observational study in Chinese children ages 7-9 years which suggests that higher soy intake is associated with delayed puberty (108252). One small cohort study has also found that use of soy infant formula may be associated with an increased risk of endometriosis in adulthood, although endometriosis was also correlated with prematurity, which may have confounded the findings (101803).
CHILDREN: POSSIBLY UNSAFE
when used orally as an alternative to cow's milk in children with severe milk allergy (75359).
Although soy protein-based infant formulas are often promoted for children with milk allergy, children with a severe allergy to cow's milk are also frequently sensitive to soy protein (9883). There is insufficient reliable information available about the safety of soy products when used in amounts higher than typical food quantities for children.
PREGNANCY: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Soy contains mildly estrogenic constituents (3373,3988,3989,3990,3994,6029,75303). Theoretically, therapeutic use of soy might adversely affect fetal development; avoid using.
LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods (4912).
A single 20-gram dose of roasted soybeans, containing 37 mg isoflavones, produces four to six times less isoflavones in breast milk than provided in a soy-based infant formula (2290). There is insufficient reliable information available about the safety of long-term use of therapeutic amounts of soy during lactation.
LIKELY SAFE ...when used in amounts commonly found in foods. Sweet almond is commonly eaten as a food (99937,99938,99939,99941). There is insufficient reliable information available about the safety of sweet almond when used orally or topically in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using in amounts greater than those commonly found in foods.
LIKELY SAFE ...when used orally or topically and appropriately. Vitamin E is generally considered safe, even at doses exceeding the recommended dietary allowance (RDA); however, adverse effects are more likely to occur with higher doses. The tolerable upper intake level (UL) in healthy people is 1000 mg daily, equivalent to 1100 IU of synthetic vitamin E (all-rac-alpha-tocopherol) or 1500 IU of natural vitamin E (RRR-alpha-tocopherol) (4668,4681,4713,4714,4844,89234,90067,90069,90072,19206)(63244,97075). Although there is some concern that taking vitamin E in doses of 400 IU (form unspecified) per day or higher might increase the risk of adverse outcomes and mortality from all causes (12212,13036,15305,16709,83339), most of this evidence comes from studies that included middle-aged or older patients with chronic diseases or patients from developing countries in which nutritional deficiencies are prevalent.
POSSIBLY UNSAFE ...when used orally in high doses. Repeated doses exceeding the tolerable upper intake level (UL) of 1000 mg daily are associated with significant side effects in otherwise healthy people (4844). ...when used intravenously in large doses. Large repeated intravenous doses of all-rac-alpha-tocopherol (synthetic vitamin E) were associated with decreased activity of clotting factors and bleeding in one report (3074). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adults who use e-cigarette, or vaping, products, which often contain vitamin E acetate. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Vitamin E acetate has been detected in most bronchoalveolar lavage samples taken from patients with EVALI. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. While this association shows a correlation between vitamin E acetate inhalation and lung injury, a causal link has not yet been determined, and it is not clear if other toxic compounds are also involved (101061,101062,102970).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Vitamin E has been safely used in children in amounts below the tolerable upper intake level (UL). The UL for healthy children is: 200 mg in children aged 1-3 years, 300 mg in children aged 4-8 years, 600 mg in children aged 9-13 years, and 800 mg in children aged 14-18 years. A UL has not been established for infants up to 12 months of age (23388).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL due to increased risk of adverse effects (23388).
...when alpha-tocopherol is used intravenously in large doses in premature infants. Large intravenous doses of vitamin E are associated with an increased risk of necrotizing enterocolitis and sepsis in this population (85062,85083). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adolescents and teenagers who use e-cigarette, or vaping, products. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Constituents in E-cigarette or vaping products with the potential to cause lung injury or impaired lung function include lipids, such as vitamin E acetate. Vitamin E acetate has been detected in all bronchoalveolar lavage samples taken from patients with EVALI. No other ingredient, including THC or nicotine, was found in all samples, and other ingredients, including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable This shows that vitamin E acetate is at the primary site of lung injury. A causal link has not yet been described and it is not clear if other compounds are also involved (101061,101062).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
The tolerable upper intake level (UL) during pregnancy is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older. However, maternal supplementation is not generally recommended unless dietary vitamin E falls below the RDA (4260). No serious adverse effects were reported with oral intake of 400 IU per day starting at weeks 9-22 of pregnancy in healthy patients or those at high risk for pre-eclampsia (3236,97075), or with 600-900 IU daily during the last two months of pregnancy (4260). However, some preliminary evidence suggests that taking vitamin E supplements might be harmful when taken in early pregnancy. A case-control study found that taking a vitamin E supplement during the first 8 weeks of pregnancy is associated with a 1.7-9-fold increase in odds of congenital heart defects (16823). However, the exact amount of vitamin E consumed during pregnancy in this study is unclear. Until more is known, advise patients to avoid taking a vitamin E supplement in early pregnancy unless needed for an appropriate medical indication.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL during lactation is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older (4844).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts that exceed the UL due to increased risk of adverse effects (4844).
LIKELY SAFE ...when consumed in amounts commonly found in foods (5286).
POSSIBLY SAFE ...when wheatgrass juice is taken orally and appropriately in medicinal amounts. Wheatgrass juice 60-100 mL daily has been used safely for up to 18 months (11165,85601,104878,104879). ...when wheatgrass cream is used topically. Wheatgrass 10% cream has been used safely for up to 6 weeks (85602). There is insufficient reliable information available about the long-term safety of wheatgrass when used medicinally.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally and appropriately (1240,1241,1242,1245,1246,1253,1256,3590,8526,93499)(95367,93712,95588,95589,110567).
POSSIBLY SAFE ...when used intravaginally and appropriately (1248).
PREGNANCY: LIKELY SAFE
when consumed in amounts commonly found in foods.
PREGNANCY: POSSIBLY SAFE
when used intravaginally.
A small clinical study in pregnancy reported no adverse reactions (1248).
LACTATION: LIKELY SAFE
when used in amounts commonly found in foods.
There is insufficient reliable information available about the safety of the intravaginal use of yogurt during breast-feeding.
Below is general information about the interactions of the known ingredients contained in the product Greens+ Omega 3 Chia Energy Bar (natural or chocolate flavor). Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, the antioxidant effects of acerola might reduce the effectiveness of alkylating agents.
Acerola contains vitamin C, an antioxidant. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as alkylating agents (391). In contrast, other researchers theorize that antioxidants might make alkylating chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Theoretically, concomitant use of acerola with aluminum salts might increase the amount of aluminum absorbed.
Acerola contains vitamin C. It is thought that vitamin C chelates aluminum, keeping it in solution and available for absorption (10549,10550,10551). In people with normal renal function, urinary excretion of aluminum likely increases, making aluminum retention and toxicity unlikely (10549). However, patients with renal failure who take aluminum-containing compounds, such as phosphate binders, should avoid acerola in doses that provide more vitamin C than the recommended dietary allowances.
|
Theoretically, the antioxidant effects of acerola might reduce the effectiveness of antitumor antibiotics.
Acerola contains vitamin C, an antioxidant. There is concern that antioxidants might reduce the activity of chemotherapy drugs that generate free radicals, such as antitumor antibiotics (391). In contrast, other researchers theorize that antioxidants might make antitumor antibiotic chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on antitumor antibiotic chemotherapy.
|
Theoretically, acerola might reduce the clearance of aspirin; however, its vitamin C content is likely too low to produce clinically significant effects.
Acerola contains vitamin C. It has been suggested that acidification of the urine by vitamin C can decrease the urinary excretion of salicylates, increasing plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589). The vitamin C content of acerola is typically about 2000 mg per 100 grams. Thus, a clinically significant interaction between acerola and aspirin is unlikely.
|
Theoretically, concomitant use of acerola with estrogens might increase estrogenic effects.
Acerola contains vitamin C. Increases in plasma estrogen levels of up to 55% have occurred under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. However, increases in plasma estrogen levels may occur when women who are deficient in vitamin C take supplements (11161).
|
Theoretically, acerola might reduce the effectiveness of warfarin; however, its vitamin C content is likely too low to produce clinically significant effects.
Acerola contains vitamin C. High doses of vitamin C may reduce the response to warfarin, possibly by causing diarrhea and reducing warfarin absorption (11566). This occurred in two people who took up to 16 grams daily of vitamin C, and resulted in decreased prothrombin time (9804,9806). Lower doses of 5-10 grams daily of vitamin C can also reduce warfarin absorption, but this does not seem to be clinically significant (9805,9806,11566,11567). The vitamin C content of acerola is typically about 2000 mg per 100 grams. Thus, a clinically significant interaction between acerola and warfarin is unlikely.
|
Theoretically, alfalfa might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
Theoretically, alfalfa might interfere with the activity of contraceptive drugs.
|
Theoretically, alfalfa might interfere with hormone therapy.
|
Theoretically, alfalfa might decrease the efficacy of immunosuppressive therapy.
|
Theoretically, concomitant use of alfalfa with photosensitizing drugs might have additive effects.
Animal research suggests that excessive doses of alfalfa may increase photosensitivity, possibly due to its chlorophyll content (106043). It is unclear if this effect would be clinically relevant in humans.
|
Theoretically, alfalfa might reduce the anticoagulant activity of warfarin.
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of aliskiren.
Pharmacokinetic research shows that coadministration of apple juice 200 mL along with aliskiren 150 mg decreases the bioavailability of aliskiren by 63% (17670). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046,94413). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Theoretically, consuming apple juice with antidiabetes drugs might interfere with blood glucose control.
Clinical research suggests that consuming apples or drinking apple juice can raise blood glucose levels, with the effects of drinking apple juice being more significant than consuming apples (31699).
|
Consuming apple juice with antihypertensive drugs might interfere with blood pressure control.
Some clinical evidence suggests that consuming apple and cherry juice can increase blood pressure in elderly patients (31680).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of atenolol.
Pharmacokinetic research shows that coadministration of apple juice 600-1200 mL decreases levels of atenolol by 58% to 82% in a dose-dependent manner (17999). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of fexofenadine.
Pharmacokinetic research shows that coadministration of apple juice 400-1200 mL along with fexofenadine 60-120 mg decreases bioavailability of fexofenadine by up to 78% (7046,94413). Coadministration with smaller quantities of apple juice (150 mL or less) does not appear to affect the bioavailability of fexofenadine (94421). Apple juice seems to inhibit organic anion transporting polypeptide (OATP), which is involved in drug uptake in the gut, liver, and kidney (7046,94413). It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
There is some concern that concomitant consumption of apple juice might decrease oral absorption and blood levels of lithium.
In one case report, a patient had an undetectable serum lithium level when lithium citrate was administered with apple juice. When lithium was administered with an alternative beverage, the lithium level became detectable and the patient demonstrated clinical improvement (105342).
|
Concomitant consumption of apple juice can significantly decrease oral absorption and blood levels of OATP substrates.
Research shows that consuming apple juice inhibits OATP, which reduces bioavailability of oral drugs that are substrates of OATP (7046,17605). Fexofenadine, atenolol, and aliskiren are substrates of OATP. Clinical research shows that coadministration of apple juice decreases bioavailability of fexofenadine by up to 78% (7046,94413), aliskiren by 63% (17670), and atenolol by up to 82% (17999). These effects appear to increase with larger quantities of apple juice. It is thought that apple juice might affect OATP for only a short time. Therefore, separating drug administration and consumption of apple juice by at least 4 hours might avoid this interaction (17603,17604).
|
Theoretically, taking astragalus with antidiabetes drugs might increase the risk of hypoglycemia.
|
Theoretically, astragalus might interfere with cyclophosphamide therapy.
|
Theoretically, astragalus might interfere with immunosuppressive therapy.
|
Theoretically, astragalus might increase levels and adverse effects of lithium.
Animal research suggests that astragalus has diuretic properties (15103). Theoretically, due to this diuretic effect, astragalus might reduce excretion and increase levels of lithium.
|
Theoretically, taking antibiotics with Bacillus coagulans might decrease the effectiveness of B. coagulans.
B. coagulans preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms. Tell patients to separate administration of antibiotics and B. coagulans preparations by at least two hours.
|
Theoretically, barley might decrease the clinical effects of triclabendazole.
Animal research suggests that a diet supplemented with barley can reduce the bioavailability of triclabendazole when taken concomitantly (23884). This effect has not been shown in humans.
|
There is some concern that bee pollen might interact with warfarin and increase the risk of bleeding.
In one case report, a patient on warfarin had a stable international normalized ratio (INR) of 1.9-3.3 for 9 months. The patient's INR was found to be 7.1 after starting bee pollen granules one teaspoon twice daily for approximately one month. The patient's warfarin dose was decreased by approximately 11% in order to return the INR to the therapeutic range while continuing the bee pollen supplement (18063).
|
Theoretically, beet might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research suggests that beet induces CYP1A2 enzymes (111404).
|
Theoretically, beet might increase the levels of CYP3A4 substrates.
In vitro research suggests that betanin, the major pigment in beet, competitively inhibits CYP3A4 in a dose-dependent manner similarly to strong CYP3A4 inhibitor ketoconazole (113425).
|
Theoretically, taking Bifidobacterium lactis with antibiotic drugs might decrease the effectiveness of B. lactis.
|
Theoretically, bilberry fruit extract might increase the risk of bleeding when taken with anticoagulant or antiplatelet drugs.
|
Theoretically, bilberry leaf or fruit extract may increase the risk of hypoglycemia when taken with antidiabetes drugs.
Animal research suggests that bilberry leaf extract might have blood glucose-lowering activity (1264). Also, one small clinical trial in patients with type 2 diabetes shows that taking bilberry fruit extract 470 mg as a single dose prior to an oral glucose tolerance test lowers plasma glucose levels when compared with placebo (91507).
|
Theoretically, bilberry fruit extract might decrease levels of drugs metabolized by CYP2E1.
Animal research shows that exposure to small concentrations of bilberry extract in drinking water for around one month increased CYP2E1 activity by 31%. However, exposure over a 2-month period did not increase CYP2E1 activity (103191). This effect has not been reported in humans.
|
Theoretically, bilberry fruit extract might reduce the efficacy of erlotinib.
In vitro research suggests that bilberry fruit extract and its constituents, delphinidin and delphinidin-3-O-glucoside, inhibit the activity of erlotinib (97031). This interaction has not been reported in humans.
|
Theoretically, spirulina blue-green algae might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs. However, this is unlikely.
Spirulina blue-green algae have shown antiplatelet and anticoagulant effects in vitro (18311,18312,75892,92162,92163). However, one preliminary study in 24 patients receiving spirulina blue-green algae 2.3 grams daily for 2 weeks showed no effect on platelet activation or measures of clotting time (97202).
|
Theoretically, taking blue-green algae with antidiabetes drugs might increase the risk of hypoglycemia.
Human research shows that spirulina blue-green algae can have hypoglycemic effects in patients with diabetes, at least some of whom were using antidiabetes drugs (18299). However, blue-green algae does not seem to improve glycated hemoglobin (HbA1c) levels in patients with diabetes (102689,109970). A meta-analysis of animal studies also suggests that spirulina blue-green algae have hypoglycemic effects (109970).
|
Theoretically, concurrent use of blue-green algae might interfere with immunosuppressive therapy.
|
Theoretically, chlorella might have additive effects with photosensitizing drugs.
Chlorella has been reported to cause photosensitization (3900,5852). In five case reports, patients who had ingested chlorella exhibited swelling followed by erythematopurpuric lesions on sun-exposed areas of the body (5852). Theoretically, concomitant use with photosensitizing drugs may exacerbate effects.
|
Theoretically, chlorella might reduce the clinical effects of warfarin.
|
Theoretically, dulse might increase the risk of hyperkalemia when taken with ACEIs.
Dulse is rich in potassium (103317). ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628). However, using these drugs while consuming dulse in quantities that provide larger amounts of potassium daily might increase the risk of hyperkalemia. Additionally, in vitro research suggests that dulse protein hydrolysates inhibit the activity of ACE (103319). However, these effects have not been demonstrated in humans.
|
Theoretically, combining dulse with amiodarone might cause excessively high iodine levels.
|
Theoretically, dulse might increase the risk of hyperkalemia when taken with ARBs.
Dulse is rich in potassium (103317). ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628). However, using these drugs while consuming dulse in quantities that provide higher amounts of potassium daily might increase the risk of hyperkalemia. Additionally, in vitro research suggests that dulse protein hydrolysates inhibit the activity of angiotensin converting enzyme (ACE) (103319). However, these effects have not been demonstrated in humans.
|
Theoretically, due to its iodine content, dulse might alter the effects of antithyroid drugs.
|
Theoretically, dulse might increase the risk of hyperkalemia when taken with digoxin.
Dulse is rich in potassium, and digoxin can increase potassium levels in the blood (103317). This interaction has not been demonstrated in humans.
|
Theoretically, dulse might increase the risk of hyperkalemia when taken with potassium-sparing diuretics.
Dulse is rich in potassium, and potassium-sparing diuretics can increase potassium levels in the blood (103317). This interaction has not been shown in humans.
|
Theoretically, due to its iodine content, dulse might alter the effects of thyroid hormone.
Dulse is rich in iodine (103315,103323). Iodine in high doses has been reported to cause both hyperthyroidism and hypothyroidism, depending on the individual's past medical history. Although dulse has been associated with a statistically significant increase in thyroid stimulating hormone (TSH) levels in clinical research, clinically significant increases have not been documented (103315,103323).
|
Echinacea can increase plasma levels of caffeine by inhibiting its metabolism.
Echinacea seems to increase plasma concentrations of caffeine by around 30% (12155). This is likely due to inhibition of cytochrome P450 1A2 (CYP1A2) by echinacea.
|
Echinacea might inhibit the metabolism of CYP1A2 and increase plasma levels of some drugs.
Echinacea appears to inhibit CYP1A2 enzymes in humans. Additionally, echinacea seems to increase plasma concentrations of caffeine, a CYP1A2 substrate, by around 30% (12155). Theoretically, echinacea might increase levels of other drugs metabolized by CYP1A2.
|
Echinacea may induce hepatic CYP3A4 and inhibit intestinal CYP3A4. This may increase or decrease levels of drugs metabolized by CYP3A4.
Several clinical trials have shown that taking echinacea for up to one month does not significantly affect the metabolism of various CYP3A4 substrates, including midazolam, docetaxel, etravirine, lopinavir-ritonavir, and darunavir-ritonavir (13712,48618,88164,88165). However, other clinical research shows that echinacea may increase the clearance of midazolam, suggesting that echinacea might induce CYP3A4 (48618). The discrepancy is thought to be due to differing effects of echinacea on intestinal versus hepatic CYP3A4 enzymes. Echinacea appears to induce hepatic CYP3A4 but inhibit intestinal CYP3A4 (12155). In some cases, these effects might cancel each other out, but in others, drug levels may be increased or decreased depending on the level of effect at hepatic and intestinal sites. The effect of echinacea on CYP3A4 activity may differ depending on the CYP3A4 substrate (6450,11026,88162,88167).
|
Theoretically, echinacea may interfere with the metabolism of darunavir; however, a small clinical study found no effect.
Darunavir is metabolized by cytochrome P450 3A4 (CYP3A4) and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Echinacea has variable effects on CYP3A4, but administration of an E. purpurea root extract (Arkocapsulas Echinacea, Arkopharma) 500 mg four times daily for 14 days did not affect darunavir/ritonavir pharmacokinetics in 15 HIV-infected patients (88163,93578).
|
Theoretically, echinacea may interfere with the metabolism of docetaxel; however, a small clinical study found no effect.
Docetaxel is metabolized by cytochrome P450 3A4 (CYP3A4). Echinacea has variable effects on CYP3A4, but taking E. purpurea whole plant extract (Echinaforce, A. Vogel Biopharma AG) 20 drops three times daily for 2 weeks did not alter the pharmacokinetics of docetaxel in one clinical study (88164).
|
Echinacea may increase levels of etoposide.
In one report, concomitant use of etoposide and echinacea was associated with more severe thrombocytopenia than the use of etoposide alone, suggesting inhibition of etoposide metabolism (20082). Etoposide is a cytochrome P450 3A4 (CYP3A4) substrate. Echinacea has variable effects on CYP3A4, but some studies have reported inhibition of the enzyme (6450,11026,12155,88162,88167).
|
Theoretically, echinacea may interfere with the metabolism of etravirine; however, a small clinical study found no effect.
|
Echinacea has immunostimulant activity which may interfere with immunosuppressant therapy.
|
Theoretically, echinacea may interfere with the metabolism of lopinavir; however, a small clinical study found no effect.
Lopinavir is metabolized by cytochrome P450 3A4 (CYP3A4) and is administered with the CYP3A4 inhibitor ritonavir to increase its plasma concentrations. Echinacea has variable effects on CYP3A4, but taking E. purpurea (Echinamide, Natural Factors Nutritional Products, Inc.) 500 mg three times daily for 14 days did not alter the pharmacokinetics of lopinavir/ritonavir in healthy volunteers (48618,93578).
|
Theoretically, echinacea may increase the metabolism of intravenous midazolam.
Echinacea induces hepatic CYP3A4 and might decrease plasma levels of midazolam by about 20%, reducing the effectiveness of intravenous midazolam (12155). Echinacea also appears to inhibit intestinal CYP3A4, which could theoretically increase the bioavailability of oral midazolam. This may cancel out the decrease in availability caused by induction of hepatic CYP3A4, such that overall plasma levels after oral administration of midazolam are not affected by echinacea.
|
Echinacea seems to increase the clearance of warfarin, although the effect may not be clinically significant.
Preliminary clinical research in healthy male volunteers suggests that taking echinacea increases the clearance of the active S-isomer of warfarin after a single dose of warfarin, but there was not a clinically significant effect on the INR (20083).
|
Theoretically, eleuthero may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, eleuthero might have additive effects when used with antidiabetes drugs.
Animal research suggests that certain constituents of eleuthero have hypoglycemic activity in both healthy and diabetic animals (7591,73535,74932,74956,74988,74990). A small study in adults with type 2 diabetes also shows that taking eleuthero for 3 months can lower blood glucose levels (91509). However, one very small study in healthy individuals shows that taking powdered eleuthero 3 grams, 40 minutes prior to a 75-gram oral glucose tolerance test, significantly increases postprandial blood glucose levels when compared with placebo (12536). These contradictory findings might be due to patient-specific variability and variability in active ingredient ratios.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP1A2.
In vitro and animal research suggest that standardized extracts of eleuthero inhibit CYP1A2 (7532). This effect has not been reported in humans.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP2C9.
In vitro and animal research suggest that standardized extracts of eleuthero might inhibit CYP2C9 (7532). This effect has not been reported in humans.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP2D6.
|
Theoretically, eleuthero might increase levels of drugs metabolized by CYP3A4.
|
Eleuthero might increase serum digoxin levels and increase the risk of side effects.
In one case report, a 74-year-old male who was stabilized on digoxin presented with an elevated serum digoxin level after starting an eleuthero supplement, without symptoms of toxicity. After stopping the supplement, serum digoxin levels returned to normal (543). It is not clear whether this was due to a pharmacokinetic interaction or to interference with the digoxin assay (15585). Although the product was found to be free of digoxin and digitoxin (543), it was not tested for other contaminants (797).
|
Theoretically, eleuthero might interfere with immunosuppressive drugs because of its immunostimulant activity.
|
Theoretically, eleuthero might decrease levels of drugs metabolized by OATP.
In vitro research suggests that eleuthero inhibits OATP2B1, which might reduce the bioavailability of oral drugs that are substrates of OATP2B1 (35450). Due to the weak inhibitory effect identified in this study, this interaction is not likely to be clinically significant.
|
Theoretically, eleuthero might increase levels of P-glycoprotein substrates.
|
Theoretically, ginkgo might decrease the levels and clinical effects of alprazolam.
In clinical research, ginkgo extract (Ginkgold) 120 mg twice daily seems to decrease alprazolam levels by about 17%. However, ginkgo does not appear to decrease the elimination half-life of alprazolam. This suggests that ginkgo is more likely to decrease absorption of alprazolam rather than induce hepatic metabolism of alprazolam (11029).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin. Theoretically, ginkgo might increase the risk of bleeding if used with other anticoagulant or antiplatelet drugs.
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,578,579,8581,13002,13135,13179,13194,14456,87868). However, population and clinical studies have produced mixed results. Some evidence shows that short-term use of ginkgo leaf does not significantly reduce platelet aggregation and blood clotting (87732). A study in healthy males who took a specific ginkgo leaf extract (EGb 761) 160 mg twice daily for 7 days found no change in prothrombin time (12114). An analysis of a large medical record database suggests that ginkgo increases the risk of a bleeding adverse event by 38% when taken concurrently with warfarin (91326). It has been suggested that ginkgo has to be taken for at least 2-3 weeks to have a significant effect on platelet aggregation (14811). However, a meta-analysis of 18 studies using standardized ginkgo extracts, 80-480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). In addition, a single dose of ginkgo plus clopidogrel (14811) or ticlopidine does not seem to significantly increase bleeding time or platelet aggregation (17111,87846). Also, taking ginkgo leaf extract daily for 8 days in conjunction with rivaroxaban does not affect anti-factor Xa activity; however, this study did not evaluate bleeding time (109526).
|
Theoretically, ginkgo might reduce the effectiveness of anticonvulsants.
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090).
|
Theoretically, taking ginkgo with antidiabetes drugs might alter the response to antidiabetes drugs.
Ginkgo leaf extract seems to alter insulin secretion and metabolism, and might affect blood glucose levels in people with type 2 diabetes (5719,14448,103574). The effect of ginkgo seems to differ depending on the insulin and treatment status of the patient. In diet-controlled diabetes patients with hyperinsulinemia, taking ginkgo does not seem to significantly affect insulin or blood glucose levels. In patients with hyperinsulinemia who are treated with oral hypoglycemic agents, taking ginkgo seems to decrease insulin levels and increase blood glucose following an oral glucose tolerance test. Researchers speculate that this could be due to ginkgo-enhanced hepatic metabolism of insulin. In patients with pancreatic exhaustion, taking ginkgo seems to stimulate pancreatic beta-cells, resulting in increased insulin and C-peptide levels, but with no significant change in blood glucose levels in response to an oral glucose tolerance test (14448).
|
Theoretically, ginkgo might decrease the levels and clinical effects of atorvastatin.
In humans, intake of ginkgo extract appears to increase atorvastatin clearance, reducing the area under the curve of atorvastatin by 10% to 14% and the maximum concentration by 29%. However, this interaction does not appear to affect cholesterol synthesis and absorption (89706). Further, a model in rats with hyperlipidemia suggests that administering ginkgo extract does not impact blood levels of atorvastatin and leads to lower total cholesterol, low-density lipoprotein cholesterol, and triglycerides when compared with rats given atorvastatin alone (111331).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP1A2.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP2C19.
Some clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce CYP2C19 enzymes and potentially decrease levels of drugs metabolized by these enzymes (13108). However, other clinical research shows that taking ginkgo 120 mg twice daily for 12 days has no effect on levels of drugs metabolized by CYP2C19 (87824).
|
Theoretically, ginkgo might increase levels of drugs metabolized by CYP2C9.
In vitro, a specific standardized extract of ginkgo leaf (EGb 761) inhibits CYP2C9 activity (11026,12061,14337). The terpenoid (ginkgolides) and flavonoid (quercetin, kaempferol, etc.) constituents seem to be responsible for this effect. Most ginkgo extracts contain some amount of these constituents. Therefore, other ginkgo leaf extracts might also inhibit the CYP2C9 enzyme. However, clinical research suggests that ginkgo might not have a significant effect on CYP2C9 in humans. Ginkgo does not seem to significantly affect the pharmacokinetics of CYP2C9 substrates diclofenac or tolbutamide.
|
Theoretically, ginkgo might decrease levels of drugs metabolized by CYP3A4.
There is conflicting evidence about whether ginkgo induces or inhibits CYP3A4 (1303,6423,6450,11026,87800,87805,111330). Ginkgo does not appear to affect hepatic CYP3A4 (11029). However, it is not known if ginkgo affects intestinal CYP3A4. Preliminary clinical research suggests that taking ginkgo does not significantly affect levels of donepezil, lopinavir, or ritonavir, which are all CYP3A4 substrates (11027,87800,93578). Other clinical research also suggests ginkgo does not significantly affect CYP3A4 activity (10847). However, there are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821,25464).
|
Theoretically, ginkgo might decrease the levels and clinical effects of efavirenz.
There are two case reports of decreased efavirenz concentrations and increased viral load in patients taking ginkgo. In one case, an HIV-positive male experienced over a 50% decrease in efavirenz levels over the course of 14 months while taking ginkgo extract. HIV-1 RNA copies also increased substantially, from less than 50 to more than 1500. It is suspected that terpenoids from the ginkgo extract reduced drug levels by inducing cytochrome P450 3A4 (CYP3A4) (16821). In another case report, a patient stable on antiviral therapy including efavirenz for 10 years, had an increase in viral load from <50 copies/mL to 1350 copies/mL after 2 months of taking a combination of supplements including ginkgo. After stopping ginkgo, the viral load was again controlled with the same antiviral therapy regimen (25464).
|
Theoretically, ginkgo might increase the risk of bleeding when used with ibuprofen.
Ginkgo might have antiplatelet effects and has been associated with several case reports of spontaneous bleeding. In one case, a 71-year-old male had taken a specific ginkgo extract (Gingium, Biocur) 40 mg twice daily for 2.5 years. About 4 weeks after starting ibuprofen 600 mg daily he experienced a fatal intracerebral hemorrhage (13179). However, the antiplatelet effects of ginkgo have been questioned. A meta-analysis and other studies have not found a significant antiplatelet effect with standardized ginkgo extracts, 80 mg to 480 mg taken daily for up to 32 weeks (17179).
|
Theoretically, taking ginkgo with oral, but not intravenous, nifedipine might increase levels and adverse effects of nifedipine.
Animal research and some clinical evidence suggests that taking ginkgo leaf extract orally in combination with oral nifedipine might increase nifedipine levels and cause increased side effects, such as headaches, dizziness, and hot flushes (87764,87765). However, taking ginkgo orally does not seem to affect the pharmacokinetics of intravenous nifedipine (87765).
|
Theoretically, taking ginkgo with omeprazole might decrease the levels and clinical effects of omeprazole.
Clinical research shows that a specific ginkgo leaf extract (Remembrance, Herbs Product LTD) 140 mg twice daily can induce cytochrome P450 (CYP) 2C19 enzymes and decrease levels of omeprazole by about 27% to 42% (13108).
|
Theoretically, taking ginkgo with P-glycoprotein substrates might increase the levels and adverse effects of these substrates.
A small clinical study in healthy volunteers shows that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of the P-glycoprotein substrate, talinolol, by 36% in healthy male individuals. However, single doses of ginkgo do not have the same effect (87830).
|
Theoretically, taking ginkgo with risperidone might increase the levels and adverse effects of risperidone.
A single case of priapism has been reported for a 26-year-old male with schizophrenia who used risperidone 3 mg daily along with ginkgo extract 160 mg daily (87796). Risperidone is metabolized by cytochrome P450 (CYP) 2D6 and CYP3A4. CYP3A4 activity might be affected by ginkgo. Theoretically, ginkgo may inhibit the metabolism of risperidone and increase the risk of adverse effects.
|
Theoretically, ginkgo might decrease the levels and clinical effects of rosiglitazone.
Animal research shows that ginkgo leaf extract orally 100 or 200 mg/kg daily for 10 days alters the pharmacodynamics of rosiglitazone in a dose-dependent manner. The 100 mg/kg and 200 mg/kg doses reduce the area under the concentration time curve (AUC) of rosiglitazone by 39% and 52%, respectively, and the half-life by 28% and 39%, respectively. It is hypothesized that these changes may be due to induction of cytochrome P450 2C8 by ginkgo (109525).
|
Theoretically, taking ginkgo with drugs that lower the seizure threshold might increase the risk for convulsions.
Ginkgo seeds contain ginkgotoxin. Large amounts of ginkgotoxin can cause neurotoxicity and seizure. Ginkgotoxin is present in much larger amounts in ginkgo seeds than leaves (8232). Ginkgo leaf extract contains trace amounts of ginkgotoxin. The amount of ginkgotoxin in ginkgo leaf and leaf extract seems unlikely to cause toxicity (11296). However, there are anecdotal reports of seizure occurring after use of ginkgo leaf both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,14281).
|
Theoretically, ginkgo might decrease the levels and clinical effects of simvastatin.
Clinical research shows that taking ginkgo extract can reduce the area under the curve and maximum concentration of simvastatin by 32% to 39%. However, ginkgo extract does not seem to affect the cholesterol-lowering ability of simvastatin (89704).
|
Theoretically, ginkgo might increase the levels and clinical effects of sofosbuvir.
Animal research in rats shows that giving a ginkgo extract 25 mg/kg orally daily for 14 days increases the area under the concentration time curve (AUC) after a single sofosbuvir dose of 40 mg/kg by 11%, increases the half-life by 60%, and increases the plasma concentration at 4 hours by 38%. This interaction appears to be related to the inhibition of intestinal P-glycoprotein by ginkgo (109524).
|
Theoretically, ginkgo might increase the blood levels of tacrolimus.
In vitro evidence suggests that certain biflavonoids in ginkgo leaves (i.e. amentoflavone, ginkgetin, bilobetin) may inhibit the metabolism of tacrolimus by up to 50%. This interaction appears to be time-dependent and due to inhibition of cytochrome P450 (CYP) 3A4 by these bioflavonoids. In rats given tacrolimus 1 mg/kg orally, amentoflavone was shown to increase the area under the concentration time curve (AUC) of tacrolimus by 3.8-fold (111330).
|
Taking ginkgo with talinolol seems to increase blood levels of talinolol.
There is some evidence that using ginkgo leaf extract 120 mg orally three times daily for 14 days can increase levels of talinolol by 36% in healthy male individuals. However, single doses of ginkgo do not seem to affect talinolol pharmacokinetics (87830).
|
Theoretically, ginkgo might increase the levels and clinical effects of trazodone.
In a case report, an Alzheimer patient taking trazodone 20 mg twice daily and ginkgo leaf extract 80 mg twice daily for four doses became comatose. The coma was reversed by administration of flumazenil (Romazicon). Coma might have been induced by excessive GABA-ergic activity. Ginkgo flavonoids are thought to have GABA-ergic activity and act directly on benzodiazepine receptors. Ginkgo might also increase metabolism of trazodone to active GABA-ergic metabolites, possibly by inducing cytochrome P450 3A4 (CYP3A4) metabolism (6423).
|
Ginkgo has been shown to increase the risk of bleeding in some people when taken with warfarin.
Several pharmacodynamic studies suggest that ginkgo inhibits platelet aggregation. It is thought that the ginkgo constituent, ginkgolide B, displaces platelet-activating factor (PAF) from its binding sites, decreasing blood coagulation (6048,9760). Several case reports have documented serious bleeding events in patients taking ginkgo (244,576,578,579,8581,13002,13135,13179,13194,14456,87868). Information from a medical database suggests that when taken concurrently with warfarin, ginkgo increases the risk of a bleeding adverse event by 38% (91326). There is also some evidence that ginkgo leaf extract can inhibit cytochrome P450 2C9, an enzyme that metabolizes warfarin. This could result in increased warfarin levels (12061). However, population and clinical research has produced mixed results. Clinical research in healthy people suggests that ginkgo has no effect on INR, or the pharmacokinetics or pharmacodynamics of warfarin (12881,15176,87727,87889). A meta-analysis of 18 studies using standardized ginkgo extracts, 80 mg to 480 mg daily for up to 32 weeks, did not find a significant effect on platelet aggregation, fibrinogen concentration, or PT/aPTT (17179). There is also some preliminary clinical research that suggests ginkgo might not significantly increase the effects of warfarin in patients that have a stable INR (11905).
|
Theoretically, grape extracts may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Ingesting grape juice with cyclosporine can reduce cyclosporine absorption.
A small pharmacokinetic study in healthy young adults shows that intake of purple grape juice 200 mL along with cyclosporine can decrease the absorption of cyclosporine by up to 30% when compared with water (53177). Separate doses of grape juice and cyclosporine by at least 2 hours to avoid this interaction.
|
Theoretically, grape juice might reduce the levels of CYP1A2 substrates.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of CYP1A2 (2539).
|
It is unclear if grape juice or grape seed extract inhibits CYP2C9; research is conflicting.
In vitro evidence shows that grape seed extract or grape juice might inhibit CYP2C9 enzymes (11094,53011,53089). However, a small pharmacokinetic study in healthy adults shows that drinking 8 ounces of grape juice once does not affect the clearance of flurbiprofen, a probe-drug for CYP2C9 metabolism (11094). The effects of continued grape juice consumption are unclear.
|
Theoretically, grape seed extract may increase the levels of CYP2D6 substrates.
In vitro evidence suggests that grape seed extract might inhibit CYP2D6 enzymes (53011). However, this interaction has not been reported in humans.
|
Theoretically, grape seed extract might increase the levels of CYP2E1 substrates.
In vitro and animal research suggests that grape seed proanthocyanidin extract inhibits CYP2E1 enzymes (52949). However, this interaction has not been reported in humans.
|
It is unclear if grape seed extract inhibits or induces CYP3A4; research is conflicting.
|
Theoretically, long-term intake of grape seed extract might decrease the effects of midazolam.
Animal research shows that subchronic ingestions of grape seed extract can increase the elimination of intravenous midazolam by increasing hepatic CYP3A4 activity. Single doses of grape seed extract do not appear to affect midazolam elimination (53011).
|
Grape juice might decrease phenacetin absorption.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of cytochrome P450 1A2 (CYP1A2) (2539).
|
Theoretically, high doses of green tea might increase the effects and side effects of 5-fluorouracil.
Animal research shows that taking green tea in amounts equivalent to about 6 cups daily in humans for 4 weeks prior to receiving a single injection of 5-fluorouracil increases the maximum plasma levels of 5-fluorouracil by about 2.5-fold and the area under the curve by 425% (98424).
|
Theoretically, green tea might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine is a competitive inhibitor of adenosine at the cellular level. However, caffeine doesn't seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, alcohol might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Concomitant use of alcohol and caffeine can increase caffeine serum concentrations and the risk of caffeine adverse effects. Alcohol reduces caffeine metabolism (6370).
|
Theoretically, green tea may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Conflicting reports exist regarding the effect of green tea on bleeding risk when used with anticoagulant or antiplatelet drugs; however, most evidence suggests that drinking green tea in moderate amounts is unlikely to cause a significant interaction. Green tea contains small amounts of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects. Furthermore, the catechins and caffeine in green tea are reported to have antiplatelet activity (733,8028,8029,12882,100524).
|
Theoretically, taking green tea with antidiabetes drugs might interfere with blood glucose control.
|
Green tea extract seems to reduce the levels and clinical effects of atorvastatin.
In healthy humans, taking green tea extract 300 mg or 600 mg along with atorvastatin reduces plasma levels of atorvastatin by approximately 24%. The elimination of atorvastatin is not affected (102714). Atorvastatin is a substrate of organic anion-transporting polypeptides (OATPs). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs. Some OATPs are expressed in the small intestine and are responsible for the uptake of drugs and other compounds, which may have resulted in reduced plasma levels of atorvastatin (19079). It is not clear if drinking green tea alters the absorption of atorvastatin.
|
Green tea contains caffeine. Theoretically, concomitant use of large amounts of caffeine might increase cardiac inotropic effects of beta-agonists (15).
|
Theoretically, green tea might interfere with the effects of bortezomib.
In vitro research shows that green tea polyphenols, such as epigallocatechin gallate (EGCG), interact with bortezomib and block its proteasome inhibitory action. This prevents the induction of cell death in multiple myeloma or glioblastoma cancer cell lines (17212). Advise patients taking bortezomib, not to take green tea.
|
Theoretically, green tea might reduce the effects of carbamazepine and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, green tea might reduce the levels and clinical effects of celiprolol.
In a small human study, taking green tea daily for 4 days appears to decrease blood and urine levels of celiprolol by at least 98% (104607). This interaction is possibly due to the inhibition of organic anion transporting polypeptide (OATP). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is found in the intestine (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine in green tea.
Green tea contains caffeine. Cimetidine can reduce caffeine clearance by 31% to 42% (11736).
|
Theoretically, green tea might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Animal research suggests that, although green tea extract does not affect the elimination of clozapine, it delays the time to reach peak concentration and reduces the peak plasma levels (90173). Also, concomitant administration of green tea and clozapine might theoretically cause acute exacerbation of psychotic symptoms due to the caffeine in green tea. Caffeine can increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg daily inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Researchers speculate that caffeine might inhibit CYP1A2. However, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients be more sensitive to the interaction between clozapine and caffeine (13741).
|
Theoretically, concomitant use might increase the effects and adverse effects of caffeine found in green tea.
Green tea contains caffeine. Oral contraceptives can decrease caffeine clearance by 40% to 65% (8644).
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Caffeine is metabolized by cytochrome P450 1A2 (CYP1A2) (3941,5051,11741,23557,23573,23580,24958,24959,24960,24962), (24964,24965,24967,24968,24969,24971,38081,48603). Theoretically, drugs that inhibit CYP1A2 may decrease the clearance rate of caffeine from green tea and increase caffeine levels.
|
Green tea is unlikely to produce clinically significant changes in the levels and clinical effects of CYP3A4 substrates.
|
Theoretically, green tea might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Green tea contains caffeine. Caffeine might inhibit dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram might increase the risk of adverse effects from caffeine.
In human research, disulfiram decreases the clearance and increases the half-life of caffeine (11840).
|
Theoretically, using green tea with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Estrogen inhibits caffeine metabolism (2714).
|
Theoretically, green tea might reduce the effects of ethosuximide and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of felbamate and increase the risk for convulsions.
Green tea contains caffeine. Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Green tea can decrease blood levels of fexofenadine.
Clinical research shows that green tea can significantly decrease blood levels and excretion of fexofenadine. Taking green tea extract with a dose of fexofenadine decreased bioavailability of fexofenadine by about 30%. In vitro, green tea inhibits the cellular accumulation of fexofenadine by inhibiting the organic anion transporting polypeptide (OATP) drug transporter (111029). Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates (19079,102714,102730).
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, green tea might increase the levels and adverse effects of flutamide.
Green tea contains caffeine. In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). Theoretically, concomitant use of caffeine and flutamide might increase serum concentrations of flutamide and increase the risk adverse effects.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Fluvoxamine reduces caffeine metabolism (6370).
|
Theoretically, concomitant use might have additive adverse hepatotoxic effects.
|
Theoretically, green tea might reduce the levels and clinical effects of imatinib.
In animal research, a single dose of green tea extract reduces the area under the curve (AUC) of imatinib by up to approximately 64% and its main metabolite N-desmethyl imatinib by up to approximately 81% (104600). This interaction has not been shown in humans. The mechanism of action is unclear but may involve multiple pathways.
|
Theoretically, green tea might reduce the levels and clinical effects of lisinopril.
Preliminary clinical research shows that a single dose of green tea extract reduces plasma concentrations of lisinopril. Compared to a control group, peak levels and area under the curve (AUC) of lisinopril were reduced by approximately 71% and 66%, respectively (104599). This may be due to inhibition of organic anion transporting polypeptides (OATP) by green tea catechins (19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, abrupt green tea withdrawal might increase the levels and adverse effects of lithium.
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Animal research suggests that metformin can reduce caffeine metabolism (23571). Theoretically, concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Methoxsalen can reduce caffeine metabolism (23572). Concomitant use can increase caffeine serum concentrations and the risk of caffeine adverse effects.
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Mexiletine can decrease caffeine elimination by 50% (1260).
|
Theoretically, green tea might increase the levels and adverse effects of midazolam.
Animal research suggests that green tea extract can increase the maximum plasma concentration, but not the half-life, of oral midazolam. This effect has been attributed to the inhibition of intestinal cytochrome P450 3A4 (CYP3A4) and induction of hepatic CYP3A4 enzymes by green tea constituents (20896). However, it is unlikely that this effect is clinically significant, as the dose used in animals was 50 times greater than what is commonly ingested by humans.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Green tea contains caffeine. Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Green tea seems to reduce the levels and clinical effects of nadolol.
Preliminary clinical research shows that green tea consumption reduces plasma concentrations of nadolol. Compared to a control group, both peak levels and total drug exposure (AUC) of nadolol were reduced by approximately 85% in subjects who drank green tea daily for two weeks. Drinking green tea with nadolol also significantly reduced nadolol's systolic blood pressure lowering effect (19071). Other clinical research shows that a single dose of green tea can affect plasma nadolol levels for at least one hour (102721). Green tea catechins have been shown to inhibit organic anion transporting polypeptides (OATP), one of which, OATP1A2, is involved in the uptake of nadolol in the intestine (19071,19079,19080,98461) The interaction is thought to be due primarily to the epigallocatechin gallate (EGCG) content of green tea (98461).
|
Theoretically, green tea might increase the levels and adverse effects of nicardipine.
Green tea contains EGCG. Animal research shows that EGCG increases the area under the curve (AUC) and absolute oral bioavailability of nicardipine. The mechanism of action is thought to involve inhibition of both intestinal P-glycoprotein and hepatic cytochrome P450 3A (90136). The effect of green tea itself on nicardipine is unclear.
|
Theoretically, concomitant use might increase the risk of hypertension.
Green tea contains caffeine. Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Green tea seems to reduce the levels of nintedanib.
Clinical research shows that green tea can significantly decrease blood levels of nintedanib. Taking green tea extract twice daily for 7 days 30 minutes prior to a meal along with nintedanib with the meal decreased the 12-hour area under the curve (AUC) values for nintedanib by 21%. There was no effect on the maximum concentration of nintedanib (111028).
|
Theoretically, green tea might reduce the absorption of organic anion-transporting polypeptide (OATP) substrates.
OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds. Research shows that two of the major catechins found in green tea, epicatechin gallate (ECG) and epigallocatechin gallate (EGCG), inhibit OATPs, specifically OATP1A2, OATP1B1, and OATP2B1. In addition, green tea has been shown to reduce the absorption of some drugs that are OATP substrates, including lisinopril, and celiprolol (19079,102714,102730).
|
Green tea might increase the levels and adverse effects of P-glycoprotein (P-gp) substrates.
In vitro research and case reports suggest that green tea inhibits drug efflux by P-gp, potentially increasing serum levels of P-gp substrates. Case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking green tea and certain P-gp substrates (111644).
|
Theoretically, green tea might decrease the effects of pentobarbital.
Green tea contains caffeine. Theoretically, caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, green tea might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, green tea might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, green tea might increase the levels and clinical effects of pioglitazone.
Green tea contains caffeine. Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Green tea contains caffeine. Caffeine and riluzole are both metabolized by cytochrome P450 1A2, and concomitant use might reduce metabolism of one or both agents (11739).
|
Theoretically, green tea extract might alter the absorption and distribution of rosuvastatin.
In animal research, giving green tea extract with rosuvastatin increased plasma levels of rosuvastatin. Rosuvastatin is a substrate of organic anion-transporting polypeptide (OATP)1B1, which is expressed in the liver. The increased plasma levels may have been related to inhibition of OATP1B1 (102717). However, in humans, taking EGCG with rosuvastatin reduced plasma levels of rosuvastatin, suggesting an inhibition of intestinal OATP (102730). It is not clear if drinking green tea alters the absorption of rosuvastatin.
|
Theoretically, concomitant use might increase stimulant adverse effects.
Green tea contains caffeine. Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, green tea might increase the levels and adverse effects of theophylline.
Green tea contains caffeine. Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, green tea might increase the levels and adverse effects of tiagabine.
Green tea contains caffeine. Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
Green tea contains caffeine. In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, green tea might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, concomitant use might increase the levels and adverse effects of both verapamil and caffeine.
Animal research suggests that the green tea constituent EGCG increases the area under the curve (AUC) values for verapamil by up to 111% and its metabolite norverapamil by up to 87%, likely by inhibiting P-glycoprotein (90138). Also, theoretically, concomitant use of verapamil and caffeinated beverages such as green tea might increase plasma caffeine concentrations and the risk of adverse effects, due to the caffeine contained in green tea. Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, green tea may increase the risk of bleeding if used with warfarin.
Conflicting reports exist regarding the potential of green tea to antagonize the effect of warfarin; however, most evidence suggests that drinking green tea in moderation is unlikely to cause a significant interaction. Green tea contains a small amount of vitamin K, approximately 7 mcg per cup (100524). Some case reports have associated the antagonism of warfarin with the vitamin K content of green tea (1460,1461,1463,4211,6048,8028,20868). However, these reports are rare, and very large doses of green tea (about 8-16 cups daily) appear to be needed to cause these effects (1460,1461,1463,8028). Therefore, use of green tea in moderate amounts is unlikely to antagonize the effects of warfarin; however, very large doses should be avoided.
|
Theoretically, honey may increase the risk of bleeding when used with anticoagulant or antiplatelet drugs.
In vitro, honey inhibits platelet aggregation and increases the time to clotting (55222). Furthermore, animal research suggests that feeding mice large doses of honey for 12 days increases bleeding time when compared with no intervention (103964). However, these effects have not been reported in humans.
|
Theoretically, honey might decrease levels of drugs metabolized by CYP3A4, but research is conflicting.
|
Theoretically, honey might increase levels of phenytoin.
In an animal model, the rate and extent of absorption of phenytoin was increased by honey (20352). This effect has not been reported in humans.
|
Theoretically, taking Lactobacillus acidophilus with antibiotic drugs might decrease the effectiveness of L. acidophilus.
L. acidophilus preparations usually contain live and active organisms. Therefore, simultaneously taking antibiotics might kill a significant number of the organisms (1740). Tell patients to separate administration of antibiotics and L. acidophilus preparations by at least two hours.
|
Theoretically, licorice might reduce the effects of antihypertensive drugs.
|
Theoretically, licorice might reduce the effects of cisplatin.
In animal research, licorice diminished the therapeutic efficacy of cisplatin (59763).
|
Theoretically, concomitant use of licorice and corticosteroids might increase the side effects of corticosteroids.
Case reports suggest that concomitant use of licorice and oral corticosteroids, such as hydrocortisone, can potentiate the duration of activity and increase blood levels of corticosteroids (3252,12672,20040,20042,48429,59756). Additionally, in one case report, a patient with neurogenic orthostatic hypertension stabilized on fludrocortisone 0.1 mg twice daily developed pseudohyperaldosteronism after recent consumption of large amounts of black licorice (108568).
|
Theoretically, licorice might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that licorice induces CYP1A2 enzymes (111404).
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2B6.
In vitro research shows that licorice extract and glabridin, a licorice constituent, inhibit CYP2B6 isoenzymes (10300,94822). Licorice extract from the species G. uralensis seems to inhibit CYP2B6 isoenzymes to a greater degree than G. glabra extract in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2B6; however, these interactions have not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C19.
In vitro, licorice extracts from the species G. glabra and G. uralensis inhibit CYP2C19 isoenzymes in vitro (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C19; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase levels of drugs metabolized by CYP2C8.
In vitro, licorice extract from the species G. glabra and G. uralensis inhibits CYP2C8 isoenzymes (94822). Theoretically, these species of licorice might increase levels of drugs metabolized by CYP2C8; however, this interaction has not yet been reported in humans.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP2C9.
There is conflicting evidence about the effect of licorice on CYP2C9 enzyme activity. In vitro research shows that extracts from the licorice species G. glabra and G. uralensis moderately inhibit CYP2C9 isoenzymes (10300,94822). However, evidence from an animal model shows that licorice extract from the species G. uralensis can induce hepatic CYP2C9 activity (14441). Until more is known, licorice should be used cautiously in people taking CYP2C9 substrates.
|
Theoretically, licorice might increase or decrease levels of drugs metabolized by CYP3A4.
Pharmacokinetic research shows that the licorice constituent glycyrrhizin, taken in a dosage of 150 mg orally twice daily for 14 days, modestly decreases the area under the concentration-time curve of midazolam by about 20%. Midazolam is a substrate of CYP3A4, suggesting that glycyrrhizin modestly induces CYP3A4 activity (59808). Animal research also shows that licorice extract from the species G. uralensis induces CYP3A4 activity (14441). However, licorice extract from G. glabra species appear to inhibit CYP3A4-induced metabolism of testosterone in vitro. It is thought that the G. glabra inhibits CYP3A4 due to its constituent glabridin, which is a moderate CYP3A4 inhibitor in vitro and not present in other licorice species (10300,94822). Until more is known, licorice should be used cautiously in people taking CYP3A4 substrates.
|
Theoretically, concomitant use of licorice with digoxin might increase the risk of cardiac toxicity.
Overuse or misuse of licorice with cardiac glycoside therapy might increase the risk of cardiac toxicity due to potassium loss (10393).
|
Theoretically, concomitant use of licorice with diuretic drugs might increase the risk of hypokalemia.
Overuse of licorice might compound diuretic-induced potassium loss (10393,20045,20046,59812). In one case report, a 72-year-old male with a past medical history of hypertension, type 2 diabetes, hyperlipidemia, arrhythmia, stroke, and hepatic dysfunction was hospitalized with severe hypokalemia and uncontrolled hypertension due to pseudohyperaldosteronism. This was thought to be provoked by concomitant daily consumption of a product containing 225 mg of glycyrrhizin, a constituent of licorice, and hydrochlorothiazide 12.5 mg for 1 month (108577).
|
Theoretically, licorice might increase or decrease the effects of estrogen therapy.
|
Theoretically, loop diuretics might increase the mineralocorticoid effects of licorice.
Theoretically, loop diuretics might enhance the mineralocorticoid effects of licorice by inhibiting the enzyme that converts cortisol to cortisone; however, bumetanide (Bumex) does not appear to have this effect (3255).
|
Theoretically, licorice might increase levels of methotrexate.
Animal research suggests that intravenous administration of glycyrrhizin, a licorice constituent, and high-dose methotrexate may delay methotrexate excretion and increase systemic exposure, leading to transient elevations in liver enzymes and total bilirubin (108570). This interaction has not yet been reported in humans.
|
Theoretically, licorice might decrease levels of midazolam.
In humans, the licorice constituent glycyrrhizin appears to moderately induce the metabolism of midazolam (59808). This is likely due to induction of cytochrome P450 3A4 by licorice. Until more is known, licorice should be used cautiously in people taking midazolam.
|
Theoretically, licorice might decrease the absorption of P-glycoprotein substrates.
In vitro research shows that licorice can increase P-glycoprotein activity (104561).
|
Theoretically, licorice might decrease plasma levels and clinical effects of paclitaxel.
Multiple doses of licorice taken concomitantly with paclitaxel might reduce the effectiveness of paclitaxel. Animal research shows that licorice 3 grams/kg given orally for 14 days before intravenous administration of paclitaxel decreases the exposure to paclitaxel and increases its clearance. Theoretically, this occurs because licorice induces cytochrome P450 3A4 enzymes, which metabolize paclitaxel. Notably, a single dose of licorice did not affect exposure or clearance of paclitaxel (102959).
|
Theoretically, licorice might decrease plasma levels and clinical effects of warfarin.
Licorice seems to increase metabolism and decrease levels of warfarin in animal models. This is likely due to induction of cytochrome P450 2C9 (CYP2C9) metabolism by licorice (14441). Advise patients taking warfarin to avoid taking licorice.
|
Taking milk thistle with antidiabetes drugs may increase the risk of hypoglycemia.
Clinical research shows that milk thistle extract, alone or along with tree turmeric extract, can lower blood glucose levels and glycated hemoglobin (HbA1c) in patients with type 2 diabetes, including those already taking antidiabetes drugs (15102,63190,63314,63318,95019,96140,96141,97624,97626,113987). Additionally, animal research shows that milk thistle extract increases the metformin maximum plasma concentration and area under the curve and decreases the renal clearance of metformin, due to inhibition of the multi-drug and toxin extrusion protein 1 (MATE1) renal tubular transport protein (114919).
|
Theoretically, milk thistle might inhibit CYP2B6.
An in vitro study shows that silybin, a constituent of milk thistle, binds to and noncompetitively inhibits CYP2B6. Additionally, silybin might downregulate the expression of CYP2B6 by decreasing mRNA and protein levels (112229).
|
It is unclear if milk thistle inhibits CYP2C9; research is conflicting.
In vitro research suggests that milk thistle might inhibit CYP2C9 (7089,17973,17976). Additionally, 3 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP2C9 substrates, including imatinib and capecitabine (111644). However, contradictory clinical research shows that milk thistle extract does not inhibit CYP2C9 or significantly affect levels of the CYP2C9 substrate tolbutamide (13712,95026). Differences in results could be due to differences in dosages or formulations utilized (95026).
|
It is unclear if milk thistle inhibits CYP3A4; research is conflicting.
While laboratory research shows conflicting results (7318,17973,17975,17976), pharmacokinetic research shows that taking milk thistle extract 420-1350 mg daily does not significantly affect the metabolism of the CYP3A4 substrates irinotecan, midazolam, or indinavir (8234,17974,93578,95026). However, 8 case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are CYP3A4 substrates, including gefitinib, sorafenib, doxorubicin, and vincristine (111644).
|
Theoretically, milk thistle might interfere with estrogen therapy through competition for estrogen receptors.
|
Theoretically, milk thistle might affect the clearance of drugs that undergo glucuronidation.
Laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase levels of glucuronidated drugs. Other laboratory research suggests that a milk thistle extract of silymarin might inhibit beta-glucuronidase (7354), although the significance of this effect is unclear.
|
Theoretically, milk thistle might interfere with statin therapy by decreasing the activity of organic anion transporting polypeptide 1B1 (OATB1B1) and inhibiting breast cancer resistance protein (BCRP).
Preliminary evidence suggests that a milk thistle extract of silymarin can decrease the activity of the OATP1B1, which transports HMG-CoA reductase inhibitors into the liver to their site of action, and animal research shows this increases the maximum plasma concentration of pitavastatin and pravastatin (113975). The silibinin component also inhibits BCRP, which transports statins from the liver into the bile for excretion. However, in a preliminary study in healthy males, silymarin 140 mg three times daily had no effect on the pharmacokinetics of a single 10 mg dose of rosuvastatin (16408).
|
Theoretically, milk thistle may induce cytochrome P450 3A4 (CYP3A4) enzymes and increase the metabolism of indinavir; however, results are conflicting.
One pharmacokinetic study shows that taking milk thistle (Standardized Milk Thistle, General Nutrition Corp.) 175 mg three times daily in combination with multiple doses of indinavir 800 mg every 8 hours decreases the mean trough levels of indinavir by 25% (8234). However, results from the same pharmacokinetic study show that milk thistle does not affect the overall exposure to indinavir (8234). Furthermore, two other pharmacokinetic studies show that taking specific milk thistle extract (Legalon, Rottapharm Madaus; Thisilyn, Nature's Way) 160-450 mg every 8 hours in combination with multiple doses of indinavir 800 mg every 8 hours does not reduce levels of indinavir (93578).
|
Theoretically, milk thistle might increase the levels and clinical effects of ledipasvir.
Animal research in rats shows that milk thistle increases the area under the curve (AUC) for ledipasvir and slows its elimination (109505).
|
Theoretically, concomitant use of milk thistle with morphine might affect serum levels of morphine and either increase or decrease its effects.
Animal research shows that milk thistle reduces serum levels of morphine by up to 66% (101161). In contrast, laboratory research shows that milk thistle constituents inhibit uridine diphosphoglucuronosyl transferase (UGT), the major phase 2 enzyme that is responsible for glucuronidation (7318,17973). Theoretically, this could decrease the clearance and increase morphine levels. The effect of taking milk thistle on morphine metabolism in humans is not known.
|
Milk thistle may inhibit one form of OATP, OATP-B1, which could reduce the bioavailability and clinical effects of OATP-B1 substrates.
In vitro research shows that milk thistle inhibits OATP-B1. Two case reports from the World Health Organization (WHO) adverse drug reaction database describe increased toxicity in patients taking milk thistle and cancer medications that are OATP substrates, including sorafenib and methotrexate (111644). OATPs are expressed in the small intestine and liver and are responsible for the uptake of drugs and other compounds into the body. Inhibition of OATP may reduce the bioavailability of oral drugs that are substrates of OATP.
|
Theoretically, milk thistle might increase the absorption of P-glycoprotein substrates. However, this effect does not seem to be clinically significant.
In vitro research shows that milk thistle can inhibit P-glycoprotein activity (95019,111644) and 1 case report from the World Health Organization (WHO) adverse drug reaction database describes increased abdominal pain in a patient taking milk thistle and the cancer medication vincristine, a P-glycoprotein substrate, though this patient was also taking methotrexate (111644). However, a small pharmacokinetic study in healthy volunteers shows that taking milk thistle (Enzymatic Therapy Inc.) 900 mg, standardized to 80% silymarin, in 3 divided doses daily for 14 days does not affect absorption of digoxin, a P-glycoprotein substrate (35825).
|
Theoretically, milk thistle might decrease the clearance and increase levels of raloxifene.
Laboratory research suggests that the milk thistle constituents silibinin and silymarin inhibit the glucuronidation of raloxifene in the intestines (93024).
|
Milk thistle might decrease the clearance of sirolimus.
Pharmacokinetic research shows that a milk thistle extract of silymarin decreases the apparent clearance of sirolimus in hepatically impaired renal transplant patients (19876). It is unclear if this interaction occurs in patients without hepatic impairment.
|
Theoretically, milk thistle might decrease the levels and clinical effects of sofosbuvir.
Animal research in rats shows that milk thistle reduces the metabolism of sofosbuvir, as well as the hepatic uptake of its active metabolite (109505).
|
Theoretically, the milk thistle constituent silibinin might increase tamoxifen levels and interfere with its conversion to an active metabolite.
Animal research suggests that the milk thistle constituent silibinin might increase plasma levels of tamoxifen and alter its conversion to an active metabolite. The mechanism appears to involve inhibition of pre-systemic metabolism of tamoxifen by cytochrome P450 (CYP) 2C9 and CYP3A4, and inhibition of P-glycoprotein-mediated efflux of tamoxifen into the intestine for excretion (17101). Whether this interaction occurs in humans is not known.
|
Theoretically, milk thistle might increase the effects of warfarin.
In one case report, a man stabilized on warfarin experienced an increase in INR from 2.64 to 4.12 after taking a combination product containing milk thistle 200 mg daily, as well as dandelion, wild yam, niacinamide, and vitamin B12. Levels returned to normal after stopping the supplement (101159). Although a direct correlation between milk thistle and the change in INR cannot be confirmed, some in vitro research suggests that milk thistle might inhibit cytochrome P450 2C9 (CYP2C9), an enzyme involved in the metabolism of various drugs, including warfarin (7089,17973,17976).
|
Theoretically, royal jelly might increase the risk of hypotension when taken with antihypertensive drugs.
|
Royal jelly might increase the risk of bleeding when taken with warfarin.
In one case, an 87-year-old male who was previously stabilized on warfarin developed hematuria and was found to have an INR of 7.29 after taking a royal jelly supplement for one week (14303).
|
Theoretically, taking antifungals with Saccharomyces boulardii might decrease the effectiveness of Saccharomyces boulardii.
S. boulardii is a live yeast. Therefore, simultaneously taking antifungals might kill a significant number of the organisms (4363).
|
Theoretically, antibiotics may decrease the activity of soy isoflavones.
Intestinal bacteria are responsible in part for converting soy isoflavones into their active forms. Antibiotics may decrease the amount of intestinal bacteria and decrease its ability to convert isoflavones (7657).
|
Soy can lower blood glucose and have additive effects with antidiabetes drugs.
Clinical research shows that whole soy diets and soy-based meals reduce fasting glucose levels in diabetic and non-diabetic individuals (75268,75296,75378,75493,96001). Also, individuals following a soy-based meal replacement plan seem to require lower doses of sulfonylureas and metformin to manage blood glucose levels when compared with individuals following a diet plan recommended by the American Diabetes Association (75268).
|
Theoretically soy protein may have additive effects with antihypertensive drugs and increase the risk of hypotension.
|
Theoretically, soy might reduce the clearance of caffeine.
Soy contains genistein. Taking genistein 1 gram daily for 14 days seems to inhibit caffeine clearance and metabolism in healthy females (23582). This effect has been attributed to inhibition of the cytochrome P450 1A2 (CYP1A2) enzyme, which is involved in caffeine metabolism. It is unclear if this effect occurs with the lower amounts of genistein found in soy.
|
Soy might modestly induce CYP2C9 enzymes. However, this effect does not seem to be clinically significant.
In vitro research suggests that an unhydrolyzed soy extract might induce CYP2C9. However, the significance of this interaction is likely minimal. In healthy females taking a specific extract of soy (Genistein Soy Complex, Source Naturals), blood levels of losartan, a CYP2C9 substrate, were not significantly affected (16825).
|
Theoretically, soy might have additive effects when used with diuretic drugs.
Animal research suggests that genistein, a soy isoflavone, increases diuresis within 6 hours of subcutaneous administration in rats. The effects seem to be similar to those of furosemide (75604). This effect has not been reported in humans.
|
Theoretically, soy might competitively inhibit the effects of estrogen replacement therapy.
Soy contains phytoestrogens and has been shown to have estrogenic activity in some patients (3860). Although this has not been demonstrated in humans, theoretically, concomitant use of soy with estrogen replacement therapy might reduce the effects of the estrogen replacement therapy.
|
Soy products might reduce the absorption of levothyroxine in some patients.
Preliminary clinical research and a case report suggest that soy-based formulas inhibit the absorption of levothyroxine in infants with congenital hypothyroidism (20636,20637,75548,90959). A levothyroxine dosage increase may be needed for infants with congenital hypothyroidism while using soy-based formulas, and the dose may need to be reduced when soy-based formulas are no longer administered. However, in postmenopausal adults, clinical research shows that taking a single dose of soy extract containing isoflavones 60 mg along with levothyroxine does not affect the oral bioavailability of levothyroxine (95996).
|
Taking soy products containing high amounts of tyramine along with MAOIs can increase the risk of hypertensive crisis.
Fermented soy products such as tofu and soy sauce contain tyramine, a naturally occurring chemical that affects blood pressure regulation. The metabolism of tyramine is decreased by MAOIs. Consuming more than 6 mg of tyramine while taking an MAOI can increase the risk of hypertensive crisis (15649). The amount of tyramine in fermented soy products is usually less than 0.6 mg per serving; however, there can be significant variation depending on the specific product used, storage conditions, and length of storage. Storing one brand of tofu for a week can increase tyramine content from 0.23 mg to 4.8 mg per serving (15649,15701,15702). Advise patients taking MAOIs to avoid fermented soy products that contain high amounts of tyramine.
|
Theoretically, combining soy isoflavones with transdermal progesterone may worsen bone density.
Clinical research suggests that significant bone loss may occur in females with osteoporosis who receive a combination of transdermal progesterone with soy milk containing isoflavones when compared with placebo, soy milk alone, or progesterone alone (69859).
|
Theoretically, estrogenic soy isoflavones might alter the effects of tamoxifen.
Laboratory research suggests that genistein and daidzen, isoflavones from soy, can antagonize the antitumor effects of tamoxifen under some circumstances (7072,14362,8966); however, soy isoflavones might have different effects when used at different doses. A relatively low in vitro concentration of soy isoflavones such as 1 microM/L seems to interfere with tamoxifen, whereas high in vitro concentrations such as those >10 microM/L might actually enhance tamoxifen effects. People on a high-soy diet have soy isoflavones levels ranging from 0.1-6 microM/L. Until more is known, advise patients taking tamoxifen to avoid therapeutic use of soy products.
|
Theoretically, soy might interfere with the effects of warfarin.
Soy milk has been reported to decrease the international normalized ratio (INR) in a patient taking warfarin. The mechanism of this interaction is not known (9672). However, animal and in vitro research suggests that soy may also inhibit platelet aggregation (3992). Dosing adjustments for warfarin may be necessary.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of alkylating agents.
There's concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
Concomitant use of vitamin E and anticoagulant or antiplatelet agents might increase the risk of bleeding.
Vitamin E seems to inhibit of platelet aggregation and antagonize the effects of vitamin K-dependent clotting factors (4733,4844,11580,11582,11583,11584,11586,112162). These effects appear to be dose-dependent, and are probably only likely to be clinically significant with doses of at least 800 units daily (11582,11585). Mixed tocopherols, such as those found in food, might have a greater antiplatelet effect than alpha-tocopherol (10364). RRR alpha-tocopherol (natural vitamin E) 1000 IU daily antagonizes vitamin K-dependent clotting factors (11999). Advise patients to avoid high doses of vitamin E, especially in people with low vitamin K intake or other risk factors for bleeding.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of antitumor antibiotics.
There's concern that antioxidants could reduce the activity of antitumor antibiotic drugs such as doxorubicin, which generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
A specific form of vitamin E might increase absorption and levels of cyclosporine.
There is some evidence that one specific formulation of vitamin E (D-alpha-tocopheryl-polyethylene glycol-1000 succinate, TPGS, tocophersolan, Liqui-E) might increase absorption of cyclosporine. This vitamin E formulation forms micelles which seems to increase absorption of cyclosporine by 40% to 72% in some patients (624,625,10368). However, this interaction is unlikely to occur with the usual forms of vitamin E.
|
Theoretically, vitamin E might induce metabolism of CYP3A4, possibly reducing the levels CYP3A4 substrates.
Vitamin E appears to bind with the nuclear receptor, pregnane X receptor (PXR), which results in increased expression of CYP3A4 (13499,13500). Although the clinical significance of this is not known, use caution when considering concomitant use of vitamin E and other drugs affected by these enzymes.
|
Vitamin E might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises high-density lipoprotein (HDL) cholesterol levels in people with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% (7388,11537). Vitamin E alone combined with a statin does not seem to decrease HDL levels (11286,11287). It is not known whether the adverse effect on HDL is due to one of the other antioxidants or to the combination. It also is not known whether it will occur in other patient populations.
|
Taking selumetinib with vitamin E can result in a total daily dose of vitamin E that exceeds safe limits and therefore might increase the risk of bleeding.
Selumetinib contains 48-54 IU vitamin E per capsule (102971). The increased risk of bleeding with vitamin E appears to be dose-dependent (11582,11585,34577). Be cautious when using selumetinib in combination with supplemental vitamin E, especially in patients at higher risk of bleed, such as those with chronic conditions and those taking antiplatelet drugs (102971).
|
Using vitamin E with warfarin might increase the risk of bleeding.
Due to interference with production of vitamin K-dependent clotting factors, use of more than 400 IU of vitamin E daily with warfarin might increase prothrombin time (PT), INR, and the risk of bleeding, (91,92,93). At a dose of 1000 IU per day, vitamin E can antagonize vitamin K-dependent clotting factors even in people not taking warfarin (11999). Limited clinical evidence suggests that doses up to 1200 IU daily may be used safely by patients taking warfarin, but this may not be applicable in all patient populations (90).
|
Theoretically, taking wheatgrass with antidiabetes drugs might lower blood glucose levels and increase the risk of hypoglycemia.
|
Theoretically, wheatgrass might decrease the levels and clinical effects of CYP1A2 substrates.
In vitro research shows that wheatgrass induces CYP1A2 enzymes (111404).
|
Taking yogurt with ciprofloxacin might reduce the levels and clinical effects of ciprofloxacin.
A small study in humans shows that concomitant administration of yogurt and ciprofloxacin can significantly reduce absorption of ciprofloxacin (1252).
|
Yogurt might increase the absorption of nilotinib; however, it is unlikely to alter its clinical effects.
Pharmacokinetic research in humans shows that taking nilotinib 400 mg dispersed in 1 teaspoon of yogurt increases absorption of nilotinib by about 31%. However, yogurt does not appear to modify the metabolism of nilotinib or increase the risk of adverse effects (93711).
|
Taking yogurt with tetracycline antibiotics seems to reduce the levels and clinical effects of tetracycline antibiotics.
Concomitant administration with yogurt can reduce the absorption of tetracycline antibiotics, likely due to its calcium content (15).
|
Below is general information about the adverse effects of the known ingredients contained in the product Greens+ Omega 3 Chia Energy Bar (natural or chocolate flavor). Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, acerola seems to be well tolerated.
However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Acerola has been linked with one case of anaphylaxis and one case of rectal obstruction.
Gastrointestinal ...Osmotic diarrhea and gastrointestinal upset have been reported with doses of vitamin C greater than the tolerable upper intake level (UL) of 2000 mg daily (4844). Theoretically this could occur with large doses of oral acerola. A case report describes rectal obstruction with mass consisting of partially digested acerola fruits in a 5-year-old child who had ingested an unknown quantity of fruits daily for 7 days. The child presented with vomiting, abdominal pain and distension, tenesmus, constipation, and dehydration, and required surgical disimpaction (93205).
Immunologic ...There is a case report of a 37 year old man who developed a pruritic rash, dyspnea, and tachycardia 5 minutes after drinking a mixture of apple and acerola juices. He had a history of hay fever, oral allergy symptoms with avocado, celery, walnut, and curry, and contact urticaria with latex, but tolerated apples and apple juice. IgE antibodies to acerola were identified in the patient's serum. Ultimately, cross-reactivity between a latex protein and acerola was determined (93206).
General
...Orally, alfalfa leaf seems to be well tolerated.
However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Abdominal discomfort, diarrhea, and flatulence.
Serious Adverse Effects (Rare):
Orally: Lupus-like syndrome after chronic ingestion of alfalfa.
Dermatologic ...Dermatitis associated with alfalfa use has been reported. In a 1954 publication, dermatitis was noted in a 61-year-old female consuming 4-6 cups of tea made with two tablespoonfuls of alfalfa seeds for approximately two months prior to onset. Examination revealed diffuse, confluent edema and erythema on the face, eyelids, ears, hands, forearms, and distal humeral regions. The dermatitis improved with treatment; re-exposure to alfalfa resulted in a similar reaction (30609).
Endocrine
...Alfalfa contains constituents, including coumestrol, with reported estrogenic activity (30586,30592,4753).
Effects in humans are not known.
One case report documents hypokalemia in a female who had been drinking a "cleansing tea" containing alfalfa, licorice, and stinging nettle. The potassium level returned to normal after discontinuing the tea and initiating potassium supplementation. The specific cause of the hypokalemia is not clear. Notably, both stinging nettle and licorice have been associated with hypokalemia and may have been responsible for this effect (30562).
Gastrointestinal ...Orally, flatulence and bulkier feces were reported during the first week of a case series of three subjects ingesting alfalfa (30598). In a case series of 15 patients ingesting alfalfa, increased fecal volume and increased stool frequency was reported. Additional adverse effects included abdominal discomfort in two patients, diarrhea in two patients, loose stools in six patients, and intestinal gas in 13 patients (5816).
Hematologic ...Pancytopenia and splenomegaly were reported in a 59-year-old male who had been taking 80-160 grams of ground alfalfa seeds for up to six weeks at a time, for a five month period. Hematologic values and spleen size returned to normal when alfalfa was discontinued (381).
Other
...Alfalfa products, including sprouts, seeds, and tablets, have been found to be contaminated with Escherichia coli, Salmonella, and Listeria monocytogenes, which have caused documented infections (5600,30566,30568,30572,30569,30564,30604,30610,30563,30607) (30566,30564,30604,30610,30563,30607,30576).
Orally, alfalfa has been associated with the development of a lupus-like syndrome in animals and humans (30594,14828,14830,30602), as well as with possible exacerbations of lupus in patients with known systemic lupus erythematosus (SLE). These reactions may be associated with the amino acid L-canavanine (30594), which appears to be present in alfalfa seeds and sprouts, but not leaves, and therefore should not be present in alfalfa tablets manufactured from the leaves (30601). However, case reports have included individuals ingesting tablets. A lupus-like syndrome was described in four patients taking 12-24 alfalfa tablets per day. Symptoms included arthralgias, myalgias, and rash; positive antinuclear antibodies (ANA) arose anywhere from three weeks to seven months after initiating alfalfa therapy. Upon discontinuation of alfalfa tablets, all four patients became asymptomatic. In two patients, ANA levels normalized (14828). Two additional reports have documented possible exacerbation or induction of SLE associated with alfalfa use. One case involved a female with a 26-year history of SLE, who had been taking 15 tablets of alfalfa daily for nine months prior to an exacerbation. Because of the delay in onset of the exacerbation from the initiation of alfalfa therapy, causation cannot be clearly established (30575). In a different report, SLE and arthritis were found in multiple family members who had been taking a combination of vitamin E and alfalfa tablets for seven years (30602). It is not known what other environmental or genetic factors may have affected these individuals, and the association with alfalfa is unclear.
General
...Orally, apple fruit is well tolerated.
Apple seeds, which contain cyanide, may cause serious adverse effects when consumed in large amounts.
Most Common Adverse Effects:
Orally: Bloating, flatulence.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis. Ingestion of large amounts of apple seeds may cause cyanide poisoning, leading to death.
Gastrointestinal ...Orally, apple products, including whole apples, apple puree, and apple juice, may cause bloating and flatulence in some people (104184).
Immunologic ...Patients allergic to other fruits in the Rosaceae family, including apricot, almond, plum, peach, pear, and strawberry, can also be allergic to apples (7129). Rarely, the allergy has resulted in anaphylaxis (94425).
Other ...Orally, ingestion of large amounts of apple seeds, which contain hydrogen cyanide (HCN), may cause cyanide poisoning, leading to death. One death is attributed to ingestion of a cupful of apple seeds. To release cyanide, seeds must be hydrolyzed in the stomach, and several hours may elapse before poisoning symptoms occur (6).
General
...Orally and intravenously, astragalus root seems to be well tolerated.
Topically, no adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: A case report raises concerns about liver and kidney cysts with astragalus use.
Cardiovascular ...Orally, astragalus has reportedly been associated with lacunar angina in one clinical trial. However, this may not have been caused by astragalus (17355). In addition, rapid intravenous administration of astragalus has resulted in temporary palpitations (32812).
Dermatologic ...Intravenously, astragalus may cause rash, eczema, and pruritus (33034).
Gastrointestinal ...Orally, astragalus has reportedly been associated with enterocolitis and nausea in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Genitourinary ...Orally, astragalus has reportedly been associated with vulvitis in one clinical trial. However, this effect may not have been caused by astragalus (17355).
Hepatic ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
Musculoskeletal ...Orally, astragalus has been associated with reports of musculoskeletal pain in one clinical trial. However, these effects may not have been caused by astragalus (114803).
Neurologic/CNS ...Intravenously, administration of astragalus has been associated with temporary dizziness in patients with heart failure in clinical research (32812,114804). Orally, astragalus has also been associated with dizziness in one clinical study. However, these effects may not have been caused by astragalus (114803).
Pulmonary/Respiratory ...Orally, astragalus has reportedly been associated with rhinosinusitis and pharyngitis in one clinical trial. However, these effects may not have been caused by astragalus (17355).
Renal ...A case of high serum CA19-9 levels and small liver and kidney cysts has been reported for a 38-year-old woman who drank astragalus tea daily for one month. Levels returned to normal after one month, and cysts disappeared after ten months. Both symptoms returned following a resumption of astragalus use. The authors state that astragalus was the likely cause given the temporal relationship (90658).
General
...Orally, Bacillus coagulans is well tolerated.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Immunologic ...Since many probiotic preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. Bacteremia and sepsis have been reported in patients with indwelling or central venous catheters or patients who are severely ill and/or immunocompromised, including preterm infants, that were using probiotic products (4380,8561,13008,13070,90298,102416,103444,105138,105140,105141)(107543,107597,107599,111610,111612,111613,111850,111852,111853). However, reports of pathogenic colonization in relatively healthy patients with intact immune systems who do not have indwelling or central venous catheters are extremely rare (4380,4389,4390,4391,4393,4398,105139,107543,107545,107546,107547).
General
...Orally, barley is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, bloating, flatulence, unpleasant taste. Allergic reactions in sensitive individuals.
Topically: Allergic reactions in sensitive individuals.
Dermatologic ...Topically, barley malt contained in beer has been reported to cause contact dermatitis (33762). After occupational exposure, barley has been reported to cause contact dermatitis of the eyelids and extremities, as well as contact urticaria (33735,33770,33774).
Gastrointestinal
...When consumed orally, barley provides fiber.
Increasing fiber in the diet can cause flatulence, bloating, abdominal distention, and unpleasant taste. To minimize side effects, doses should be slowly titrated to the desired level. Adverse effects usually subside with continued use (12514).
Barley contains gluten. In patients with biopsy-proven celiac disease, consuming barley can cause gastrointestinal upset and impairment of xylose excretion (33763,33772).
Immunologic
...Orally, consumption of beer has been reported to cause allergic reactions in sensitive individuals (33722,33724).
Symptoms included tingling in the face, lip, and tongue, angioedema, generalized urticaria, chest tightness, dyspnea, cough, fainting, and rhinoconjunctivitis. It can also cause anaphylaxis in sensitive individuals (317). Topically and with occupational exposure, barley has been reported to cause contact dermatitis and rash (33762,33735,33770,33774).
"Bakers' asthma" is an allergic response resulting from the inhalation of cereal flours by workers in the baking and milling industries, and has been reported to occur after barley flour exposure (1300,33756,33760). Cross-allergenicity has been shown to exist between different cereals (33758).
Pulmonary/Respiratory
..."Bakers' asthma" is an allergic response resulting from the inhalation of cereal flours by workers in the baking and milling industries, and has been reported to occur after barley flour exposure (1300,33756,33760).
Cross-allergenicity has been shown to exist between different cereals (33758).
By inhalation, barley flours may be a source of allergens in asthma (33764,33773). Inhalation of wild barley grass pollen may result in bronchial irritation or pneumonitis (33726,33755).
General
...Orally, bee pollen seems to be well tolerated in most patients.
Serious Adverse Effects (Rare):
Orally: Acute hepatitis, allergic reactions, interstitial nephritis, kidney failure.
Dermatologic ...Orally, a case of photosensitivity has been reported for a 32-year-old patient who took a dietary supplement containing ginseng, goldenseal, bee pollen, and other ingredients. Symptoms included a pruritic, erythematous rash that was localized to the sun-exposed surfaces of the neck and extremities. Following treatment with topical and subcutaneous corticosteroids and discontinuation of the supplement, the skin rash slowly resolved. It is not known if this effect was due to the bee pollen, one of the other ingredients, or their combination (33954).
Hepatic ...Orally, there have been two cases of acute hepatitis associated with bee pollen use. One case involved ingestion of two tablespoons of pure bee pollen daily for several months. Another case involved ingestion of 14 tablets per day of a combination herbal product containing bee pollen, chaparral, and 19 other herbs for 6 weeks (1351). In this case, it is not known if bee pollen or another herb might have caused the adverse event.
Immunologic
...Patients with a history of seasonal pollen allergies, particularly allergies to plants in the Asteraceae/Compositae family, including ragweed, chrysanthemums, marigolds, daisies, and many other herbs, are at risk for serious allergic reactions to oral bee pollen.
Allergic reactions can include itching, swelling, shortness of breath, lightheadedness, and anaphylaxis (5,6,11,13480,33952,33965,91981,91984,109991). In one case, exercise may have contributed to the reaction. A 15-year-old male developed generalized urticaria, facial angioedema, and dyspnea 30 minutes into a vigorous exercise session and an hour after ingesting bee pollen granules. The patient experienced abdominal cramps within minutes of consuming bee pollen on 3 previous occasions and had a positive skin prick test for bee pollen after the anaphylactic reaction (109991). Allergy symptoms due to chronic intake of bee pollen include gastrointestinal and neurologic symptoms and eosinophilia (2627,33964).
A case of allergic eosinophilic gastropathy has been reported for a 5 year-old child who was given bee pollen daily to strengthen the immune system. Symptoms included abdominal pain, vomiting, and swelling of the eyelids and legs (91981).
Neurologic/CNS ...Orally, there is one report of dizziness in a patient who took a combination product containing royal jelly, bee pollen extract, and a bee pollen plus pistil extract (12008). It is not known if this effect was due to the bee pollen, another ingredient, or the combination.
Renal ...Orally, there is one report of a patient taking a bee pollen-containing supplement for greater than 5 months who developed breathing difficulties, edema with weight gain, and loss of appetite. The patient was diagnosed with interstitial nephritis and drug-induced acute kidney failure. The supplement was discontinued and the patient was started on hemodialysis. The patient improved after several sessions of hemodialysis (18068).
Other ...Although some research has shown a lack of mycotoxins in twenty samples of bee pollen, analysis of other ready-to-eat bee pollen products have revealed contamination with potential mycotoxin producing species, including Penicillium verrucosum, Aspergillus niger aggregate, Aspergillus carbonarius, Aspergillus ochraceus, Aspergillus flavus, Aspergillus parasiticus, and Alternaria spp. (33959,33961).
General
...Orally, beet seems to be well tolerated when used for medicinal purposes, short term.
Most Common Adverse Effects:
Orally: Red stools and red urine.
Serious Adverse Effects (Rare):
Orally: Hypocalcemia and kidney damage when ingested in large amounts.
Endocrine ...Theoretically, ingestion of large quantities of beets could lead to hypocalcemia because of the oxaluric acid content (18).
Gastrointestinal
...Orally, beet juice may cause red stools (94470,97726,100142,100145,105762).
This red coloring of the stools is not harmful. Additionally, beet supplementation has been reported to cause black stools. In one case, a 79-year-old male on apixaban and clopidogrel presented with black stools, nausea, and vomiting after taking beet pills 2-3 days prior. The likelihood of upper gastrointestinal bleed was determined to be low based on factors such as normal vital signs and lack of severe anemia. The patient was diagnosed with beet-induced pseudo-hematochezia which was successfully treated with fluids and discontinuation of the beet supplement (113426).
Other less common gastrointestinal side effects include loose stools, constipation, and nausea (100149).
Genitourinary ...Orally, beet is known to produce red or pink urine (beeturia) in some people (32569,34134,94464,94470,97725,97726,100142,100145,100152,105762,113422). However, this red coloring of the urine is not harmful and dissipates after about 12 hours (113422).
Neurologic/CNS ...Orally, vivid dreams and worsening headaches have each occurred in one person in a clinical trial, although it is not clear if this is due to beet (97723).
Renal ...Theoretically, ingestion of large quantities of beets could lead to kidney damage due to its oxaluric acid content (18).
General
...Orally, Bifidobacterium lactis seems to be well tolerated by most patients.
Most Common Adverse Effects:
Orally: Diarrhea.
Serious Adverse Effects (Rare):
Orally: There is concern that probiotics may cause infections in some people.
Dermatologic ...In clinical research, two cases of rash, one with itching, were reported by patients taking a combination of Bifidobacterium lactis BB-12, Lacticaseibacillus paracasei F19, and Lactobacillus acidophilus La5. However, it is not clear if these adverse effects were due to B. lactis, other probiotics, or the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Bloating and flatulence have been reported with probiotic use; however, these adverse effects have not been reported from ingestion of Bifidobacterium lactis in particular. When taken orally, B. lactis can cause diarrhea and other gastrointestinal complaints in children (3169,95381,105149). Gastrointestinal complaints including worsening diarrhea, abdominal pain, constipation, stomach burn, and flatulence have been reported rarely (110986,110999).
Immunologic
...There have been cases of Bifidobacterium bacteremia in critically ill patients (102416,107599).
These cases are rare and none seem to be due to Bifidobacterium lactis alone.
A specific preparation (NBL probiotic ATP, Nobel) containing B. lactis, Lacticaseibacillus casei, Lacticaseibacillus rhamnosus, Lactiplantibacillus plantarum, fructo-oligosaccharides, galacto-oligosaccharides, colostrum, and lactoferrin was found to be a significant risk factor for vancomycin-resistant Enterococcus colonization in premature infants. Although there was no direct link to determine causation, it was hypothesized that the probiotic mixture helped to mediate the acquisition and transfer of antibiotic resistance genes (96890).
General
...Orally, bilberry fruit, juice, and extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Dark-colored stools, flatulence, and gastrointestinal discomfort.
Gastrointestinal
...In one small clinical trial, mild-to-moderate flatulence was reported in 33% of patients taking sieved bilberries and concentrated bilberry juice (91506).
However, the patients in this study had ulcerative colitis, and the study lacked a control group, limiting the validity of this finding. In another small clinical study of males with age-related cognitive impairment, temporary adverse gastrointestinal (GI) effects were reported in 13% of patients drinking a combination of bilberry and grape juice. However, the adverse GI effect rate was identical in patients drinking a placebo juice (110641). A post-marketing surveillance report of 2295 patients using bilberry extract (Tegens) found that 1% of patients complained of GI discomfort and less than 1% experienced nausea or heartburn (35500).
Theoretically, fresh bilberry fruit may have laxative effects. One clinical trial noted an increased frequency of bowel movements following the administration of a combination formulation containing aerial agrimony parts, cinnamon quills, powdered bilberry fruit, and slippery elm bark (35462). It is unclear if these effects were due to bilberry, other ingredients, or the combination.
Other ...Orally, bilberry may cause discoloration of feces and the tongue. In one study, a dark-bluish to black discoloration of both the feces and the tongue was observed following consumption of sieved bilberries and concentrated bilberry juice. In one patient, a slight discoloration of the teeth has also been observed (91506). In another study, 50% of patients reported dark green stools after taking bilberry extract 700 mg twice daily for 4 weeks (104194).
General
...Orally, spirulina blue-green algae seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, bloating, diarrhea, dizziness, fatigue, flatulence, headache, nausea, and vomiting.
Dermatologic ...Orally, a severe rash has been reported in a 49-year-old woman after taking a spirulina blue-green algae supplement (species and dose unknown). After stopping the supplement, inflammatory myopathy with muscle weakness and elevated creatine kinase occurred. The condition resolved with corticosteroid and cyclophosphamide treatment (75936). In another case report, an 82 year-old woman developed a blistering skin condition over a 2-year period while taking spirulina blue-green algae (A. platensis, dose unknown). She had partly hemorrhagic bullae, secreting erosions and macerations. These symptoms resolved when the supplement was stopped and the patient was treated with oral prednisone, topical silver sulfadiazine, and topical triamcinolone / neomycin (75921).
Gastrointestinal ...Orally, gastrointestinal complaints are amongst the most common adverse effects associated with spirulina blue-green algae, including nausea, vomiting, diarrhea, and abdominal cramps (19272,75924,91713,109969). Similarly, common adverse effects associated with the blue-green algae species Aphanizomenon flos-aquae are stomach upset, flatulence, diarrhea, and bloating (14842).
Hematologic ...Orally, three cases of mild gum bleeding and one case of mild bruising have been reported in patients taking spirulina blue-green algae (Cyactiv, Cerule LLC) 2. 3 grams daily (containing approximately 1 gram of phycocanin) for 2 weeks (97202).
Hepatic ...Orally, significant elevations of liver function tests within 2 weeks of starting a spirulina blue-green algae supplement (species and dose unknown) have been reported in a 52-year-old man stabilized on amlodipine, simvastatin, and acarbose. A biopsy showed feathery degeneration and ballooning of hepatic cells. Cholestasis was present, and an ex-vivo lymphocyte stimulation test for spirulina blue-green algae was positive. All drugs and the spirulina blue-green algae supplement were stopped, with return of the LFTs to normal (9172).
Immunologic
...Orally, urticarial rashes and pruritus have occurred as part of generalized allergic reactions to blue-green algae (91706,91711,91712).
In one case report, a 14-year-old male experienced anaphylaxis with urticaria, lip edema, and asthma 6 hours after taking five tablets of spirulina blue-green algae (A. platensis, strength unknown). He had a positive skin prick test. Oral challenge to an extract of the tablets, and IgE from his serum, reacted with the beta chain of C-phycocyanin from A. platensis (91712).
In another case report, a 17-year-old male with a history of multiple allergies developed rash, pruritus, angioedema, wheezing, and dyspnea within 10 minutes of taking spirulina blue-green algae (A. platensis) 300 mg. He had a positive skin test to A. platensis but no other ingredients of the tablets (91706).
Musculoskeletal ...Orally, after a 49-year-old woman stopped taking a spirulina blue-green algae supplement (species and dose unknown), the patient experienced inflammatory myopathy with muscle weakness and elevated creatine kinase. The condition resolved with corticosteroid and cyclophosphamide treatment (75936). Another case report describes acute rhabdomyolysis that occurred after consumption of spirulina (Arthrospira platensis, Hawaiian spirulina, Solgar Inc., Leonia, NJ) 3 grams daily for 1 month. The 24-year old man presented with weakness, myalgias, elevated creatine kinase and liver function tests, and myoglobinuria (75922).
General ...Orally, brown rice is well tolerated when consumed as a food. No adverse effects have been reported when used in medicinal amounts; however, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally and topically, chia seems to be well tolerated.
Most Common Adverse Effects:
Orally: Flatulence and soft stools.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis in sensitive individuals.
Cardiovascular ...Chia contains a high concentration of alpha-linolenic acid (ALA). There is some concern that ALA might increase triglyceride levels more than other omega-3 fatty acids (12918); however, clinical research with a specific variety of chia called Salba shows that it does not significantly increase triglyceride levels (16124).
Gastrointestinal ...Orally, chia might cause mild gastrointestinal adverse effects. Some patients consuming chia 40 grams daily for up to 6 months reported mild and transient gastrointestinal adverse effects such as flatulence and soft stools; however, the frequency of these adverse effects was similar to patients consuming an oat bran control (97940). Bloating and flatulence have been reported with a chia flour-based sports beverage (112385).
Immunologic ...Orally, chia might cause anaphylaxis in sensitive individuals. A single case of IgE-mediated anaphylactic reaction has been reported for a patient who consumed chia seeds. Symptoms, including pruritus in the mouth, urticaria, facial angioedema, shortness of breath, and dizziness, developed a few days after consuming chia seeds. The reaction was attributed to sensitivity to proteins in chia seeds (91517).
Oncologic ...Chia seeds contain a high concentration of alpha-linolenic acid (ALA). Epidemiologic research suggests that high dietary intake of ALA might increase risk for prostate cancer (1337,2558,7823,7147,12978). Other research suggests high intake or serum levels of ALA does not increase the overall risk of prostate cancer (12961,15736); however, it might increase the risk of advanced prostate cancer (12961). Association with prostate cancer appears to depend on the sources of ALA. Dairy and meat sources have been positively associated with prostate cancer, whereas plant sources, such as chia seed, don't seem to affect prostate cancer risk (12909). According to a clinical trial, intake of ALA does not appear to increase levels of prostate specific antigen (PSA) (91402).
General
...Orally, chlorella is generally well-tolerated.
Most Common Adverse Effects:
Orally: Allergic reactions, abdominal cramping, constipation, diarrhea, fatigue, flatus, nausea, photosensitivity, and stool discoloration.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis.
Dermatologic ...Orally, photosensitivity reactions have occurred following ingestion of chlorella (3900,5852). According to case reports, five patients who had ingested chlorella exhibited swelling followed by erythematopurpuric lesions on sun-exposed areas of the body (5852). The photosensitizing agent in the chlorella tablets was identified as pheophorbide-a and its ester.
Gastrointestinal
...Orally, chlorella can cause diarrhea, abdominal cramping, flatus, and nausea, especially during the first two weeks of treatment (5890,6804,92130,92132).
In one clinical trial, one out of 42 patients reported nausea and one reported diarrhea (92132). In another trial, taking chlorella tablets (Sun Chlorella A, Sun Chlorella Corp) and a chlorella extract (Wakasa Gold, Sun Chlorella Corp) resulted in transient worsening of constipation in 4 of 13 patients and transient mild diarrhea in 2 of 13 patients (92130).
Green discoloration of the feces has also been reported, due to the chlorophyll content of chlorella (6804,95013).
Hematologic ...Orally, chlorella has been linked to one case of thrombocytopenia; however, causality has not been determined. A 49-year-old female living in Turkey presented with thrombocytopenia (a platelet count of 27,000/mm3) after taking chlorella 1080 mg daily for 20 days. Platelet counts had been normal one month earlier, and returned to normal two weeks after discontinuing the chlorella supplement (99879).
Immunologic ...Allergic reactions, including asthma and anaphylaxis, have been reported in people taking chlorella and in those preparing chlorella tablets (3900,5847,41827,105645).
Neurologic/CNS
...Orally, manganese (Mn)-induced parkinsonism has been reported after long-term consumption of chlorella extract.
In this case, a patient on maintenance hemodialysis reported gait disturbance, dysarthria, elevated serum and cerebrospinal fluid manganese levels, and abnormal magnetic resonance imaging (MRI) findings of the brain. The authors identified the condition as a rare case of Mn-induced parkinsonism, which may have been due to long-term ingestion of a chlorella extract containing 1.7 mg of Mn in the usual daily dose. The patient underwent edetic acid infusion therapy, which improved the MRI abnormalities and the other symptoms improved four months later (41817).
In one study, fatigue was reported in 18 of 41 patients receiving chlorella 200 mg (10388).
General ...Orally, dulse is generally well tolerated. No adverse effects have been reported. However, a thorough evaluation of safety outcomes has not been conducted.
General
...Orally, echinacea is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, heartburn, nausea and vomiting, rashes, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Severe allergic reactions and hepatitis have been reported.
Dermatologic ...Itching, urticaria, tingling, and allergic rashes have been reported with various echinacea preparations (8225,12355,17519,20059,20077,101592,111530,111540). In a study of children aged 2-11 years, rash occurred in about 7% of children treated with an extract of the above-ground parts of E. purpurea (EC31J2, Echinacin Saft, Madaus AG), compared with about 3% of those treated with placebo (4989,95652). There is concern that allergic reactions could be severe in some children. The Medicines and Healthcare Products Regulatory Agency in the United Kingdom (UK) recommends against the use of oral echinacea products in children under 12 years of age due to this risk of allergic reaction (18207). However, another study in children 4-12 years old shows that a specific E. purpurea product (Echinaforce Junior, A. Vogel) did not cause allergic or urticarial reactions more frequently than vitamin C (105719).
Gastrointestinal ...Gastrointestinal adverse effects include nausea and vomiting, abdominal pain, stomach upset, heartburn, diarrhea, and constipation (10802,11970,12355,13419,17519,20059,48680,105719,106626). An unpleasant taste, dry mouth, and burning, tingling or numbness of the tongue also occur (11970,12355,17519,20059,20070,20077).
Hematologic ...A 51-year-old female presented with leukopenia after taking echinacea 450 mg three times daily for 2 months, along with ginkgo biloba, multivitamins, and calcium. Her leukocyte count recovered upon stopping these supplements, but dropped again when she restarted echinacea alone about a year later. The problem resolved when echinacea was stopped permanently (48533). A 32-year-old male presented with severe thrombotic thrombocytopenic purpura (TTP) about 2 weeks after using an extract of E. pallida to treat a cold. He required admission to an intensive care unit and extensive plasmapheresis. The authors speculate that immunostimulant effects of echinacea induced or exacerbated the TTP (48572).
Hepatic
...Although uncommon, cases of echinacea-induced hepatitis have been reported.
One case report describes acute cholestatic autoimmune hepatitis in a 45-year-old male who had been taking an echinacea root extract 1500 mg daily for about 2 weeks. He presented with significantly elevated liver function tests (LFTs), elevated immunoglobulin G (IgG) levels, and a positive test for anti-smooth muscle antibodies, indicating an autoimmune process. Elevated LFTs and IgG levels returned to normal within one month of stopping echinacea (17518). Another case report describes acute cholestatic hepatitis in a 44-year-old male who had taken echinacea root tablets 600 mg daily for 5 days to treat flu-like symptoms. He presented with elevated LFTs, prothrombin time, and international normalized ratio (INR). His condition gradually improved after stopping echinacea, and his LFTs normalized within 3 months (91528).
Seven cases of hepatitis associated with echinacea use were reported to the Australian Adverse Drug Reactions Advisory Committee between 1979 and 2000, but specific details are lacking (8225).
One case report describes acute liver failure in a 2 year-old child who had been given about 100 mg of echinacea daily for 2 weeks. The patient presented with jaundice, diarrhea, lethargy, anorexia, and significantly elevated LFTs. A liver biopsy showed hepatocyte swelling, spotty necrosis, and inflammatory infiltrate with eosinophils. A full recovery was made over a 2-week period (88166).
Immunologic
...Allergic reactions, including urticaria, runny nose, dyspnea, bronchospasm, acute asthma, angioedema, and anaphylaxis, have been reported with various echinacea preparations (638,1358,8225).
Atopic individuals and those sensitive to other members of the Asteraceae family (ragweed, chrysanthemums, marigolds, daisies) seem to be at higher risk for these reactions (1358,8225).
A case report describes a 36-year-old female who presented with muscle weakness, electrolyte abnormalities, renal tubular acidosis, fatigue, and dry mouth and eyes after taking echinacea, kava, and St. John's Wort for 2 weeks., She also had a positive antinuclear antibody (ANA) test, with elevated anti-dsDNA antibodies SSA and SSB. Sjogren syndrome was diagnosed; the authors hypothesize that it may have been triggered by the immunostimulant effects of echinacea (10319). A 55-year-old male with a history of pemphigus vulgaris in remission for about a year experienced a flare of the disease after taking an echinacea supplement for one week. After stopping echinacea, medical treatment resulted in partial control of the disease (12171). Another case report describes a 58-year-old male who presented with marked eosinophilia and elevated immunoglobulin E (IgE) levels while taking an echinacea supplement. He required prednisone therapy until he stopped taking echinacea 3 years later, at which time his eosinophils and IgE normalized (48623). A 41-year-old male experienced four episodes of erythema nodosum, each occurring after he had taken echinacea for early symptoms of influenza. After stopping echinacea, he had no further exacerbations of erythema nodosum, suggesting that it had been triggered by the immunostimulant effects of echinacea (7057).
Musculoskeletal ...Reports of arthralgia and myalgia have been associated with echinacea (13418).
Neurologic/CNS ...Headache has been reported in people taking various echinacea preparations orally (3282,11970,17519,20059,20064). Dizziness has also been reported (3282,8225,11970). In one study using an alcoholic extract of the above-ground parts of E. purpurea (EC31J0, Echinacin, Madaus AG), somnolence and a tendency to aggressiveness were reported (3282).
General
...Orally, eleuthero root is generally well tolerated when used short-term.
Most Common Adverse Effects:
Orally: Diarrhea, dyspepsia, gastrointestinal upset, headache, nausea, and urticaria.
Cardiovascular ...Orally, increased blood pressure has been reported in children with hypotension taking eleuthero in one clinical study (74980). Eleuthero has been reported to cause tachycardia, hypertension, and pericardial pain in patients with rheumatic heart disease or atherosclerosis. It is unclear if these effects were caused by eleuthero, or by the cardioglycoside-containing herb, silk vine (Periploca sepium), which is a common adulterant found in eleuthero products (12,797,6500).
Dermatologic ...Orally, eleuthero has been reported to cause rash in some clinical studies (75013,75028).
Gastrointestinal ...Orally, eleuthero has been reported to cause dyspepsia, nausea, diarrhea, and gastrointestinal upset in some patients (74938,75028,91510).
Genitourinary ...Orally, mastalgia and uterine bleeding were reported in 7. 3% of females taking eleuthero 2 grams daily in one clinical study (6500,11099). These adverse effects seem to be more likely with higher doses.
Neurologic/CNS
...Orally, headaches have been reported in 9.
8% of people taking eleuthero in one clinical study (11099).
In one case report, a 53-year-old female developed spontaneous subarachnoid hemorrhage associated with the use of an herbal supplement containing red clover, dong quai, and eleuthero (70419). It is unclear if this event was related to the use of eleuthero, the other ingredients, the combination, or another cause entirely.
Psychiatric ...Orally, nervousness has been reported in 7. 3% of people taking eleuthero in one clinical study (11099). Eleuthero has also been reported to cause slight anxiety, irritability, and melancholy in some patients (6500,11099). These adverse effects seem to be more likely to occur with higher doses.
General
...Orally, ginkgo leaf extract is generally well tolerated when used for up to 6 years.
However, the seed and crude plant contain toxic constituents and should be avoided.
Intravenously, ginkgo leaf extract seems to be well tolerated when used for up to 30 days.
Topically, no adverse effects have been reported with ginkgo as a single ingredient. However, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Dizziness, gastrointestinal symptoms, headache.
Serious Adverse Effects (Rare):
Orally: Arrhythmia, bleeding, Stevens-Johnson syndrome.
Cardiovascular
...Cardiac arrhythmias suspected to be related to ginkgo have been reported.
Internationally, there are at least 162 reports from 18 countries, with 34% of cases considered serious, involving five deaths and four life-threatening events. Additionally, a report from Canada found that 10 out of 15 cases of arrhythmia were considered serious. Ginkgo was the only suspect ingredient in 57% of all international reports, with symptoms generally presenting within days of initiation. The most common symptoms included palpitations, tachycardia, bradycardia, syncope, and loss of consciousness. Most cases were reported to be related to oral use of ginkgo leaf products; however, some cases were associated with oral use of the seed, and others with intravenous or intramuscular use of the leaf. Documented discontinuation of ginkgo led to recovery in approximately 84% of cases where ginkgo was the sole suspect. Despite these findings, ginkgo cannot be confirmed as the causal agent. It is possible that these reports are confounded by underlying co-morbidities. Of the reported cases, the main reason for ginkgo use was tinnitus, a symptom commonly associated with pre-existing arrhythmias (105253,105254). Despite this large number of reports, only three cases of cardiac arrhythmia have been published in the literature (105253,105254). In one case, frequent nocturnal episodes of paroxysmal atrial fibrillation were reported for a 35-year-old female taking ginkgo extract 240 mg daily orally for 2 months. Arrythmias ceased following discontinuation of ginkgo (87884).
Increases in blood pressure were commonly reported with ginkgo in a safety database analysis; however, information on the magnitude of the increase was limited, and reports included both oral and intravenous administration (115628).
In one clinical trial, the rate of ischemic stroke and transient ischemic attacks was significantly higher in patients taking ginkgo extract orally when compared with placebo (16635). It is unclear if these events were due to ginkgo, other factors, or a combination.
Dermatologic ...Topically, ginkgo fruit pulp can cause contact dermatitis, with intense itching, edema, papules, and pustules which take 7-10 days to resolve after stopping contact (112946).
Gastrointestinal
...Orally, ginkgo extract may cause mild gastrointestinal discomfort or pain (3965,8543,17112,87818,87858), nausea and vomiting (8543,17112,87728,87844,87858), diarrhea (87844), dry mouth (17112), and constipation (5719,87787).
However, post-market surveillance suggests that the incidence of these events is relatively low, occurring in less than 2% of patients (88007).
Fresh ginkgo seeds can cause stomach ache, nausea, vomiting, or diarrhea. Ingesting roasted seeds in amounts larger than the normal food amounts of 8-10 seeds per day, or long-term, can also cause these same adverse reactions (8231,8232).
Genitourinary ...Orally, ginkgo extract has been reported to cause blood in the urine (87858,115628).
Hematologic
...Spontaneous bleeding is one of the most concerning potential side effects associated with ginkgo.
There are several published case reports linking ginkgo to episodes of minor to severe bleeding; however, not all case reports clearly establish ginkgo as the cause of bleeding. In most cases, other bleeding risk factors were also present including taking other medications or natural medicines, old age, liver cirrhosis, recent surgery, and other conditions. In most cases, bleeding occurred after several weeks or months of taking ginkgo (13135). Large-scale clinical trials and a meta-analysis evaluating standardized ginkgo leaf extracts show that the incidence of bleeding in patients taking ginkgo is not significantly higher than in those taking placebo (16634,16635,17179,17402).
There are several case reports of intracerebral bleeding. Some of these cases resulted in permanent neurological damage and one case resulted in death (244,578,8581,13135,13179,14456,87868,87977).
There are at least 4 cases of ocular bleeding including spontaneous hyphema (bleeding from the iris into the anterior part of the eye) and retrobulbar hemorrhage associated with ginkgo use (579,10450,13135).
There are also cases of surgical and post-surgical complications in patients using ginkgo. Retrobulbar hemorrhage (bleeding behind the eye) during cataract surgery has been associated with ginkgo use (10450). Excessive postoperative bleeding requiring transfusion has also occurred following laparoscopic surgery in a patient who had been taking ginkgo leaf extract (887). There have also been two cases of excessive bleeding during surgery and post-surgical hematoma in patients undergoing rhytidoplasty and blepharoplasty (13002). In another case, an elderly patient taking ginkgo experienced excessive postoperative bleeding following total hip arthroplasty (13194). In another case, use of ginkgo following liver transplantation surgery was associated with subphrenic hematoma requiring evacuation by laparotomy. The patient also subsequently experienced vitreous hemorrhage (14315). In another case, an elderly patient who had taken ginkgo chronically experienced excessive post-operative bleeding following an ambulatory surgical procedure (14453).
In another case, an elderly man experienced nose bleeds and ecchymosis following use of ginkgo. One case of diffuse alveolar hemorrhage in a female taking ginkgo and ginseng for over one year has been reported (95670). These instances of bleeding stopped when ginkgo was discontinued, and recurred when the patient started taking ginkgo again (13135).
Persistent bleeding has also occurred following dental surgery (87862) and laparoscopic cholecystectomy (88000). Nosebleed has also been reported as an adverse effect in a clinical trial (87813).
Immunologic ...Orally, ginkgo leaf extract can cause allergic skin reactions in some patients (14449,15578,112946). In one case, a patient developed acute generalized exanthematous pustulosis 48 hours after taking a single-ingredient ginkgo product. The rash resolved within 10 days after discontinuing ginkgo (14449). In another case, progressive erythema of the face, neck, trunk, and extremities occurred after two 60 mg oral doses of ginkgo extract (112946). There is also a case of Stevens-Johnson syndrome following a second administration of a preparation containing ginkgo leaf extract, choline, vitamin B6, and vitamin B12 (208). In another case, systemic edema and severe arthralgia was reported after contact with a ginkgo tree nut and manifested as multifocal lymphadenopathy associated with an allergic reaction on PET/CT scan imaging (95672).
Musculoskeletal ...Edema has been reported for three patients treated with ginkgo extract 40 mg orally three times daily (87818).
Neurologic/CNS ...Orally, ginkgo extract may cause headache (6220,8543,87818), dizziness (5719,87818), increased desire to sleep (87839,115628), and sedation (10893) in some patients. In addition, although ginkgo leaf and ginkgo leaf extract contain only small amounts of ginkgotoxin, there are anecdotal reports of seizure occurring after use of ginkgo leaf preparations both in patients without a history of seizure disorder and in those with previously well-controlled epilepsy (7030,7090,11296,14281).
Ocular/Otic
...Orally, ginkgo may cause tinnitus is some patients (8543,115628).
Topically, eye drops containing ginkgo extract and hyaluronic acid may cause stinging sensations in some people (87829).
Psychiatric ...Orally, ginkgo has been associated with a single case of mood dysregulation. A 50-year-old female with schizophrenia developed irritability, difficulty controlling anger, and agitation after one week of taking ginkgo 80 mg twice daily. The mood changes resolved within 2-3 days of discontinuation. When ginkgo was re-trialed at a later date, the same symptoms reappeared, and again dissipated after discontinuation of the ginkgo product. The relationship between ginkgo and mood dysregulation was considered to be "probable" based on the Naranjo adverse drug reaction probability scale (96763); however, the exact mechanism by which ginkgo may have affected mood regulation is unknown.
General
...Orally, the whole fruit, as well as the seed, fruit, and leaf extracts, seem to be well tolerated.
Topically, grape seed extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, dry mouth, dyspepsia, headache, joint pain, and nausea.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to grape skin has been reported.
Dermatologic ...Orally, mild hair thinning has been reported in a patient taking a specific grape leaf extract AS195 KG) (2538). Urticaria (hives) has also been reported with this same extract (53206). Cases of contact dermatitis have been reported in grape workers, including those working in California vineyards (53270,53272,53275).
Gastrointestinal ...Orally, abdominal pain and nausea have been reported with use of grape seed extract, but these effects typically occur at rates similar to placebo (9182,13162). In a case report of a 57-year-old man, intermittent nausea, vomiting, and diarrhea occurred over a 10-day period and improved once grape seed extract was stopped (96764). Gastrointestinal adverse effects have also been reported with use of a different grape seed extract (Entelon, Hanlim Pharm). However, the specific types of gastrointestinal effects were not described (100954). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused flatulence, mild constipation, gastrointestinal discomfort, diarrhea, dyspepsia, dry mouth, and retching (2538,52985,53206). Diarrhea, gastrointestinal distress, indigestion, and aversion to taste have been reported with use of Concord grape juice (52972,53166,53175,53181,53199). Loose stools have been reported in a clinical trial of grape pomace (99270). Bowel obstruction caused by intact grapes and grape seeds has been described in case reports (53241,53284,53278). Excessive consumption of grapes, dried grapes, raisins, or sultanas might cause diarrhea due to laxative effects (4201).
Hematologic ...Orally, one case of leg hematoma following a minor trauma was reported in a person using grape leaf extract (2538). Also, one case of bruising was reported in a person drinking Concord grape juice daily for 2 weeks (52972).
Immunologic ...Orally, there is one report of an anaphylactic reaction to oral grape skin extract, which included urticaria and angioedema (4073).
Musculoskeletal ...Orally, musculoskeletal disorders, including back pain, have been reported with use of a specific grape leaf extract AS195 KG) (2538,53206). Joint pain and lumbago have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (91541).
Neurologic/CNS ...Orally, headache has been reported with use of grape seed extract, but this effect occurs at rates similar to placebo (9182,91541). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused dizziness, tiredness, headache, and sleep problems (2538,53206). As a class, nervous system adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of adverse neurologic effects were not described (100954).
Ocular/Otic ...Orally, ocular adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of ocular adverse effects were not described (100954).
Pulmonary/Respiratory ...Orally, nasopharyngitis and oropharyngeal pain have been reported with use of a specific grape leaf extract AS195 KG) (53206). Sore throat, cough, allergic rhinitis, and nasopharyngitis have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (9182,91541). One case report describes a 16-year-old female who developed increased levels of immunoglobulin E (IgE) following skin-prick exposure to grape vine pollen, as well as positive test responses following bronchial and conjunctival provocation (53301). Reduced forced vital capacity has been described in California grape workers (53080,53081). Occupational eosinophilic lung was diagnosed in a grape grower with a history of asthma. Respiratory exposure to sulfites in grape was implicated as the cause of the adverse reaction (53285).
Other
...Orally, grape products can cause adverse effects due to contamination with pesticides or mycotoxins.
Some evidence has shown that pesticides used in vineyards may remain on grape surfaces post-harvesting. For example, the fungicide folpet sprayed on grapevines has been shown to remain on the grape surface. Although there was minimal penetration of the epicuticular wax, it showed high resistance to washing (52935). Carbaryl has been identified in over 58% of juice samples collected in Canada. This pesticide reportedly occurred more frequently in grape than in other juices. However, estimates of short-term intake were below proposed acute reference doses (53003).
Ochratoxin A is a mycotoxin that is suspected to be nephrotoxic, teratogenic, hepatotoxic and carcinogenic and has been identified in grape juice, frozen grape pulps, and red and white wine sold in Rio de Janeiro, Brazil. However, the highest levels identified in grape products were lower than the established virtually safe dose of 5 ng/kg of body weight daily (53010,53004). Ochratoxin A has also been identified in red, but not white, grape juice marketed in Switzerland, Canada, and the U.S. (53292,53020).
General
...Orally, green tea is generally well tolerated when consumed as a beverage in moderate amounts.
Green tea extract also seems to be well tolerated when used for up to 12 months.
Most Common Adverse Effects:
Orally: Bloating, constipation, diarrhea, dyspepsia, flatulence, and nausea.
Serious Adverse Effects (Rare):
Orally: Hepatotoxicity, hypokalemia, and thrombotic thrombocytopenic purpura have been reported rarely.
Cardiovascular
...Acute or short-term oral administration of green tea may cause hypertension (53719,54014,54065,54076,102716).
The risk may be greater for green tea products containing more than 200 mg epigallocatechin gallate (EGCG) (90161). However, consumption of brewed green tea does not seem to increase blood pressure or pulse, even in mildly hypertensive patients (1451,1452). In fact, some evidence suggests that habitual tea consumption is associated with a reduced risk of developing hypertension (12518). Also, epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension or with cardiovascular disease mortality in patients with hypertension (13739,111027). Rarely, green tea consumption may cause hypotension (53867).
Epidemiological research suggests that regular caffeine intake of up to 400 mg per day, or approximately 8 cups of green tea, is not associated with an increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, and temporary loss of consciousness has been associated with the combined use of ephedra and caffeine (2729). There is also a report of ischemic stroke in an athlete who consumed ephedra 40-60 mg, creatine monohydrate 6 grams, caffeine 400-600 mg, and a variety of other supplements daily for 6 weeks (1275). In theory, combining caffeinated green tea with ephedra would have similar effects.
In a case report, the EGCG component of a specific weight loss supplement (Hydroxycut) was thought to be responsible for atrial fibrillation (54028). The patient was given two doses of intravenous diltiazem and was loaded with intravenous digoxin. Thirty-six hours after the last product dose, she spontaneously converted to normal sinus rhythm. The authors suggested that the block of the atrial-specific KCNA5 potassium channel likely played a role in this response.
A case of thrombotic thrombocytopenic purpura has been reported for a patient who consumed a weight loss product containing green tea (53978). She presented at the emergency department with a one-week history of malaise, fatigue, and petechiae of the skin. Twelve procedures of plasmapheresis were performed, and corticosteroid treatment was initiated. She was discharged after 20 days.
Dermatologic ...Orally, green tea may cause skin rashes or skin irritation (53731,54038,90161,90187,102716). Topically, green tea may cause local skin reactions or skin irritation, erythema, burning, itching, edema, and erosion (53731,54018,97136,104609,111031). A green tea extract ointment applied to the cervix can cause cervical and vaginal inflammation, vaginal irritation, and vulval burning (11310,36442,36438). When applied to external genital or perianal warts, a specific green tea extract ointment (Veregen, Bradley Pharmaceuticals) providing 15% kunecatechins can cause erythema, pruritus, local pain, discomfort and burning, ulceration, induration, edema, and vesicular rash (15067,53907).
Endocrine
...There is some concern that, due to its caffeine content, green tea may be associated with an increased risk of fibrocystic breast disease, breast cancer, and endometriosis.
However, this is controversial since findings are conflicting (8043). Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996).
A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages, such as green tea, and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
A case of hypoglycemia has been reported for a clinical trial participant with type 2 diabetes who used green tea in combination with prescribed antidiabetes medication (54035).
Gastrointestinal ...Orally, green tea beverage or supplements can cause nausea, vomiting, abdominal bloating and pain, constipation, dyspepsia, reflux, morning anorexia, increased thirst, flatulence, and diarrhea. These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,36398,53719,53867,53936,54038,54076,90139,90140)(90161,90175,90187,97131,97136,102716).
Hepatic
...There is concern that some green tea products, especially green tea extracts, can cause hepatotoxicity in some patients.
In 2017, the regulatory agency Health Canada re-issued a warning to consumers about this concern. The updated warning advises patients taking green tea extracts, especially those with liver disease, to watch for signs of liver toxicity. It also urges children to avoid taking products containing green tea extracts (94897). In 2020, the United States Pharmacopeia (USP) formed an expert panel to review concerns of green tea extract-related hepatotoxicity. Based on their findings, USP determined that any products claiming compliance with USP quality standards for green tea extract must include a specific warning on the label stating "Do not take on an empty stomach. Take with food. Do not use if you have a liver problem and discontinue use and consult a healthcare practitioner if you develop symptoms of liver trouble, such as abdominal pain, dark urine, or jaundice (yellowing of the skin or eyes)" (102722).
Numerous case reports of hepatotoxicity, primarily linked to green tea extract products taken in pill form, have been published. A minimum of 29 cases have been deemed at least probably related to green tea and 38 have been deemed possibly related. In addition, elevated liver enzymes have been reported in clinical research (14136,15026,53740,53746,53775,53859,54027,90139,90162,90164)(93256,94898,94899,102716,102720,102722,107158,111020,111644). Most cases of toxicity have had an acute hepatitis-like presentation with a hepatocellular-elevation of liver enzymes and some cholestasis. Onset of hepatotoxic symptoms usually occurs within 3 months after initiation of the green tea extract supplement, and symptoms can persist from 10 days to 1 year (95439,94897,94898,107158). Some reports of hepatotoxicity have been associated with consumption of green tea-containing beverages as well (15026,53742,54016,90125,90143).
In most cases, liver function returned to normal after discontinuation of the green tea product (14136,15026,53859,93256,107158). In one case, use of a specific ethanolic green tea extract (Exolise, Arkopharma) resulted in hepatotoxicity requiring a liver transplant. Due to concerns about hepatotoxicity, this specific extract was removed from the market by the manufacturer (14310). Since then, at least 5 cases of liver toxicity necessitating liver transplantation have been reported for patients who used green tea extracts (94898,107158). In another case, use of green tea (Applied Nutrition Green Tea Fat Burner) in combination with whey protein, a nutritional supplement (GNC Mega Men Sport), and prickly pear cactus resulted in acute liver failure (90162).
Despite the numerous reports of hepatotoxicity associated with the use of green tea products, the actual number of hepatotoxicity cases is low when the prevalence of green tea use is considered. From 2006 to 2016, liver injury from green tea products was estimated have occurred in only 1 out of 2.7 million patients who used green tea products (94897,95440).
In addition to the fact that green tea hepatotoxicity is uncommon, it is also not clear which patients are most likely to experience liver injury (94897,95440). The hepatotoxicity does not appear to be an allergic reaction or an autoimmune reaction (94897). It is possible that certain extraction processes, for example, ethanolic extracts, produce hepatotoxic constituents. However, in most cases, the presence of contaminants in green tea products has not been confirmed in laboratory analyses (90162).
Although results from one analysis of 4 small clinical studies disagrees (94899), most analyses of clinical data, including one conducted by the European Food Safety Association, found that hepatotoxicity from green tea products is associated with the dose of EGCG in the green tea product. Results show that daily intake of EGCG in amounts greater than or equal to 800 mg per day is associated with a higher incidence of elevated liver enzymes such as alanine transaminase (ALT) (95440,95696,97131). However, it is still unclear what maximum daily dose of EGCG will not increase liver enzyme levels or what minimum daily dose of EGCG begins to cause liver injury. In many cases of liver injury, the dose of green tea extract and/or EGCG is not known. Therefore, a minimum level of green tea extract or EGCG that would cause liver injury in humans cannot be determined (102722). Keep in mind that daily intake of green tea infusions provides only 90-300 mg of EGCG daily. So for a majority of people, green tea infusions are likely safe and unlikely to cause liver injury (95696). Also, plasma levels of EGCG are increased when green tea catechins are taken in the fasting state, suggesting that green tea extract should be taken with food (102722).
Until more is known, advise patients that green tea products, especially those containing green tea extract, might cause liver damage. However, let them know that the risk is uncommon, and it is not clear which products are most likely to cause the adverse effect or which patients are most likely to be affected. Advise patients with liver disease to consult their healthcare provider before taking products with green tea extract and to notify their healthcare provider if they experience symptoms of liver damage, including jaundice, dark urine, sweating, or abdominal pain (102722).
Immunologic ...Orally, matcha tea has resulted in at least one case of anaphylaxis related to green tea proteins. A 9-year-old male experienced systemic redness and hives, nausea, and anaphylaxis 60 minutes after consuming matcha tea-flavored ice cream (107169). The caffeine found in green tea can also cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Orally, the ingestion of the green tea constituent epigallocatechin gallate (EGCG) or a decaffeinated green tea polyphenol mixture may cause mild muscle pain (36398).
There is some concern regarding the association between caffeinated green tea products and osteoporosis. Epidemiological evidence regarding the relationship between caffeinated beverages such as green tea and the risk for osteoporosis is contradictory. Caffeine can increase urinary excretion of calcium (2669,10202,11317). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake of less than 400 mg per day, or about 8 cups of green tea, doesn't seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317).
Neurologic/CNS
...Orally, green tea can cause central nervous system stimulation and adverse effects such as headache, anxiety, dizziness, insomnia, fatigue, agitation, tremors, restlessness, and confusion.
These effects are more common with higher doses of green tea or green tea extract, equivalent to 5-6 liters of tea per day (8117,11366,53719,90139,102716). The green tea constituent epigallocatechin gallate (EGCG) or decaffeinated green tea may also cause mild dizziness and headache (36398).
Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729).
Topically, green tea extract (Polyphenon E ointment) may cause headache when applied to the genital area (36442).
Psychiatric ...Green tea contains a significant amount of caffeine. Chronic use, especially in large amounts, can produce tolerance, habituation, and psychological dependence (11832). The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Other researchers suggest symptoms such as headache; tiredness and fatigue; decreased energy, alertness, and attentiveness; drowsiness; decreased contentedness; depressed mood; difficulty concentrating; irritability; and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839).
Pulmonary/Respiratory ...A case of granulomatous alveolitis with lymph follicles has been reported for a 67-year-old female who used green tea infusions to wash her nasal cavities for 15 years (54088). Her symptoms disappeared 2 months after stopping this practice and following an undetermined course of corticosteroids. In a case report, hypersensitivity pneumonitis was associated with inhalation of catechin-rich green tea extracts (54025). Occupational exposure to green tea dust can cause sensitization, which may include nasal and asthmatic symptoms (11365).
Renal ...There are two cases of hypokalemia associated with drinking approximately 8 cups daily of green tea in an elderly couple of Asian descent. The hypokalemia improved after reducing their intake by 50%. It is possible that this was related to the caffeine in the green tea (98418).
Other ...Orally, intake of a specific green tea extract product (Polyphenon E) may cause weight gain (90139).
General
...Orally and topically, honey is generally well tolerated in those at least 1 year of age.
When given intranasally or into the eyes, honey seems to be well tolerated. However, honey containing grayanotoxins, which are found in rhododendrons, is likely unsafe and should be avoided.
Most Common Adverse Effects:
Orally: Nausea, stomach pain, and vomiting.
Topically: Burning, pain, and stinging.
Intranasally: Burning and nausea.
Ocular: Stinging.
Serious Adverse Effects (Rare):
Orally: Case reports of botulism in infants have occurred. Anaphylaxis has been reported in sensitive individuals. Honey from the Black Sea coast of Turkey, which is derived from the nectar of rhododendrons, has caused respiratory depression, dizziness, sweating, weakness, bradycardia, atrioventricular (AV) block, hypotension, cardiac arrhythmias, and myocardial infarction within a few minutes to several hours after consumption.
Cardiovascular ...Honey from the Black Sea coast of Turkey has been linked with a unique form of poisoning. Honey from this region sometimes contains excessive concentrations of grayanotoxins from rhododendrons, which can cause bradycardia, atrioventricular (AV) block, cardiac arrhythmias, myocardial infarction, and hypotension within a few minutes to several hours after consumption (12220,55110,55126,55129,55238,55269,55270,55280). Fatalities have not been reported. Patients typically respond to fluids and reversal of cardiac conduction abnormalities with atropine.
Dermatologic ...Topically, the use of honey applied to wounds can cause local pain, stinging, and burning in about 5% of patients, some of whom stop treatment as a result (16356,16357,16358,16361,91362,97694,96595). Theoretically, honey may cause excessive drying of wounds, which could delay healing. This can be managed by application of saline packs as needed (7850).
Gastrointestinal ...Orally, honey may cause mild nausea, vomiting, and stomach ache (12220,55119,55190,55294,97693). Honey from the Black Sea coast of Turkey has been linked with a unique form of poisoning. Honey from this region sometimes contains excessive concentrations of grayanotoxins. These toxins can cause increased salivation, nausea, and vomiting within a few minutes to several hours after consumption (12220,55119,55190,55294). Intranasally, honey may cause nausea (55216).
Immunologic ...Orally, honey can cause allergic reactions, including anaphylaxis (6,11,108531,108532). These reactions may be due to various components of the honey, including the honey itself, pollen, or bee secretions (91370). When used topically, local allergic reactions have been reported in people with pre-existing atopy (16356,55118). Allergic contact dermatitis related to honey enriched with propolis has been reported (91365).
Neurologic/CNS ...Orally, honey may cause nervousness, insomnia, and hyperactivity in children (91366,97693). Honey from the Black Sea coast of Turkey has been linked with a unique form of poisoning. Honey from this region sometimes contains excessive concentrations of grayanotoxins, which can cause dizziness, sweating, and weakness within a few minutes to several hours after consumption (12220,55110,55119,55296).
Ocular/Otic ...When used in eye drops, transient stinging has been reported rarely (105231,105234).
Pulmonary/Respiratory ...When used intranasally, a burning sensation of the nasal passages has been reported (55216). Honey from the Black Sea coast of Turkey, which sometimes contains excessive concentrations of grayanotoxins, can cause respiratory depression within a few minutes to several hours after consumption (12220,55110,55119,55296).
Other ...Some honey is contaminated with Clostridium botulinum spores, which poses a risk to infants (6,11,13160,55067,55290,91359). Botulinum spores can proliferate in the intestines of infants and cause botulism poisoning (55112). However, this is not a concern for older children and adults.
General
...Orally and intravaginally, Lactobacillus acidophilus is generally well tolerated.
Most Common Adverse Effects:
Orally: Mild gastrointestinal adverse effects.
Intravaginally: Vaginal discharge.
Serious Adverse Effects (Rare):
Orally: There is concern that L. acidophilus may cause infections in some people.
Dermatologic ...Orally, in one clinical trial, a combination of Lactobacillus acidophilus La-5, Lacticaseibacillus paracasei subsp. paracasei F19, and Bifidobacterium animalis subsp. lacltis BB-12 was associated with two cases of rash, one with itching. However, it is not clear if these adverse effects were due to L. acidophilus, other ingredients, the combination, or if the events were idiosyncratic (90236).
Gastrointestinal ...Orally, taking Lactobacillus acidophilus in combination with other probiotics may cause gastrointestinal side effects including epigastric discomfort (90239), abdominal pain (90239,90291,111785), dyspepsia (90239), flatulence (107497,107520), bloating (107497,111785), diarrhea (111785), vomiting (107537), and burping (90239); however, these events are uncommon.
Genitourinary ...Intravaginally, cream containing Lactobacillus acidophilus has been shown to cause increased vaginal discharge in about 5% of patients, compared to about 1% of patients receiving placebo cream (90237). Vaginal burning was reported by one person using intravaginal L. acidophilus and Limosilactobacillus fermentum in a clinical trial (111781).
Immunologic ...Since Lactobacillus acidophilus preparations contain live and active microorganisms, there is some concern that they might cause pathogenic infection in some patients. L. acidophilus has been isolated in some cases of bacteremia, sepsis, splenic abscess, liver abscess, endocarditis, necrotizing fasciitis, pancreatic necrosis, and meningoencephalitis. Most of these cases are thought to be due to the translocation of bacteria from other locations in the body in which they occur naturally, such as the oral cavity and gastrointestinal tract (107543,111782,111792). L. acidophilus endophthalmitis has been reported rarely (111787,111795). In one case, it was related to intravitreal injections for age-related macular degeneration in a 90-year-old female with an intraocular lens (111787). In another, it occurred following cataract surgery (111795).
General
...Orally, lecithin is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, fullness, and nausea.
Dermatologic ...Orally, lecithin can cause allergic skin reactions in people with egg or soy allergies (15705).
Gastrointestinal ...Orally, lecithin may cause abdominal pain, diarrhea, fullness, and nausea (5140,6243,14817,14822,14838,19204,59281).
Neurologic/CNS ...Orally, lecithin caused CNS complaints and agitation in one patient in a clinical trial (59261).
General
...Orally, licorice is generally well tolerated when used in amounts commonly found in foods.
It seems to be well tolerated when licorice products that do not contain glycyrrhizin (deglycyrrhizinated licorice) are used orally and appropriately for medicinal purposes or when used topically, short-term.
Most Common Adverse Effects:
Orally: Headache, nausea, and vomiting.
Topically: Contact dermatitis.
Intravenously: Diarrhea, itching, nausea, and rash.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about acute renal failure, cardiac arrest, cardiac arrhythmias, hypertension, hypokalemia, muscle weakness, paralysis, pseudohyperaldosteronism, and seizure associated with long-term use or large amounts of licorice containing glycyrrhizin.
Cardiovascular
...Orally, excessive licorice ingestion can lead to pseudohyperaldosteronism, which can precipitate cardiovascular complications such as hypertension and hypertensive crisis, ventricular fibrillation or tachycardia, sinus pause, and cardiac arrest.
These effects are due to the licorice constituent glycyrrhizin and usually occur when 20-30 grams or more of licorice product is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,97213) (104563,108574,108576,110305,112234). In one case report, an 89-year-old female taking an herbal medicine containing licorice experienced a fatal arrhythmia secondary to licorice-induced hypokalemia. The patient presented to the hospital with recurrent syncope, weakness, and fatigue for 5 days after taking an herbal medicine containing licorice for 2 months. Upon admission to the hospital, the patient developed seizures, QT prolongation, and ventricular arrhythmia requiring multiple defibrillations. Laboratory tests confirmed hypokalemia and pseudohyperaldosteronism (112234).
However, people with cardiovascular or kidney conditions may be more sensitive, so these adverse events may occur with doses as low as 5 grams of licorice product or glycyrrhizin 100 mg daily (15589,15593,15598,15600,59726). A case report in a 54-year-old male suggests that malnutrition might increase the risk of severe adverse effects with excessive licorice consumption. This patient presented to the emergency room with cardiac arrest and ventricular fibrillation after excessive daily consumption of licorice for about 3 weeks. This caused pseudohyperaldosteronism and then hypokalemia, leading to cardiovascular manifestations. In spite of resuscitative treatment, the patient progressed to kidney failure, refused dialysis, and died shortly thereafter (103791).
Dermatologic
...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912).
There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578). Burning sensation, itching, redness, and scaling were reported rarely in patients applying a combination of licorice, calendula, and snail secretion filtrate to the face. The specific role of licorice is unclear (110322).
In rare cases, the glycyrrhizin constituent of licorice has caused rash and itching when administered intravenously (59712).
Endocrine
...Orally, excessive licorice ingestion can cause a syndrome of apparent mineralocorticoid excess, or pseudohyperaldosteronism, with sodium and water retention, increased urinary potassium loss, hypokalemia, and metabolic alkalosis due to its glycyrrhizin content (781,10619,15591,15592,15593,15594,15595,15596,15597,15598)(15600,16057,16835,25659,25660,25673,25719,26439,59818,59822)(59832,59864,91722,104563,108568,108574,110305,112234).
These metabolic abnormalities can lead to hypertension, edema, EKG changes, fatigue, syncope, arrhythmias, cardiac arrest, headache, lethargy, muscle weakness, dropped head syndrome (DHS), rhabdomyolysis, myoglobinuria, paralysis, encephalopathy, respiratory impairment, hyperparathyroidism, and acute kidney failure (10393,10619,15589,15590,15593,15594,15596,15597,15599)(15600,16057,16835,25660,25673,25719,26439,31562,59709,59716)(59720,59740,59787,59820,59826,59882,59889,59900,91722,97214,100522) (104563,108576,108577). These effects are most likely to occur when 20-30 grams of licorice products containing glycyrrhizin 400 mg or more is consumed daily for several weeks (781,15590,15592,15594,15596,15597,15599,15600,16835,108574). However, some people may be more sensitive, especially those with hypertension, diabetes, heart problems, or kidney problems (15589,15593,15598,15600,59726,108576,108577) and even low or moderate consumption of licorice may cause hypertensive crisis or hypertension in normotensive individuals (1372,97213). The use of certain medications with licorice may also increase the risk of these adverse effects (108568,108577). One case report determined that the use of large doses of licorice in an elderly female stabilized on fludrocortisone precipitated hypokalemia and hypertension, requiring inpatient treatment (108568). Another case report describes severe hypokalemia necessitating intensive care treatment due to co-ingestion of an oral glycyrrhizin-specific product and hydrochlorothiazide for 1 month (108577). Glycyrrhetinic acid has a long half-life, a large volume of distribution, and extensive enterohepatic recirculation. Therefore, it may take 1-2 weeks before hypokalemia resolves (781,15595,15596,15597,15600). Normalization of the renin-aldosterone axis and blood pressure can take up to several months (781,15595,108568). Treatment typically includes the discontinuation of licorice, oral and intravenous potassium supplementation, and short-term use of aldosterone antagonists, such as spironolactone (108574,108577).
Chewing tobacco flavored with licorice has also been associated with toxicity. Chewing licorice-flavored tobacco, drinking licorice tea, or ingesting large amounts of black licorice flavored jelly beans or lozenges has been associated with hypertension and suppressed renin and aldosterone levels (12671,12837,97214,97215,97217,108574). One case report suggests that taking a combination product containing about 100 mg of licorice and other ingredients (Jintan, Morishita Jintan Co.) for many decades may be associated with hypoaldosteronism, even up to 5 months after discontinuation of the product (100522). In another case report, licorice ingestion led to hyperprolactinemia in a female (59901). Licorice-associated hypercalcemia has also been noted in a case report (59766).
Gastrointestinal ...Nausea and vomiting have been reported rarely following oral use of deglycyrrhizinated licorice (25694,59871). Intravenously, the glycyrrhizin constituent of licorice has rarely caused gastric discomfort, diarrhea, or nausea (59712,59915).
Immunologic ...There have been reports of contact allergy, resulting in an itchy reddish eruption, occurring in patients that applied cosmetic products containing oil-soluble licorice extracts (59912). There have also been at least 3 cases of allergic contact dermatitis reported with the topical application of glycyrrhizin-containing products to damaged skin. In one case report, a 31-year-old female with acne presented with a 2-year history of pruritic erythematous-scaly plaques located predominantly on the face and neck after the use of a cosmetic product containing licorice root extract 1%. The patient had a positive skin patch test to licorice root extract, leading the clinicians to hypothesize that the use of benzoyl peroxide, a strong irritant, might have sensitized the patient to licorice (108578).
Musculoskeletal ...In a case report, excessive glycyrrhizin-containing licorice consumption led to water retention and was thought to trigger neuropathy and carpal tunnel syndrome (59791).
Neurologic/CNS ...Orally, licorice containing larger amounts of glycyrrhizin may cause headaches. A healthy woman taking glycyrrhizin 380 mg daily for 2 weeks experienced a headache (59892). Intravenously, the glycyrrhizin constituent of licorice has rarely caused headaches or fatigue (59721). In a case report, licorice candy ingestion was associated with posterior reversible encephalopathy syndrome accompanied by a tonic-clonic seizure (97218).
Ocular/Otic ...Orally, consuming glycyrrhizin-containing licorice 114-909 grams has been associated with transient visual loss (59714).
Pulmonary/Respiratory ...Orally, large amounts of licorice might lead to pulmonary edema. In one case report, a 64-year old male consumed 1020 grams of black licorice (Hershey Twizzlers) containing glycyrrhizin 3.6 grams over 3 days, which resulted in pulmonary edema secondary to pseudohyperaldosteronism (31561). Intravenously, the glycyrrhizin constituent of licorice has caused cold or flu-like symptoms, although these events are not common (59712,59721).
General
...Orally, milk thistle is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal bloating, diarrhea, dyspepsia, flatulence, and nausea. However, these adverse effects do not typically occur at a greater frequency than with placebo.
Serious Adverse Effects (Rare):
Orally: Allergic reactions, including anaphylaxis, have been reported.
Dermatologic ...Orally, milk thistle may cause allergic reactions including urticaria, eczema, skin rash, and anaphylaxis in some people (6879,7355,8956,63210,63212,63238,63251,63315,63325,95029). Allergic reactions may be more likely to occur in patients sensitive to the Asteraceae/Compositae family (6879,8956). A case report describes a 49-year-old female who developed clinical, serologic, and immunopathologic features of bullous pemphigoid after taking milk thistle orally for 6 weeks. Symptoms resolved after treatment with prednisone and methotrexate (107376). Topically, milk thistle can cause erythema (110489).
Gastrointestinal ...Mild gastrointestinal symptoms have been reported, including nausea, vomiting, bloating, diarrhea, epigastric pain, abdominal colic or discomfort, dyspepsia, dysgeusia, flatulence, constipation, and loss of appetite (2616,6879,8956,13170,63140,63146,63160,63210,63218,63219)(63221,63244,63247,63250,63251,63320,63321,63323,63324,63325)(63327,63328,95024,95029,107374,114914). There is one report of a 57-year-old female with sweating, nausea, colicky abdominal pain, diarrhea, vomiting, weakness, and collapse after ingesting milk thistle; symptoms subsided after 24-48 hours without medical treatment and recurred with re-challenge (63329).
Musculoskeletal ...In one clinical study three patients taking milk thistle 200 mg orally three times daily experienced tremor; the incidence of this adverse effect was similar for patients treated with fluoxetine 10 mg three times daily (63219).
Neurologic/CNS ...With oral milk thistle use, CNS symptoms have been reported, including headache, dizziness, and sleep disturbances (114913,114914).
General ...Orally, quinoa seems to be well-tolerated. Rarely, quinoa can cause allergic reaction in some individuals, including anaphylaxis (99150,99151,96062).
Immunologic ...Orally, allergic reactions to quinoa have been reported (99150,96062). Anaphylaxis and pruritic reactions have occurred in at least two individuals, a 29-year-old female and a 52-year-old male. Quinoa allergy was confirmed in both patients via skin-prick testing with quinoa extract (99150,99151).
General
...Orally and topically, royal jelly seems to be well tolerated.
Most Common Adverse Effects:
Orally: Dyspnea, eczema, oral allergy syndrome, pruritus, and urticaria in people with a history of asthma or atopy.
Topically: Contact dermatitis and skin irritation.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis, status asthmaticus, and death in people with a history of asthma or atopy.
Gastrointestinal ...There is one case report of hemorrhagic colitis with abdominal pain, bloody diarrhea with concomitant hemorrhagic and edematous mucosa of the sigmoid colon after ingestion of royal jelly. Symptoms resolved within 2 weeks following discontinuation of royal jelly and conservative treatment (3516).
Immunologic
...In people with a history of atopy or asthma, royal jelly taken orally appears to cause a high rate of allergic symptoms including pruritus, urticaria, eczema, eyelid and facial edema, conjunctivitis, rhinorrhea, dyspnea, oral allergy syndrome, and asthma (7314,7315,7316,10623,95872).
In severe cases, royal jelly can cause status asthmaticus, anaphylaxis, and death (792,7315,7316,10623,10624,108511). Allergic symptoms are associated with IgE-mediated hypersensitivity reactions (3513,10623).
Topically, skin irritation, exacerbation of dermatitis, or contact dermatitis may occur (791).
From occupational exposure, royal jelly can cause allergic rhinoconjunctivitis and asthma (95868).
Neurologic/CNS ...There is one report of dizziness in a patient who took a combination product containing royal jelly, bee pollen extract, and a bee pollen plus pistil extract (12008).
General
...Orally, Saccharomyces boulardii is generally well tolerated.
Serious Adverse Effects (Rare):
Orally: There is concern that Saccharomyces boulardii may cause fungemia in certain patients.
Gastrointestinal ...Rarely, oral use of Saccharomyces boulardii has caused gastrointestinal complaints, such as abdominal cramps, flatulence, nausea, vomiting, and decreased appetite (98731,107608).
Immunologic
...Rarely, oral use of Saccharomyces boulardii has been associated with fungemia in both immunocompromised and immunocompetent patients (1247,4357,4358,4360,7329,14459,72121,72126,72142,92809,95357,95363)(96277,105171,107604,107607).
Numerous cases of Saccharomyces fungemia have been reported in critically ill intensive care unit (ICU) patients, particularly those with indwelling or central venous catheters, those receiving enteral feeding, or those receiving broad-spectrum antibiotics. Most infections occurred when packets of Saccharomyces were used or when Saccharomyces capsules were opened at the bedside (12776,12777,14459,95358,95360,95362,95363,105171). Admission to the ICU and extended length of stay increase the risk of developing Saccharomyces fungemia (107604). In a hospitalized 1-year-old patient with severe malnutrition and multiple invasive devices, Saccharomyces cerevisiae fungemia developed 2 days after receiving a probiotic containing S. boulardii 200 mg twice daily for 4 days (96277). In addition, there are two case reports of S. cerevisiae fungemia in hospitalized and intubated older patients with COVID-19 who had been given S. boulardii for diarrhea (105171).
The true incidence of fungemia is difficult to determine with S. boulardii. Most clinical laboratories are unable to differentiate between S. boulardii and S. cerevisiae, which might come from other sources (7353). In two case reports of patients in the ICU, there was a 100% alignment of fungal ribosomal DNA ITS sequences between the strains found in the blood of the infected patients and the strains of S. boulardii that had been administered (105171). In a large analysis of hospitalized patients, the incidence rate of Saccharomyces fungemia was 0.11% of those given S. boulardii and did not occur in patients not given this probiotic. Packets or capsules opened at a distance from the patient in the hospital were included in this analysis (107604).
Positive Saccharomyces cultures have also been obtained rarely from other sites, such as the abdominal region and the oral or respiratory tract (107607).
An elevated erythrocyte sedimentation rate may occur when S. boulardii is used to treat Crohn disease (7646), but this effect may be a natural part of the disease process.
General
...Orally, soy is well tolerated.
Most Common Adverse Effects:
Orally: Bloating, constipation, diarrhea, and nausea.
All ROAs: Allergic reactions.
Endocrine
...In the 1950s and 1960s, cases of altered thyroid function, particularly goiter, were reported in children taking soy formula.
However, adding iodine to soy formula or replacing soy flour in formula with soy protein isolate has nearly eliminated the risk of altered thyroid function in most infants (75353,75651).
In adults, there is some evidence that soy intake can alter thyroid function. Results from one clinical trial suggests that consuming soybeans 30 grams daily for as little as one month can increase thyroid-stimulating hormone (TSH) and decrease thyroxine, causing diffuse goiters, constipation, fatigue, and lethargy in some Japanese men. Recovery was achieved by discontinuing soybean intake (75206,75353). There is also some evidence that soy inhibits thyroid hormone synthesis resulting in increased secretion of TSH in some postmenopausal patients (7806). However, this seems to only occur in people with iodine deficiency (6466,75311). In postmenopausal patients with normal levels of iodine, taking a soy extract for 6 months does not seem to significantly affect thyroid hormone levels (13010).
Evidence from a single case-control study suggests that consumption of soy-based formulas may be associated with an observed three-fold increase in the risk of breast development in Puerto Rican children less than 2 years-old (75520). The correlation has been attributed to the estrogenic activity of soy. However, other risk factors, including a maternal history of ovarian cysts and consumption of meat products were also associated with the increased risk of breast development prior to 2 years of age. Also, the investigators noted that in over half of the cases, the child had not been exposed to soy or any of the other risk factors. Therefore, factors other than soy consumption may be more strongly associated with the increased risk of breast development prior to 2 years of age.
Gastrointestinal ...Gastrointestinal upset, such as constipation, diarrhea, bloating, and nausea are the most common side effects of soy (2297,11033,11082,15851,75491,95999). Reports of "bad taste" and taste intolerance have also been documented in clinical research (15851,39007,75491). Firmer stools, diarrhea, colitis, and intestinal mucosal damage has been reported in infants fed soy protein formula (75161,75448,75516,75525).
Genitourinary
...Orally, soy might increase discomfort during menstrual periods.
Evidence from a small, retrospective cohort study has found that consuming soy formula as an infant may slightly increase the duration and discomfort of menstrual periods later in life. However, the investigators noted that these differences may not be clinically significant (7331).
Orally, frequent soy consumption might be a risk factor for uterine leiomyoma, an estrogen-dependent benign tumor located on the uterus. Observational research found that consumption of soy milk or soybean at least four times weekly is associated with a 7-fold increased odds of uterine leiomyoma (98869).
There is some concern that use of soy-based formulas in infants might result in long-term health complications. However, results from a retrospective cohort study has found that intake of soy-based formula as an infant does not affect height, weight, body mass index, pubertal maturation, menstrual history, or pregnancy history, nor does it increase the risk of reproductive organ disorders, hormonal disorders, libido dysfunction, or birth defects in the offspring of adults who received soy formula as infants (7331,11080). Additionally, research in adults shows that urinary phytoestrogens are not associated with endometriosis risk (101804). However, some population research has found that regular exposure to soy-based formulas during infancy is associated with an increased risk for endometriosis (101803).
Immunologic
...Orally, soy can cause allergic reactions such as skin rash and itching in some people (6412).
In an 11-year-old female, allergy to soy protein resulting in a delayed itching papular rash was thought to be responsible for the reaction to injected benzathine benzylpenicillin containing possible soy protein-contaminated soy lecithin (96422).
Topically, soy-based ingredients were responsible for the development of hand atopic dermatitis in a young female using cosmetic lotions in the workplace. Percutaneous sensitization resulted in the development of anaphylaxis to oral soy (96000).
Neurologic/CNS ...Orally, one clinical study showed that insomnia was more common in postmenopausal adults taking soy isoflavone supplements when compared with those receiving placebo (9917). Some research suggests that dietary consumption of tofu during midlife might decrease cognitive function in later years. Evidence from one retrospective cohort study suggests that males who consume at least two servings of tofu weekly during midlife have increased risk of cognitive impairment in late life (19% vs. 4%) compared to those who consume tofu less frequently. Although the effect of tofu was considered to be marginal compared to other factors such as age, education, or history of stroke, results from the study suggest that the effect of significant midlife consumption of tofu is comparable to the effect of an age difference of 4 years or an education difference of 3 years. However, numerous other factors, such as lifestyle and health, could be involved (6415,6416). Therefore, these findings are too preliminary to be used as a basis for clinical recommendations.
Oncologic
...There is controversy about the role of soy in breast cancer.
Population studies suggest that soy is protective against breast cancer. Asian females who eat a traditional diet high in soy seem to have a lower risk of developing breast cancer (4590,5939,9674). Early exploratory studies have suggested that soy stimulates proliferation of normal human breast tissue (3980,3981). However, taking a soy tablet containing 50 mg soy isoflavones daily for 12 months does not alter mammographic or breast MRI tissue density in adults at high risk of breast cancer, with non-endocrine treated breast cancer, or previously treated for breast cancer and without evidence of recurrence (95999).
There is some concern that soy supplements, but not soy foods, might increase the risk of endometrial hyperplasia due to its estrogenic effects. Population and clinical research suggests that soy foods do not have a proliferative effect on endometrial cells (7358,2429,7654,9676,9917), and increased dietary soy and phytoestrogens are associated with reduced endometrial cancer risk (7338,10372). However, the effects seem to be different with concentrated soy isoflavone extract. While taking products providing isoflavones 120 mg daily for 6 months does not increase endometrial thickening (13209), taking higher doses such as isoflavones 150 mg daily for 5 years might increase the risk of simple endometrial hyperplasia (12105). However, there is no evidence that soy isoflavones increase the risk of atypical hyperplasia which has a much higher risk of developing into endometrial cancer than simple endometrial hyperplasia (12105,90973).
There is also concern that increased soy intake increases the risk for other types of cancer. Some observational research has found that higher dietary intake of soy is associated with a higher risk for bladder cancer and pancreatic cancer (9677,105609).
A meta-analysis of results from cohort and case-control studies evaluating the risk of stomach cancer related to consumption of fermented soy products is unclear and inconclusive. The highest quality data from cohort studies suggests that these products have no significant effect on stomach cancer (7340,7341). More research is required to determine if soy products have any correlation with stomach cancer.
Pulmonary/Respiratory ...Inhaled soy dust and soy hull aeroallergen can trigger symptoms of asthma and allergic rhinitis (5084,5085,5086).
General
...Orally, when consumed as food, sweet almond is well tolerated.
Orally and topically, when used as medicine, adverse effects from sweet almond seem to be rare; however, a thorough safety evaluation has not been conducted.
Most Common Adverse Effects:
Orally: Allergic reactions.
Topically: Dermatitis, itching.
Dermatologic ...Topically, itching, dermatitis, and worsening eczema have been reported in a clinical trial (101788).
Immunologic ...Tree nuts, which include almonds, can cause allergic reactions in sensitive individuals. Due to the prevalence of this allergy in the general population, tree nuts are classified as a major food allergen in the United States (105410).
Neurologic/CNS ...Orally, adverse effects to sweet almond extract in syrup have included increased sleep (101783).
Other ...Orally, adverse effects to sweet almond extract in syrup have included increased appetite (101783).
General
...Orally and topically, vitamin E is generally well-tolerated.
Serious Adverse Effects (Rare):
Orally: Bleeding, hemorrhagic stroke, cardiovascular complications.
Inhaled: Vitamin E acetate is thought to be responsible for e-cigarette, or vaping, product-use associated lung injury (EVALI).
Cardiovascular
...Some evidence suggests that taking vitamin E supplements, especially greater than or equal to 400 IU taken by mouth daily for over one year, might also increase the risk of mortality in non-healthy patients (12212,13036,15305,16709,83339).
A population study shows that vitamin E use is associated with a significantly increased risk of mortality in people with a history of severe cardiovascular disease such as stroke or myocardial infarction (16709). In an analysis of clinical trials, patients who took either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) in doses of 400 IU/day or higher had an increased risk of mortality from all causes. The risk of mortality seems to increase when higher doses are used (12212). A large-scale study also suggests that patients with diabetes or cardiovascular disease who take RRR-alpha-tocopherol (natural vitamin E) 400 IU daily have an increased risk of heart failure and heart failure-related hospitalization (13036). However, in another large scale study, taking 600 IU vitamin E every other day for 10 years did not increase the risk of heart failure in healthy females over 45 years of age (90068). There is speculation that high-dose vitamin E might disrupt the normal antioxidant balance and result in pro-oxidant rather than antioxidant effects.
There is some evidence that vitamin E in combination with simvastatin (Zocor), niacin, selenium, vitamin C, and beta-carotene might lower high density lipoprotein-2 (HDL-2) by 15%. HDL-2 is considered to be the most cardioprotective component of HDL (7388). However, vitamin E and a statin alone don't seem to negatively affect HDL (11286,11287). In addition, vitamin E has been associated with increased triglycerides (85215). Although only certain isomers of vitamin E are included for determination of dietary requirements, all isomers are considered for determining safe intake levels. All the isomers are thought to potentially contribute to toxicity.
Dermatologic
...Topically, vitamin E has been associated with contact dermatitis, inflammatory reactions, and eczematous lesions (11998,85066,85285).
Dermatitis, often associated with moisturizers containing vitamin E, has a scattered generalized distribution, is more common on the face than the hands, and is more common in females with a history of atopic dermatitis. In a retrospective analysis of results of patch tests for DL-alpha-tocopherol sensitivity, 0.9% of patients had a definite positive reaction, while over 50% had a weakly positive, non-vesicular erythematous reaction (107869).
Orally, vitamin E has been associated with pruritus in one clinical trial (34596).
Subcutaneously, vitamin E has been associated with reports of lipogranuloma (85188,112331). In one case, subcutaneous injection of a specific supplement (1Super Extenze), containing mineral oil and tocopherol acetate, into the penile tissue resulted in penile disfigurement due to sclerosing lipogranuloma (85188). In another case, a 50-year-old Iranian female presented with lipogranuloma of the face, characterized by severe facial erythema, edema, and tenderness, 3 months after receiving subcutaneous injections of vitamin E to the cheeks for "facial rejuvenation." The patient had noticed initial symptoms within 3 days, and her symptoms progressively worsened over time (112331).
Gastrointestinal ...Orally, vitamin E supplementation has been associated with abdominal pain, nausea, diarrhea, or flu-like symptoms (85040,85323). Intravenously, large doses of vitamin E in premature infants are associated with an increased risk of necrotizing enterocolitis and sepsis (85083,85231).
Genitourinary ...There is contradictory evidence about the effect of vitamin E on prostate cancer risk. One large-scale population study shows that males who take a multivitamin more than 7 times per week and who also take a separate vitamin E supplement have a significantly increased risk of developing prostate cancer (15607). In a large-scale clinical trial (The SELECT trial) in males over the age of 50 years, taking all-rac-alpha-tocopherol (synthetic vitamin E) 400 IU daily increased the risk of developing prostate cancer by 17% when compared with placebo. However, the difference in prostate cancer risk between vitamin E and placebo became significant only 3 years after patients stopped taking supplementation and were followed in an unblinded fashion. Interestingly, patients taking vitamin E plus selenium did not have a significantly increased risk of prostate cancer (17688).
Hematologic ...High doses of vitamin E might increase the risk of bleeding due to antagonism of vitamin K-dependent clotting factors and platelet aggregation. Patients with vitamin K deficiencies or taking anticoagulant or antiplatelet drugs are at a greater risk for bleeding (4098,4844,11999,34596,34538,34626,34594,112162).
Neurologic/CNS ...There is concern that vitamin E might increase the risk of hemorrhagic stroke (16708,34594,34596,108641). In one clinical study, there was a higher incidence of hemorrhagic stroke in male smokers taking all-rac-alpha-tocopherol (synthetic vitamin E) for 5-8 years compared to those not taking vitamin E (3949). Other studies lasting from 1.4-4.5 years and using either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) showed no significantly increased risk for stroke (2307,3896,3936). A meta-analysis of studies shows that vitamin E in doses of 300-800 IU daily, including both natural and synthetic forms, does not significantly affect total stroke risk. However, it significantly increases the risk of hemorrhagic stroke by 22%. This means that there will be one additional hemorrhagic stroke for every 1250 patients taking vitamin E. In contrast to this finding, the analysis also found that vitamin E significantly reduces the risk of ischemic stroke by 10%. This means that one ischemic stroke will be prevented for every 476 patients taking vitamin E (14621). In patients with moderately severe Alzheimer disease, taking vitamin E 2000 IU for 2 years has been associated with a modest, but significant, increase in falls and episodes of syncope when compared to placebo (4635).
Pulmonary/Respiratory ...When inhaled, vitamin E acetate is thought to play a role in the development of e-cigarette, or vaping, product-use associated lung injury (EVALI). Although a causal link has not yet been determined, in two case series, vitamin E acetate has been found in most bronchoalveolar lavage samples taken from the primary site of lung injury in patients with EVALI, whereas no vitamin E was found in healthy control samples. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. EVALI has resulted in death in some patients (101062,102970).
Other ...In an analysis of 3 trials, taking vitamin E 400 IU with vitamin C 1000 mg daily for 14-22 weeks during gestation appears to increase the risk of gestational hypertension by 30% compared to placebo in patients at risk of pre-eclampsia. However, the risk of pre-eclampsia itself was not increased (83450).
General
...Orally, wheatgrass is generally well tolerated.
Most Common Adverse Effects:
Orally: Allergic reactions, anorexia, constipation, nausea.
Gastrointestinal ...Orally, wheatgrass may cause nausea, anorexia, and constipation (11165).
Immunologic ...Wheat can cause allergic reactions in sensitive individuals. Due to the prevalence of this allergy in the general population, wheat and wheat products, such as wheatgrass, are classified as major food allergens in the United States (105410).
General ...Orally, yogurt is usually well tolerated.
Dermatologic ...Orally, consuming yogurt containing Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, and Bifidobacterium lactis BB-12, 4 ounces daily, has been associated with one report of dermatitis in one clinical trial (93707).
Gastrointestinal ...Orally, consuming yogurt with or without added probiotics has been reported to cause diarrhea, stomach pain, nausea, and vomiting in clinical research (93703,93707,98504).
Immunologic
...Orally, patients with milk allergy may be allergic to the protein in yogurt.
Symptoms include urticaria, wheezing, cough, and rarely vomiting and diarrhea (101751).
Fatal Lacticaseibacillus rhamnosus septicemia has been reported in an immunocompromised patient consuming yogurt and taking prolonged courses of multiple broad-spectrum antibiotics (8561).
Oncologic ...Some population research has found that yogurt consumption is associated with an increased risk of ovarian cancer (101752). However, other analysis shows no association (93705).