Each capsule contains: Stimulants Complex 220 mg: Caffeine Anhydrous , Bitter Orange (20% synephrine), 1,3-Dimethylamylamine (geranium flower) • Dopamine Complex 545 mg: Psoraleae Corylifoliae fruit extract, Chaenomeles Speciosa fruit extract, N-Acetyl-Tyrosine , Mucuna pruriens seed (standardized for l-dopa), 5-HTP fraom griffonia simplicifolia seed). Other Ingredients: Croscarmellose Sodium, Magnesium Stearate, Dicalcium Phosphate, Microcrystalline Cellulose, Stearic Acid, Silica, Artificial Color, Hydroxypropyl Cellulose, Talc, Polyehtylene Glycol.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
This product has been discontinued by the manufacturer.
This product contains 1,3-dimethylamylamine (DMAA), also known as methylhexanamine or geranium extract. There are serious safety concerns about DMAA. It is a stimulant that can potentially increase blood pressure and increase the risk of adverse cardiovascular events. DMAA-containing products have been linked to over 40 serious adverse event reports including adverse cardiovascular, metabolic, nervous system, and psychiatric events. Reports of death have also occurred (17660,17663,17904,17906,17907,17908,17958). In 2011, US Department of Defense (DoD) temporarily banned the sale of DMAA-containing supplements in military stores due to safety concerns. Sales of these products will be prohibited until the DoD investigates reports of potential serious adverse outcomes related to this product (17904,17909). On April 9, 2012, DMAA was also banned in New Zealand due to safety concerns (17960). Due to its stimulant effects, DMAA was added to the World Anti-Doping Agency's prohibited substances list for 2010. It is listed using the name methylhexaneamine on the prohibited list (17600).
Supplements that contain DMAA often list rose geranium oil, geranium oil, or geranium stems on the label. Some supplement manufacturers claim that this is because rose geranium oil contains a small amount of dimethylamylamine. However, this has not been verified by laboratory analysis. Some laboratories have not been able to detect dimethylamylamine in geranium oil. There is concern that some supplement manufacturers may be artificially spiking their supplements with this synthetic drug (17661,17662). In 2011, Health Canada determined that there is no credible evidence that DMAA is derived from the geranium plant. Therefore, DMAA is considered a drug and is not allowed in dietary supplements in Canada (17959).
For more information about DMAA, see the complete scientific monograph
Below is general information about the effectiveness of the known ingredients contained in the product Rezolution Capsules. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Rezolution Capsules. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY UNSAFE ...when used orally. 1,3-DMAA is a drug originally used as a stimulant nasal decongestant. There is concern that it increases the risk of serious adverse cardiovascular events, similar to other stimulants such as synephrine in bitter orange and ephedrine alkaloids from ephedra. There are several case reports linking 1,3-DMAA to serious adverse events including lactic acidosis, hemorrhagic stroke, heat stroke, and death (17599,17660,17662,17663,17904,94361,94369,94374). Although some supplement manufacturers claim that 1,3-DMAA is a natural compound found in geranium oil, this has not been verified by laboratory analysis. Some laboratories have not been able to detect 1,3-DMAA in geranium oil (94370,94372). There is concern that some supplement manufacturers may be artificially spiking their supplements with this synthetic drug (17661,17662). The New Zealand government restricted sales of supplements containing 1,3-DMAA to prevent the sale to people under 18 years of age due to concerns about safety (17599). The FDA has declared products containing 1,3-DMAA to be illegal and potential health risks (94383). Avoid using.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
POSSIBLY SAFE ...when used orally and appropriately. 5-HTP has been used safely in doses up to 400 mg daily for up to one year (913,30007,30130). Doses up to 1.2 grams daily have been used with apparent safety for up to 10 months (914,30018,30125,30164,30165). Doses of 3 grams daily have been used safely for 3 weeks (30138). There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
POSSIBLY UNSAFE ...when used orally in large doses. Doses of 6-10 grams daily have been associated with severe gastrointestinal effects and hyperkinesis (30139,30183). The risk may be reduced if the dose is increased gradually.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Doses of 5-HTP up to 5 mg/kg daily have been used safely for up to 3 years in infants and children up to 12 years old (30128,30153,88173).
There is some controversy about the safety of 5-HTP due to concerns for eosinophilia myalgia syndrome (EMS) (902,919,7067,10084,30178). There is speculation that only certain, contaminated 5-HTP products may cause this serious adverse effect (88174). So far, there is not enough evidence to know if EMS is caused by 5-HTP, contaminants, or other unknown factors (919,7067,10084).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912,35751).
POSSIBLY SAFE ...when bitter orange essential oil is used topically or by inhalation as aromatherapy (6972,7107,98331,104186,104187,108642).
POSSIBLY UNSAFE ...when used orally for medicinal purposes. Although single doses of synephrine, or low daily doses used short-term, may be safe in healthy adults (2040,11269,15381,35757,35759,91681,97256,98332), laboratory analyses raise concerns that many marketed bitter orange products contain higher amounts of synephrine and other natural and synthetic amines than on the label, increasing the risk for serious stimulant-related adverse effects (104185). Additionally, there is a lack of agreement regarding a safe daily dose of synephrine. Health Canada has approved 50 mg of p-synephrine daily when used alone, or 40 mg of p-synephrine in combination with up to 320 mg of caffeine daily in healthy adults (91684). The Federal Institute for Risk Assessment in Germany recommends that supplements should provide no more than 6.7 mg of synephrine daily. This recommendation is meant to ensure that patients who frequently consume synephrine in conventional foods will receive no more than 25.7 mg daily (91290). These limits are intended to reduce the risk for serious adverse effects. There have been several case reports of ischemic stroke and cardiotoxicity including tachyarrhythmia, cardiac arrest, syncope, angina, myocardial infarction, ventricular arrhythmia, and death in otherwise healthy patients who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in the amounts found in foods.
Bitter orange has Generally Recognized as Safe (GRAS) status in the US (4912).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally for medicinal purposes.
There are case reports of cardiotoxicity including tachyarrhythmia, syncope, and myocardial infarction in otherwise healthy adults who have taken bitter orange extract alone or in combination with other stimulants such as caffeine (2040,6979,12030,13039,13067,14326,14342,91680). The effects of bitter orange during lactation are unknown; avoid use.
LIKELY SAFE ...when used orally, parenterally, or rectally and appropriately. Caffeine has Generally Recognized As Safe (GRAS) status in the US (4912,98806). Caffeine is also an FDA-approved product and a component of several over-the-counter and prescription products (4912,11832). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, doses of caffeine up to 400 mg daily are not associated with significant adverse cardiovascular, bone, behavioral, or reproductive effects in healthy adults (11733,98806). The US Dietary Guidelines Advisory Committee states that there is strong and consistent evidence that consumption of caffeine 400 mg daily is not associated with increased risk of major chronic diseases, such as cardiovascular disease or cancer, in healthy adults (98806). This amount of caffeine is similar to the amount of caffeine found in approximately 4 cups of coffee. Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
POSSIBLY UNSAFE ...when used orally, long-term or in high doses (91063). Chronic use, especially in large amounts, can produce tolerance, habituation, psychological dependence, and other adverse effects (3719). Acute use of high doses, typically above 400 mg daily, has been associated with significant adverse effects such as tachyarrhythmia and sleep disturbances (11832). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
LIKELY UNSAFE ...when used orally in very high doses. The fatal acute oral dose of caffeine is estimated to be 10-14 grams (150-200 mg/kg). Serious toxicity can occur at lower doses depending on variables in caffeine sensitivity such as smoking, age, or prior caffeine use (11832,95700,97454,104573). Caffeine products sold to consumers in highly concentrated or pure formulations are considered to a serious health concern because these products have a risk of being used in very high doses. Concentrated liquid caffeine can contain about 2 grams of caffeine in a half cup. Powdered pure caffeine can contain about 3.2 grams of caffeine in one teaspoon. Powdered pure caffeine can be fatal in adults when used in doses of 2 tablespoons or less. As of 2018, these products are considered by the FDA to be unlawful when sold to consumers in bulk quantities (95700).
CHILDREN: POSSIBLY SAFE
when used orally or intravenously and appropriately in neonates under the guidance of a healthcare professional (6371,38340,38344,91084,91087,97452).
...when used orally in amounts commonly found in foods and beverages in children and adolescents (4912,11833,36555). Daily intake of caffeine in doses of less than 2.5 mg/kg daily are not associated with significant adverse effects in children and adolescents (11733,98806). Keep in mind that only the amount of ADDED caffeine must be stated on product labels. The amount of caffeine from caffeine-containing natural ingredients such as coffee or green tea does not need to be provided. This can make it difficult to determine the total amount of caffeine in a given product.
PREGNANCY: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Intakes of caffeine should be monitored during pregnancy. Caffeine crosses the human placenta, but is not considered a teratogen (38048,38252,91032). Fetal blood and tissue levels are similar to maternal concentrations (4260). The use of caffeine during pregnancy is controversial; however, moderate consumption has not been associated with clinically important adverse fetal effects (2708,2709,2710,2711,9606,16014,16015,98806,108814). In some studies consuming amounts over 200 mg daily is associated with a significantly increased risk of miscarriage (16014,37960). This increased risk seems to occur in those with genotypes that confer a slow rate of caffeine metabolism (98806). According to a review by Health Canada, and a subsequent large meta-analysis conducted in the US, up to 300 mg daily can be consumed during pregnancy without an increased risk of spontaneous abortion, stillbirth, preterm birth, fetal growth retardation, or congenital malformations (11733,98806). However, observational research in a Norwegian cohort found that caffeine consumption is associated with a 16% increased odds of the baby being born small for gestational age when compared with no consumption (100369,103707). The same Norwegian cohort found that low to moderate caffeine consumption during pregnancy is not associated with changes in neurodevelopment in children up to 8 years of age (103699). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea.
PREGNANCY: POSSIBLY UNSAFE
when used orally in amounts over 300 mg daily.
Caffeine crosses the placenta, producing fetal blood concentrations similar to maternal levels (4260,98806). Consumption of caffeine in amounts over 300 mg daily is associated with a significantly increased risk of miscarriage in some studies (16014,98806). Advise patients to keep caffeine consumption below 300 mg daily during pregnancy. This is similar to the amount of caffeine in about 3 cups of coffee or tea. Additionally, high doses of caffeine throughout pregnancy have resulted in symptoms of caffeine withdrawal in newborn infants (9891). High doses of caffeine have also been associated with spontaneous abortion, premature delivery, and low birth weight (2709,2711,91033,91048,95949). In a cohort of mother/infant pairs with a median maternal plasma caffeine level of 168.5 ng/mL (range 29.5-650.5 ng/mL) during pregnancy, birth weights and lengths were lower in the 4th quartile of caffeine intake compared with the 1st. By age 7, heights and weights were lower by 1.5 cm and 1.1 kg respectively. In another cohort of mother/infant pairs with higher maternal pregnancy plasma caffeine levels, median 625.5 ng/mL (range 86.2 to 1994.7 ng/mL), heights at age 8 were 2.2 cm lower, but there was no difference in weights (109846).
LACTATION: POSSIBLY SAFE
when used orally in amounts commonly found in foods.
Caffeine intake should be closely monitored while breast-feeding. During lactation, breast milk concentrations of caffeine are thought to be approximately 50% of serum concentrations and caffeine peaks in breastmilk approximately 1-2 hours after consumption (23590).
LACTATION: POSSIBLY UNSAFE
when used orally in large amounts.
Caffeine is excreted slowly in infants and may accumulate. Caffeine can cause sleep disturbances, irritability, and increased bowel activity in breast-fed infants exposed to caffeine (2708,6026).
POSSIBLY SAFE ...when used orally and appropriately. Powdered formulations of cowhage seed that are standardized to provide levodopa 75-400 mg daily have been used with apparent safety for up to 20 weeks (7020,7203,97266).
POSSIBLY UNSAFE ...when the hair of the cowhage bean pod is used orally or topically. The bean pod hairs are strong irritants and can cause severe itching, burning, and inflammation (18).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Tyrosine has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Tyrosine has been used safely in doses up to 150 mg/kg daily for up to 3 months (7210,7211,7215). ...when used topically and appropriately (6155).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of tyrosine during pregnancy and lactation when used in medicinal amounts.
Some pharmacokinetic research shows that taking a single dose of tyrosine 2-10 grams orally can modestly increase levels of free tyrosine in breast milk. However, total levels are not affected, and levels remain within the range found in infant formulas. Therefore, it is not clear if the increase in free tyrosine is a concern (91467).
Below is general information about the interactions of the known ingredients contained in the product Rezolution Capsules. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
1,3-DMAA strongly inhibits cytochrome P450 2D6 (CYP2D6) enzymes in vitro (91878). Theoretically, 1,3-DMAA can increase levels of CYP2D6 substrates. Some of drugs that are CYP2D6 substrates include amitriptyline (Elavil), clozapine (Clozaril), codeine, desipramine (Norpramin), donepezil (Aricept), fentanyl (Duragesic), flecainide (Tambocor), fluoxetine (Prozac), meperidine (Demerol), methadone (Dolophine), metoprolol (Lopressor, Toprol XL), olanzapine (Zyprexa), ondansetron (Zofran), tramadol (Ultram), trazodone (Desyrel), and others.
|
1,3-DMAA is thought to have stimulant effects (94367). There is concern that taking 1,3-DMAA with stimulant drugs might increase the risk of adverse cardiovascular effects. Some preliminary research shows that taking 1,3-DMAA 50 mg daily in combination with caffeine 250 mg daily does not increase respiratory rate, blood pressure, or other cardiovascular outcomes compared to taking caffeine alone in healthy men (94364). However, a number of cardiovascular side effects have been reported for patients taking 1,3-DMAA in combination with other stimulants including caffeine (17660,91680,94362,94365,94371,94377). Theoretically, combining 1,3-DMAA with stimulant drugs might increase the risk of adverse cardiovascular effects. Some stimulant drugs include amphetamine, caffeine, diethylpropion (Tenuate), methylphenidate, phentermine (Ionamin), pseudoephedrine (Sudafed, others), and many others.
|
Combining 5-HTP and carbidopa can increase the risk of serotonergic side effects.
Carbidopa is sometimes used with 5-HTP to minimize peripheral 5-HTP metabolism and boost the amount that reaches the brain. However, this combination might also increase the risk of some side effects including hypomania, restlessness, rapid speech, anxiety, insomnia, and aggressiveness (30076,30132,30158). Combining carbidopa and 5-HTP might also increase the risk of scleroderma-like skin changes due to elevated serotonin levels (1403).
|
Theoretically, concomitant use of 5-HTP with medications that cause sedation might have additive effects.
|
Combining serotonergic drugs with 5-HTP might cause additive serotonergic effects.
5-HTP can increase serotonin levels and cause serotonergic effects (901). Theoretically, combining serotonergic drugs with 5-HTP might increase the risk of serotonergic side effects, including serotonin syndrome and cerebral vasoconstrictive disorders (8056). However, serotonin syndrome with 5-HTP has not yet been reported in humans (104941). Monitor patients for signs of serotonin syndrome and other serotonergic side effects if using 5-HTP with serotonergic drugs.
|
Theoretically, bitter orange might increase the risk of hypoglycemia when taken with antidiabetes drugs.
Some clinical research shows that drinking a tea containing bitter orange and Indian snakeroot reduces fasting and postprandial glucose levels in patients with type 2 diabetes who are using antidiabetes drugs (35751). However, it is unclear if these effects are due to bitter orange, Indian snakeroot, or the combination. An animal study also shows that p-synephrine in combination with gliclazide , a sulfonylurea, causes an additional 20% to 44% decrease in glucose levels when compared with gliclazide alone (95658).
|
Bitter orange might increase blood pressure and heart rate when taken with caffeine.
|
Bitter orange might affect colchicine levels.
Colchicine is a substrate of P-glycoprotein and cytochrome P450 3A4 (CYP3A4). Bitter orange has been reported to inhibit CYP3A4 and increase levels of CYP3A4 substrates (7029,11362,93470). However, one small clinical study in healthy adults shows that drinking bitter orange juice 240 mL twice daily for 4 days and taking a single dose of colchicine 0.6 mg on the 4th day decreases colchicine peak serum levels by 24%, time to peak serum level by 1 hour, and overall exposure to colchicine by 20% (35762). The clinical significance of this finding is unclear.
|
Theoretically, bitter orange might increase levels of drug metabolized by CYP2D6.
In vitro research shows that octopamine, a constituent of bitter orange, weakly inhibits CYP2D6 enzymes (91878). This effect has not been reported in humans.
|
Bitter orange might increase levels of drugs metabolized by CYP3A4.
Small clinical studies suggest that single or multiple doses of freshly squeezed bitter orange juice 200-240 mL can inhibit CYP3A4 metabolism of drugs (7029,11362,93470), causing increased drug levels and potentially increasing the risk of adverse effects. However, the extent of the effect of bitter orange on CYP3A4-mediated drug interactions is unknown. Some evidence suggests that bitter orange selectively inhibits intestinal CYP3A4, but not hepatic CYP3A4. Its effect on P-glycoprotein, which strongly overlaps with CYP3A4 interactions, is unclear (7029,11269,11270,11362). One small clinical study shows that drinking 8 ounces of freshly squeezed bitter orange juice has no effect on cyclosporine, which seems to be more dependent on hepatic CYP3A4 and P-glycoprotein than intestinal CYP3A4 (11270).
|
Bitter orange might increase blood levels of dextromethorphan.
One small clinical study shows that bitter orange juice increases dextromethorphan levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (11362). Theoretically, bitter orange might increase the risk for dextromethorphan-related adverse effects.
|
Bitter orange might increase blood levels of felodipine.
One small clinical study shows that bitter orange juice increases felodipine levels, likely through cytochrome P450 3A4 (CYP3A4) inhibition (7029). Theoretically, bitter orange might increase the risk for felodipine-related adverse effects.
|
Bitter orange might increase blood levels of indinavir.
One small clinical study shows that bitter orange juice slightly increases indinavir levels, but this effect is likely to be clinically insignificant. Bitter orange selectively inhibits intestinal cytochrome P450 3A4 (CYP3A4); however, the metabolism of indinavir seems to be more dependent on hepatic CYP3A4 (11269). The effect of bitter orange on other protease inhibitors has not been studied.
|
Bitter orange might increase blood levels of midazolam.
One small clinical study shows that bitter orange juice can increase midazolam levels, likely through inhibition of cytochrome P450 3A4 (CYP3A4) (7029). Theoretically, bitter orange might increase the risk of midazolam-related adverse effects.
|
Theoretically, taking MAOIs with synephrine-containing bitter orange preparations might increase the hypertensive effects of synephrine, potentially leading to hypertensive crisis.
|
Theoretically, bitter orange might have an additive effect when combined with drugs that prolong the QT interval, potentially increasing the risk of ventricular arrhythmias.
One case report suggests that taking bitter orange in combination with other stimulants such as caffeine might prolong the QT interval in some patients (13039).
|
Bitter orange juice might increase blood levels of sildenafil.
A small clinical study in healthy adult males shows that drinking freshly squeezed bitter orange juice 250 mL daily for 3 days and taking a single dose of sildenafil 50 mg on the 3rd day increases the peak plasma concentration of sildenafil by 18% and the overall exposure to sildenafil by 44%. Theoretically, this may be due to inhibition of cytochrome P450 3A4 by bitter orange (93470).
|
Theoretically, bitter orange might increase the risk of hypertension and adverse cardiovascular effects when taken with stimulant drugs.
|
Theoretically, caffeine might decrease the vasodilatory effects of adenosine and interfere with its use prior to stress testing.
Some evidence shows that caffeine is a competitive inhibitor of adenosine and can reduce the vasodilatory effects of adenosine in humans (38172). However, other research shows that caffeine does not seem to affect supplemental adenosine because high interstitial levels of adenosine overcome the antagonistic effects of caffeine (11771). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). However, methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, concomitant use might increase levels and adverse effects of caffeine.
Alcohol reduces caffeine metabolism. Concomitant use of alcohol can increase caffeine serum concentrations and the risk of caffeine adverse effects (6370).
|
Theoretically, caffeine may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Theoretically, taking caffeine with antidiabetes drugs might interfere with blood glucose control.
|
Theoretically, large amounts of caffeine might increase the cardiac inotropic effects of beta-agonists (15).
|
Theoretically, caffeine might reduce the effects of carbamazepine and increase the risk for convulsions.
Animal research suggests that taking caffeine can lower the anticonvulsant effects of carbamazepine and can induce seizures when taken in doses above 400 mg/kg (23559,23561). Human research has shown that taking caffeine 300 mg in three divided doses along with carbamazepine 200 mg reduces the bioavailability of carbamazepine by 32% and prolongs the plasma half-life of carbamazepine 2-fold in healthy individuals (23562).
|
Theoretically, cimetidine might increase the levels and adverse effects of caffeine.
Cimetidine decreases the rate of caffeine clearance by 31% to 42% (11736).
|
Caffeine might increase the levels and adverse effects of clozapine and acutely exacerbate psychotic symptoms.
Caffeine might increase the effects and toxicity of clozapine. Caffeine doses of 400-1000 mg per day inhibit clozapine metabolism (5051). Clozapine is metabolized by cytochrome P450 1A2 (CYP1A2). Although researchers speculate that caffeine might inhibit CYP1A2, there is no reliable evidence that caffeine affects CYP1A2. There is also speculation that genetic factors might make some patients more sensitive to an interaction between clozapine and caffeine (13741). In one case report, severe, life-threatening clozapine toxicity and multiorgan system failure occurred in a patient with schizophrenia stabilized on clozapine who consumed caffeine 600 mg daily (108817).
|
Theoretically, contraceptive drugs might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of caffeine.
|
Theoretically, caffeine might decrease the vasodilatory effects of dipyridamole and interfere with its use prior to stress testing.
Caffeine inhibits dipyridamole-induced vasodilation (11770,11772). It is recommended that methylxanthines and methylxanthine-containing products be stopped 24 hours prior to pharmacological stress tests (11770). Methylxanthines appear more likely to interfere with dipyridamole (Persantine) than adenosine-induced stress testing (11771).
|
Theoretically, disulfiram use might increase the levels and adverse effects of caffeine.
Disulfiram decreases the rate of caffeine clearance (11840).
|
Theoretically, using caffeine with diuretic drugs might increase the risk of hypokalemia.
|
Theoretically, concomitant use might increase the risk for stimulant adverse effects.
Use of ephedrine with caffeine can increase the risk of stimulatory adverse effects. There is evidence that using ephedrine with caffeine might increase the risk of serious life-threatening or debilitating adverse effects such as hypertension, myocardial infarction, stroke, seizures, and death (1275,6486,10307).
|
Theoretically, estrogens might increase the levels and adverse effects of caffeine.
|
Theoretically, caffeine might reduce the effects of ethosuximide and increase the risk for convulsions.
Animal research suggests that caffeine 92.4 mg/kg can decrease the anticonvulsant activity of ethosuximide (23560). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of felbamate and increase the risk for convulsions.
Animal research suggests that a high dose of caffeine 161.7 mg/kg can decreases the anticonvulsant activity of felbamate (23563). However, this effect has not been reported in humans.
|
Theoretically, fluconazole might increase the levels and adverse effects of caffeine.
Fluconazole decreases caffeine clearance by approximately 25% (11022).
|
Theoretically, caffeine might increase the levels and adverse effects of flutamide.
In vitro evidence suggests that caffeine can inhibit the metabolism of flutamide (23553). However, this effect has not been reported in humans.
|
Theoretically, fluvoxamine might increase the levels and adverse effects of caffeine.
Fluvoxamine reduces caffeine metabolism (6370).
|
Abrupt caffeine withdrawal might increase the levels and adverse effects of lithium.
Caffeine has diuretic activity. When abruptly discontinued, caffeine may alter the clearance of lithium (609). There are two case reports of lithium tremor that worsened upon abrupt coffee withdrawal (610) and 6 case reports of elevated serum lithium levels after reducing or eliminating caffeine intake (114665). In one case, a male with schizoaffective disorder stabilized on lithium had an elevated lithium level after reducing his caffeine intake by 87%. At a later date, he increased his caffeine intake by 6-fold, resulting in a subtherapeutic lithium level and a recurrence of psychiatric symptoms (114665).
|
Theoretically, metformin might increase the levels and adverse effects of caffeine.
Animal research suggests that metformin can reduce caffeine metabolism (23571). However, this effect has not been reported in humans.
|
Theoretically, methoxsalen might increase the levels and adverse effects of caffeine.
Methoxsalen reduces caffeine metabolism (23572).
|
Theoretically, mexiletine might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the risk of a hypertensive crisis.
Caffeine has been shown to inhibit monoamine oxidase (MAO) A and B in laboratory studies (37724,37877,37912,38108). Concomitant intake of large amounts of caffeine with MAOIs might precipitate a hypertensive crisis (15). In a case report, a patient that consumed 10-12 cups of caffeinated coffee and took the MAOI tranylcypromine presented with severe hypertension (91086). Hypertension was resolved after the patient switched to drinking decaffeinated coffee.
|
Theoretically, concomitant use might increase the risk of hypertension.
Concomitant use of caffeine and nicotine has been shown to have additive cardiovascular effects, including increased heart rate and blood pressure. Blood pressure was increased by 10.8/12.4 mmHg when the agents were used concomitantly (36549).
|
Theoretically, caffeine might decrease the effects of pentobarbital.
Caffeine might negate the hypnotic effects of pentobarbital (13742).
|
Theoretically, caffeine might reduce the effects of phenobarbital and increase the risk for convulsions.
|
Theoretically, phenothiazines might increase the levels and adverse effects of caffeine.
|
Theoretically, phenylpropanolamine might increase the risk of hypertension, as well as the levels and adverse effects of caffeine.
|
Theoretically, caffeine might reduce the effects of phenytoin and increase the risk for convulsions.
|
Theoretically, caffeine might increase the levels and clinical effects of pioglitazone.
Animal research suggests that caffeine can modestly increase the maximum concentration, area under the curve, and half-life of pioglitazone, and also reduce its clearance. This increased the antidiabetic effects of pioglitazone (108812). However, the exact mechanism of this interaction is unclear.
|
Theoretically, quinolone antibiotics might increase the levels and adverse effects of caffeine.
|
Theoretically, concomitant use might increase the levels and adverse effects of both caffeine and riluzole.
Caffeine and riluzole are both metabolized by cytochrome P450 1A2 (CYP1A2), and concomitant use might reduce the metabolism of one or both agents (11739).
|
Theoretically, concomitant use might increase stimulant adverse effects.
Due to the central nervous system (CNS) stimulant effects of caffeine, concomitant use with stimulant drugs can increase the risk of adverse effects (11832).
|
Theoretically, terbinafine might increase the levels and adverse effects of caffeine.
Terbinafine decreases the clearance of intravenous caffeine by 19% (11740).
|
Theoretically, caffeine might increase the levels and adverse effects of theophylline.
Large amounts of caffeine might inhibit theophylline metabolism (11741).
|
Theoretically, caffeine might increase the levels and adverse effects of tiagabine.
Animal research suggests that chronic caffeine administration can increase the serum concentrations of tiagabine. However, concomitant use does not seem to reduce the antiepileptic effects of tiagabine (23561).
|
Theoretically, ticlopidine might increase the levels and adverse effects of caffeine.
In vitro evidence suggests that ticlopidine can inhibit caffeine metabolism (23557). However, this effect has not been reported in humans.
|
Theoretically, caffeine might reduce the effects of valproate and increase the risk for convulsions.
|
Theoretically, verapamil might increase the levels and adverse effects of caffeine.
Verapamil increases plasma caffeine concentrations by 25% (11741).
|
Theoretically, concomitant use of cowhage and anesthesia might increase the risk of arrhythmias.
Cowhage contains levodopa (7020,7205,46334,46336,94723,94724). Use of levodopa with cyclopropane or halogenated hydrocarbon anesthesia has led to arrhythmias. Other anesthetics have not been implicated (15). Use other anesthetics in patients taking cowhage or tell patients to stop taking cowhage at least 2 weeks before surgery.
|
Theoretically, concomitant use of cowhage and antidiabetes drugs might increase the risk of hypoglycemia.
Animal research shows that cowhage might have hypoglycemic effects (7221).
|
Theoretically, use of cowhage might decrease the clinical effects of antipsychotic drugs.
|
Theoretically, concomitant use of cowhage and guanethidine might increase the risk of hypotension.
|
Concomitant use can increase the risk of levodopa-related adverse effects.
|
Theoretically, concomitant use of cowhage and methyldopa might increase the risk of hypotension.
|
Theoretically, concomitant use of cowhage and non-selective MAOIs might increase the risk of hypertensive crisis.
|
Theoretically, use of TCAs might reduce the levels and clinical effects of cowhage.
|
Theoretically, tyrosine might decrease the effectiveness of levodopa.
Tyrosine and levodopa compete for absorption in the proximal duodenum by the large neutral amino acid (LNAA) transport system (2719). Advise patients to separate doses of tyrosine and levodopa by at least 2 hours.
|
Theoretically, tyrosine might have additive effects with thyroid hormone medications.
Tyrosine is a precursor to thyroxine and might increase levels of thyroid hormones (7212).
|
Below is general information about the adverse effects of the known ingredients contained in the product Rezolution Capsules. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, taking 1,3-DMAA combination products (OxyELITE Pro, AmphetaLean, or Jack3d, USPlabs) has been reported to cause cardiac arrest, atrial fibrillation, chest pressure, angina, tachycardia, palpitations, hypertension, hypotension, myocardial infarction, and acute coronary syndrome (17660,91680,94361,94362,94365,94369,94371,94377).
Increased heart rate and blood pressure have also been reported. Other reported adverse effects associated with the use of 1,3-DMAA-containing products have included life-threatening lactic acidosis (17660), nausea, vomiting, diarrhea, and abdominal pain (17663,17907,17908,94365,94371,94377), urinary changes (17663,94365,94371,94377), liver injury (94367,94368,94369), anaphylaxis (94365), muscle symptoms such as spasm or weakness (94377), neurological symptoms including tremors, insomnia, sweating, tiredness, confusion, headache, and chills (17907,17663), hemorrhagic stroke (17663,90318), pupil dilation or tinnitus (94365,94371), psychiatric symptoms such as anxiety, agitation, paranoia, and aggression (17660,17907,94365,94371,94377), or rapid breathing (17660,94371). The dose of 1,3-DMAA at which such adverse effects occur is not clear (94368).
Death has occurred in some cases following organ failure and cardiac arrest (17904,94361,94369,94374).
Topically, rubbing an eye while mixing a drink with a 1,3-DMAA-containing combination product (Jack3d) has caused pupil dilation (94368).
Cardiovascular
...Due to the stimulant effects of 1,3-DMAA, there is concern that it might increase the risk of adverse cardiovascular events similar to synephrine from bitter orange or ephedrine from ephedra.
Cardiovascular outcomes have rarely been assessed in patients taking 1,3-DMAA alone. Most adverse effects are linked to 1,3-DMAA-containing combination products. Palpitations and tachycardia are some of the most common side effects reported for adults and children taking 1,3-DMAA-containing combination products (17660,91680,94365,94371). Other less common adverse effects have included chest pressure, angina, atrial fibrillation, hypertension, hypotension, myocardial infarction, and acute coronary syndrome (17660,91680,94362,94365,94371,94377).
There is inconsistent data about the effects of 1,3-DMAA on heart rate and blood pressure (94368). For example, some research suggests that taking specific 1,3-DMAA-containing combination products (OxyELITE Pro or Jack3d, USPlabs) significantly increases systolic blood pressure and increases heart rate within 1-2 hours of taking a dose. These increases appear to be dose dependent (17906,17907,17908). However, in an 8-week study, heart rate was significantly increased, but blood pressure was not (17907). Other research shows that neither acute nor chronic intake of 1,3-DMAA increases heart rate or blood pressure (17908,94364,94368,94376). Overall, it seems that oral intake of a single dose of a 1,3-DMAA-containing product is more likely to increase systolic blood pressure. Resting blood pressure is less likely to remain increased following chronic use (94368,94379). Higher doses are more likely to increase heart rate and blood pressure. Although most sports supplements contain 25-65 mg/dose, some contain as much as 285 mg/dose (94377).
In case reports of healthy young adults taking 1,3-DMAA-containing combination products prior to exercise, cardiac arrest causing death has occurred (94361,94369).
Endocrine ...In one report, a patient who took a specific combination product containing 1,3-DMAA (Jack3d by USP Labs) prior to intense exercise experienced life-threatening lactic acidosis (17660).
Gastrointestinal ...Orally, taking 1,3-DMAA-containing combination products has been reported to cause nausea (17907,17908,94365,94371,94377), vomiting (17663,94365,94371,94377), diarrhea (94365), vomiting blood (94371), and abdominal pain (94371).
Genitourinary ...Urinary hesitancy (94365), urinary retention (94371), and uncontrolled urination (94377), have been reported following ingestion of 1,3-DMAA-containing combination products.
Hepatic ...Acute liver injury, in some cases requiring a liver transplant, has been reported following oral intake of 1,3-DMAA-containing products (94367,94368,94369).
Immunologic ...An anaphylactic reaction has been reported following oral intake of 1,3-DMAA-containing products (94365).
Musculoskeletal ...Orally, dimethylamine-containing products have caused muscle spasm (94365), muscle weakness (94377), and leg pains (94377).
Neurologic/CNS ...Orally, taking specific 1,3-DMAA-containing combination products (OxyELITE Pro or Jack3d, USPlabs) has been reported to cause feelings of jitters, sleeplessness, shakiness, chills, sweating, fatigue, tingling, and lack of focus in clinical trials (17907). Other adverse effects reported for products containing 1,3-DMAA have included headache, dizziness, tremor, numbness, flushing, seizure, blacking out, visual disturbances, confusion, and lethargy (17660,17908,94365,94368,94371,94377). In a case report, a 26 year old male reported with a hemorrhagic stroke linked to taking the supplement Jack3d, which contains 1,3-DMAA, schizandrol A, caffeine, beta-alanine, creatine, and L-arginine alpha-ketoglutarate (90318). In another report, a patient experienced a hemorrhagic stroke after taking two tablets of a product containing 1,3-DMAA 278 mg each along with caffeine 150 mg and a can of beer (17663).
Ocular/Otic ...Orally, dimethylamine-containing products have caused tinnitus (94365) and pupil dilation (94371). Pupil dilation also occurred after rubbing an eye while mixing a drink with the specific product Jack3d, containing 1,3-DMAA (94368).
Psychiatric ...Orally, taking 1,3-DMAA-containing combination products has been reported to cause feelings of anxiety (17907,94365), suicidal behavior (94365), agitation or irritability (94365,94371,94377), paranoia (94377), depression (94377), panic (94377), and aggression or combativeness (17660,94365).
Pulmonary/Respiratory ...Orally, combination products containing 1,3-DMAA have caused rapid breathing and hyperventilation (17660,94371).
Other ...There are at least two reports of death in US Army soldiers who took 1,3-DMAA supplements and suffered heat stroke and related complications following physical fitness training (17904).
General
...Orally, 5-HTP is generally well tolerated, short-term.
Most Common Adverse Effects:
Orally: Abdominal pain, anorexia, dizziness, diarrhea, drowsiness, fatigue, headache, insomnia, nausea, and vomiting. Severity appears to be dose-dependent.
Serious Adverse Effects (Rare):
Orally: Aggression, hallucinations, mania, severe gastrointestinal complaints.
Cardiovascular ...Orally, palpitations have been reported with 5-HTP (30076,30130,30167). Conversely, bradycardia has been reported in patients taking 5-HTP 0.4-2 grams daily in combination with carbidopa 100-300 mg daily (30132). In patients with schizophrenia, a combination of 5-HTP in doses up to 6 grams daily and carbidopa 150 mg daily was associated with diaphoresis and mild diastolic hypotension, especially when doses were increased at a rate faster than 200 mg per day (30183).
Dermatologic ...Orally, 5-HTP has been reported to cause urticaria, other allergic-type skin reactions, and flushing (2204,30000,30140). A scleroderma-like illness was reported in a 70-year-old man who had been taking 5-HTP 1400 mg daily and carbidopa 150 mg daily for 20 months. Elevated serotonin levels may be linked to this condition (1403).
Gastrointestinal ...Orally, 5-HTP has been reported to cause gastrointestinal side effects such as nausea, vomiting, abdominal or epigastric pain, heartburn, constipation, diarrhea, flatulence, anorexia, and taste alteration at any dose (2203,2204,30000,30112,30114,30125,30132,30139,30140)(30165,30183,104250). Severity may be dose-dependent and also related to how quickly doses are increased (30183). Some data suggests that these effects may diminish or disappear with continued use of 5-HTP (30132).
Hematologic ...Symptoms suggestive of eosinophilia myalgia syndrome (EMS) have been reported in some patients using 5-HTP (902,10084,30178,88174,90927). In one case, a woman was exposed to 5-HTP, tetrahydrobiopterin, carbidopa, and levodopa while administering them to her children for 2 years (90927). Her diagnosis was not confirmed, and the validity of the tests performed on the 5-HTP product has been questioned (88174). Other cases of eosinophilia or EMS in patients taking 5-HTP have been attributed to impurities that resemble previously identified contaminants found in L-tryptophan products (902,919,7067,10084). The L-tryptophan contaminants associated with EMS were linked to a specific manufacturer's production method that is not used in the preparation of 5-HTP (88174). Although 5-HTP supplements have been associated with EMS, it seems that this adverse effect is likely due to the presence of contaminants in the 5-HTP products, not 5-HTP itself.
Musculoskeletal ...Orally, rhabdomyolysis was noted in one patient with progressive myoclonus epilepsy who was treated with 5-HTP 300 mg daily for 21 days (30162).
Neurologic/CNS ...Orally, 5-HTP has been reported to cause drowsiness, dizziness, insomnia, fatigue, and headache (30076,30112,30132).
Psychiatric ...Orally, 5-HTP has been associated with euphoria, hypomania and mania, anxiety, insomnia, and aggressiveness (30076,30132,30158,88179). In patients with schizophrenia, a combination of high-dose 5-HTP, up to 6 grams daily, and carbidopa 150 mg daily was associated with transient increases in hallucinations, delusions, marked confusion, looseness of associations, flight of ideas, and a hyperkinetic syndrome consisting of restlessness, hand wringing, pacing, and an inability to sit quietly in a chair (30183).
General
...Orally, bitter orange might be unsafe when used in medicinal amounts.
Topically and when inhaled as aromatherapy, bitter orange seems to be well tolerated.
Most Common Adverse Effects:
Orally: Hypertension and tachycardia, particularly when used in combination with caffeine and/or other stimulant ingredients.
Topically: Skin irritation.
Serious Adverse Effects (Rare):
Orally: Myocardial infarction, QT prolongation, seizures, stroke, syncope, tachyarrhythmia, and ventricular fibrillation have been reported in patients taking bitter orange in combination with other ingredients. It is unclear if these effects are due to bitter orange, other ingredients, or the combination.
Cardiovascular
...Bitter orange, which contains adrenergic agonists synephrine and octopamine, may cause hypertension and cardiovascular toxicity when taken orally (2040,6969,6979).
Studies evaluating the effect of bitter orange on cardiovascular parameters have been mixed. Several studies show that taking bitter orange alone or in combination with caffeine increases blood pressure and heart rate. In one clinical study, bitter orange in combination with caffeine increased systolic and diastolic blood pressure and heart rate in otherwise healthy normotensive adults (13657). In another study, a single dose of bitter orange 900 mg, standardized to 6% synephrine (54 mg), also increased systolic and diastolic blood pressure and heart rate for up to 5 hours in young, healthy adults (13774). Using half that dose of bitter orange and providing half as much synephrine, did not seem to significantly increase blood pressure or QT interval in healthy adults (14311). Increased diastolic, but not systolic, blood pressure or heart rate also occurred in a clinical trial involving a specific supplement containing synephrine 21 mg and caffeine 304 mg (Ripped Fuel Extreme Cut, Twinlab) (35743). Synephrine given intravenously to males increased systolic blood pressure, but lacked an effect on diastolic blood pressure or heart rate (12193).
In clinical research and case reports, tachycardia, tachyarrhythmia, QT prolongation, ischemic stroke, variant angina, and myocardial infarction have occurred with use of bitter orange or synephrine-containing multi-ingredient products (12030,13039,13067,13091,13657,14326,35749,91680). In one case report, a combination product containing bitter orange may have masked bradycardia and hypotension while exacerbating weight loss in a 16 year-old female with an eating disorder taking the product for weight loss (35740). From 1998 to 2004, Health Canada received 16 reports of serious adverse cardiovascular reactions such as tachycardia, cardiac arrest, ventricular fibrillation, blackout, and collapse. In two of these cases, the patient died. In almost all of these cases, bitter orange was combined with another stimulant such as caffeine, ephedrine, or both (14342).
Other research has found no significant effect of bitter orange on blood pressure or heart rate. Several clinical studies have reported that, when taken as a single dose or in divided doses ranging from 20-100 mg for one day, p-synephrine had no significant effect on blood pressure, heart rate, electrocardiogram results or adverse cardiovascular events in healthy adults (35772,91681,91681,95659,101708) Similarly, no difference in blood pressure, heart rate or electrocardiogram results were reported when p-synephrine from bitter orange (Advantra Z/Kinetic; Nutratech/Novel Ingredients Inc.) was taken for 6 weeks in healthy patients (11268). Another clinical study showed no significant effect of bitter orange (Nutratech Inc.), standardized to synephrine 20 mg, on blood pressure or heart rate when taken daily for 8 weeks in healthy males (95656). In other research, changes in blood pressure, heart rate, or QTc interval were lacking when bitter orange was given alone or in combination with caffeine and green tea (14311,35753,35755,35764,35769,35770). In one study of healthy adults, taking a single dose of p-synephrine 103 mg actually reduced mean diastolic blood pressure by 0.4-4 mmHg at 1 and 2 hours after administration when compared with placebo (95659).
A meta-analysis of clinical trials in adults with or without obesity suggests that taking p-synephrine 6-214 mg orally daily does not affect blood pressure or heart rate when used short-term, but modestly increases blood pressure and heart rate when taken for 56-60 days (109950).
The effect of bitter orange on blood pressure, heart rate, and electrocardiogram results in patients with underlying conditions, particularly cardiovascular disease, is unknown and requires further study.
Dermatologic ...Photosensitivity may occur, particularly in fair-skinned people (11909). In a clinical trial, topical application with bitter orange essential oil resulted in irritation (6972).
Endocrine ...Some clinical research shows that taking a specific supplement containing 21 mg of synephrine and 304 mg of caffeine (Ripped Fuel Extreme Cut, Twinlab) increases levels of postprandial glucose (35743). Other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.) 30 minutes once before exercise causes a significant 12% increase in glucose (95657); however, there is no difference in blood glucose when compared with placebo when this combination is taken daily for 8 weeks (95656). The effect of bitter orange itself is unclear.
Gastrointestinal ...Bitter orange has been linked to a report of ischemic colitis. In one case, a 52-year-old female developed ischemic colitis after taking a bitter orange-containing supplement (NaturalMax Skinny Fast, Nutraceutical Corporation) for a week. Symptoms resolved within 48 hours after discontinuing the supplement (15186). As this product contains various ingredients, the effect of bitter orange itself is unclear.
Musculoskeletal ...Unsteady gait has been noted in one case report of a patient taking bitter orange (13091). In another case, an otherwise healthy, Black male with sickle cell trait, developed severe rhabdomyolysis following ingestion of a specific weight loss product (Lipo 6, Nutrex Research Inc.), which contained synephrine and caffeine (16054). However, other preliminary clinical research shows that taking a specific pre-workout supplement (Cellucor C4 Pre-Workout, Nutrabolt) along with a bitter orange extract standardized for synephrine 20 mg (Nutratech Inc.), taken 30 minutes once before exercise (95657) or daily for 8 weeks, does not affect creatine kinase or serum creatinine levels when compared with placebo (95656). As these products contain various ingredients, the effect of bitter orange itself is unclear.
Neurologic/CNS ...Dizziness, difficulty in concentrating, memory loss, syncope, seizure, and stroke have been noted in case reports following bitter orange administration (13091,13039). Theoretically, bitter orange may trigger a migraine or cluster headache due to its synephrine and octopamine content (35768). When used as aromatherapy, bitter orange essential oil has also been reported to cause headache in some patients (104187). Sprint athletes taking the bitter orange constituent p-synephrine 3 mg/kg (Synephrine HCL 99%, Nutrition Power) 60 minutes before exercises and sprinting reported more nervousness (mean difference 0.9) when compared with placebo on a Likert scale. Although statistically significant, this difference is not considered clinically significant (95655).
General
...Caffeine in moderate doses is typically well tolerated.
Most Common Adverse Effects:
Orally: Anxiety, dependence with chronic use, diarrhea, diuresis, gastric irritation, headache, insomnia, muscular tremors, nausea, and restlessness.
Serious Adverse Effects (Rare):
Orally: Stroke has been reported rarely.
Cardiovascular
...Caffeine can temporarily increase blood pressure.
Usually, blood pressure increases 30 minutes after ingestion, peaks in 1-2 hours, and remains elevated for over 4 hours (36539,37732,37989,38000,38300).
Although acute administration of caffeine can cause increased blood pressure, regular consumption does not seem to increase either blood pressure or pulse, even in mildly hypertensive patients (1451,1452,2722,38335). However, the form of caffeine may play a role in blood pressure increase after a more sustained caffeine use. In a pooled analysis of clinical trials, coffee intake was not associated with an increase in blood pressure, while ingesting caffeine 410 mg daily for at least 7 days modestly increased blood pressure by an average of 4.16/2.41 mmHg (37657). Another meta-analysis of clinical research shows that taking caffeine increases systolic and diastolic blood pressure by approximately 2 mmHg when compared with control. Preliminary subgroup analyses suggest that caffeine may increase blood pressure more in males or at doses over 400 mg (112738).
When used prior to intensive exercise, caffeine can increase systolic blood pressure by 7-8 mmHg (38308). The blood pressure-raising effects of caffeine are greater during stress (36479,38334) and after caffeine-abstinence of at least 24 hours (38241).
Epidemiological research suggests there is no association of caffeine consumption with incidence of hypertension (38190). Habitual coffee consumption also doesn't seem to be related to hypertension, but habitual consumption of sugared or diet cola is associated with development of hypertension (13739).
Epidemiological research has found that regular caffeine intake of up to 400 mg daily is not associated with increased incidence of atrial fibrillation (38018,38076,91028,91034,97451,97453,103708), atherosclerosis (38033), cardiac ectopy (91127), stroke (37804), ventricular arrhythmia (95948,97453), and cardiovascular disease in general (37805,98806). One clinical trial shows that in adults with diagnosed heart failure, consumption of 500 mg of coffee does not result in an increased risk for arrhythmia during exercise (95950). However, caffeine intake may pose a greater cardiovascular risk to subjects that are not regular users of caffeine. For example, in one population study, caffeinated coffee consumption was associated with an increased risk of ischemic stroke in subjects that don't regularly drink coffee (38102). In a population study in Japanese subjects, caffeine-containing medication use was modestly associated with hemorrhagic stroke in adults that do not consume caffeine regularly (91059).
The most common side effect of caffeine in neonates receiving caffeine for apnea is tachycardia (98807,114658).
Dermatologic ...There are several case reports of urticaria after caffeine ingestion (36546,36448,36475).
Endocrine
...Some evidence shows caffeine is associated with fibrocystic breast disease or breast cancer in females; however, this is controversial since findings are conflicting (8043,108806).
Restricting caffeine in females with fibrocystic breast conditions doesn't seem to affect breast nodularity, swelling, or pain (8996). A population analysis of the Women's Health Initiative observational study has found no association between consumption of caffeine-containing beverages and the incidence of invasive breast cancer in models adjusted for demographic, lifestyle, and reproductive factors (108806). Also, a dose-response analysis of 2 low-quality observational studies has found that high consumption of caffeine is not associated with an increased risk of breast cancer (108807).
Clinical research in healthy adults shows that an increase consumption of caffeine results in increased insulin resistance (91023).
Gastrointestinal ...Gastrointestinal upset, nausea, diarrhea, abdominal pain, and fecal incontinence may occur with caffeine intake (36466,37755,37806,37789,37830,38138,38136,38223,95956,95963). Also, caffeine may cause feeding intolerance and gastrointestinal irritation in infants (6023). Perioperative caffeine during cardiopulmonary bypass surgery seems to increase the rate of postoperative nausea and vomiting (97451). Caffeine and coffee consumption have been associated with an increase in the incidence of heartburn (37545,37575,38251,38259,38267) and gastrointestinal esophageal reflux disease (GERD) (38329,37633,37631,37603).
Genitourinary ...Caffeine, a known diuretic, may increase voiding, give a sense of urgency, and irritate the bladder (37874,37961,104580). In men with lower urinary tract symptoms, caffeine intake increased the risk of interstitial cystitis/painful bladder syndrome (38115). Excessive caffeine consumption may worsen premenstrual syndrome. Consumption of up to 10 cups of caffeinated drinks daily was associated with increased severity of premenstrual syndrome (38177). Finally, population research shows that exposure to caffeine was not associated with an increased risk of endometriosis (91035).
Immunologic ...Caffeine can cause anaphylaxis in sensitive individuals, although true IgE-mediated caffeine allergy seems to be relatively rare (11315).
Musculoskeletal
...Caffeine can induce or exacerbate muscular tremors (38136,37673,38161).
There has also been a report of severe rhabdomyolysis in a healthy 40-year-old patient who consumed an energy drink containing 400 mg of caffeine (4 mg/kg) and then participated in strenuous weightlifting exercise (108818).
Epidemiological evidence regarding the relationship between caffeine use and the risk for osteoporosis is contradictory. Caffeine can release calcium from storage sites and increase its urinary excretion (2669,10202,11317,111489). Females with a genetic variant of the vitamin D receptor appear to be at an increased risk for the detrimental effect of caffeine on bone mass (2669). However, moderate caffeine intake, less than 300 mg daily, does not seem to significantly increase osteoporosis risk in most postmenopausal adults with normal calcium intake (2669,6025,10202,11317). Premature infants treated with intravenous caffeine for apnea of prematurity, have a lower bone mineral content compared with infants who are not treated with caffeine, especially when treatment extends beyond 14 days (111489).
Neurologic/CNS ...Caffeine can cause headaches, anxiety, jitteriness, restlessness, and nervousness (36466,37694,37755,37806,37865,37830,37889,38223,95952). In adolescents, there is an inverse correlation between the consumption of caffeine and various measurements of cognitive function (104579). Insomnia is a frequent adverse effect in children (10755). Caffeine may result in insomnia and sleep disturbances in adults as well (36445,36483,36512,36531,37598,37795,37819,37862,37864,37890)(37968,37971,38091,38242,91022,92952). Additionally, caffeine may exacerbate sleep disturbances in patients with acquired immunodeficiency syndrome (AIDS) (10204). Combining ephedra with caffeine can increase the risk of adverse effects. Jitteriness, hypertension, seizures, temporary loss of consciousness, and hospitalization requiring life support has been associated with the combined use of ephedra and caffeine (2729). Finally, epidemiological research suggests that consuming more than 190 mg of caffeine daily is associated with an earlier onset of Huntington disease by 3.6 years (91078).
Ocular/Otic
...In individuals with glaucoma, coffee consumption and caffeine intake has been found to increase intraocular pressure (8540,36464,36465,37670).
The magnitude of this effect seems to depend on individual tolerance to caffeine. Some research in healthy young adults shows that caffeine increases intraocular pressure to a greater degree in low-consumers of caffeine (i.e., 1 cup of coffee or less daily) when compared to high-consumers (i.e., those consuming 2 cups of coffee or more daily) (100371). The peak increase of intraocular pressure seems to occur at about 1.5 hours after caffeine ingestion, and there is no notable effect 4 hours after ingestion (36462,100371).
Oncologic ...Most human studies which have examined caffeine or methylxanthine intake have found that they do not play a role in the development of various cancers, including breast, ovarian, brain, colon, rectal, or bladder cancer (37641,37737,37775,37900,38050,38169,38220,91054,91076,108806).
Psychiatric
...Caffeine may lead to habituation and physical dependence (36355,36453,36512,36599), with amounts as low as 100 mg daily (36355,36453).
An estimated 9% to 30% of caffeine consumers could be considered addicted to caffeine (36355). Higher doses of caffeine have caused nervousness, agitation, anxiety, irritability, delirium, depression, sleep disturbances, impaired attention, manic behavior, psychosis and panic attacks (36505,37717,37818,37839,37857,37982,38004,38017,38028,38072)(38079,38138,38306,38325,38331,38332,97464). Similar symptoms have been reported in a caffeine-naïve individual experiencing fatigue and dehydration after a dose of only 200 mg, with resolution of symptoms occurring within 2 hours (95952).
Withdrawal: The existence or clinical importance of caffeine withdrawal is controversial. Some researchers think that if it exists, it appears to be of little clinical significance (11839). Headache is the most common symptom, due to cerebral vasodilation and increased blood flow (37769,37991,37998). Other researchers suggest symptoms such as tiredness and fatigue, decreased energy, alertness and attentiveness, drowsiness, decreased contentedness, depressed mood, difficulty concentration, irritability, and lack of clear-headedness are typical of caffeine withdrawal (13738). Withdrawal symptoms typically occur 12-24 hours after the last dose of caffeine and peak around 48 hours (37769,36600). Symptoms may persist for 2-9 days. Withdrawal symptoms such as delirium, nausea, vomiting, rhinorrhea, nervousness, restlessness, anxiety, muscle tension, muscle pains, and flushed face have been described. However, these symptoms may be from nonpharmacological factors related to knowledge and expectation of effects. Clinically significant symptoms caused by caffeine withdrawal may be uncommon (2723,11839). In a case report, caffeine consumption of 560 mg daily was associated with increased suicidality (91082).
Renal ...Data on the relationship between caffeine intake and kidney stones are conflicting. Some clinical research shows that caffeine consumption may increase the risk of stone formation (37634,111498), while other research shows a reduced risk with increasing caffeine intakes (111498). A meta-analysis of 7 studies found that overall, there is an inverse relationship, with a 32% decrease in the risk of kidney stones between the lowest and highest daily intakes of caffeine (111498).
Other ...People with voice disorders, singers, and other voice professionals are often advised against the use of caffeine; however, this recommendation has been based on anecdotal evidence. One small exploratory study suggests that caffeine ingestion may adversely affect subjective voice quality, although there appears to be significant intra-individual variability. Further study is necessary to confirm these preliminary findings (2724).
General
...Orally, adverse effects to cowhage seem to be rare; however, a thorough safety evaluation has not been conducted.
Topically, cowhage bean pod or seed may be unsafe.
Most Common Adverse Effects:
Orally: Diarrhea, flatulence, mucosal irritation.
Topically: Erythema, pruritus, rash.
Cardiovascular ...Orally, cowhage has been reported to cause palpitations (7021,7203)
Dermatologic
...Orally, ingestion of hairs from the bean pod or seed can result in significant mucosal irritation and should be avoided.
Topically, hairs on cowhage bean pod or seed can cause severe pruritus (6898). Symptoms include severe itching, burning, inflammation, and erythematous macular rashes (18,6898). Symptoms resolve spontaneously within several hours, but may also be relieved with antihistamines (6898). The hairs can be removed from the skin by washing, but the hairs can also be retained, and transferred to other people, in fabrics and carpets. Clothing and other materials that come in contact with cowhage hairs should also be thoroughly washed (6898).
Gastrointestinal ...Orally, cowhage has been reported to cause flatulence, diarrhea, and dry mouth (7021,7203). Orally, a specific powdered cowhage seed extract (Zandopa, formerly HP-200; Zandu Pharmaceuticals) has been reported to cause nausea, abdominal distention, and vomiting in clinical research when taken in amounts of 22.5-67.5 grams divided into 2-5 doses per day (7020).
Musculoskeletal ...Orally, dyskinesia has been reported in clinical research in about 3% of patients taking a specific powdered cowhage seed extract (Zandopa, formerly HP-200; Zandu Pharmaceuticals) 22. 5-67.5 grams divided into 2-5 doses daily (7020).
Neurologic/CNS ...Orally, cowhage has been reported to cause headaches (7021,7203). Orally, insomnia has been reported in clinical research in about 3% of patients taking a specific powdered cowhage seed extract (Zandopa, formerly HP-200; Zandu Pharmaceuticals) 22.5 grams to 67.5 grams divided into 2-5 doses daily (7020).
Psychiatric ...In a case report, cowhage caused an outbreak of acute toxic psychosis. Symptoms of psychosis included confusion, giddiness, agitation, hallucinations, and paranoid delusions. The cowhage-induced psychosis was successfully treated with intravenous chlorpromazine (7021).
Other ...Orally, cowhage has been reported to cause sweating and changes in urine color, (7021,7203). Theoretically, due to the levodopa constituent, cowhage is likely to cause the same adverse effects that have been attributed to purified, prescription levodopa. Some of these side effects include elevated liver enzymes, respiratory disturbances, urinary retention, muscle cramps, and priapism (15). However, these effects have not yet been reported for cowhage.
General
...Orally, tyrosine seems to be well tolerated.
No serious adverse effects have been documented; however, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Fatigue, headache, heartburn, and nausea.
Gastrointestinal ...Orally, tyrosine can cause nausea and heartburn when taken at a dose of 150 mg/kg (7211). Taking tyrosine 4 grams daily in combination with 5-hydroxytryptophan 800 mg and carbidopa 100 mg can cause diarrhea, nausea, and vomiting. These effects can be mitigated by lowering the dosage (918).
Musculoskeletal ...Orally, larger doses of tyrosine (150 mg/kg) can cause arthralgia, but this is uncommon (7211).
Neurologic/CNS ...Orally, larger doses of tyrosine (150 mg/kg) can cause headache and fatigue (7211). Taking a combination of tyrosine 4 grams, 5-hydroxytryptophan 800 mg, and carbidopa 100 mg can cause drowsiness and agitation. These effects can be mitigated by lowering the dosage (918).