Two softgels contain: Cranberry fruit extract 500 mg • Vitamin C (ascorbyl palmitate) 40 mg • Vitamin A (100% as beta carotene) 2766 IU • Selenium (selenium dioxide) 33 mcg. Other Ingredients: Soybean Oil, Gelatin (non-bovine), Glycerin, Soy Lecithin, Dibasic Calcium Phosphate, Water, Artificial Colors (carmine, titanium dioxide, caramel).
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
This product has been discontinued by the manufacturer.
This product has been discontinued by the manufacturer.<
Below is general information about the effectiveness of the known ingredients contained in the product CranAssure. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product CranAssure. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE . .when used orally and appropriately. Cranberry juice up to 300 mL daily and cranberry extracts in doses up to 800 mg twice daily have been safely used in clinical trials (3333,3334,6758,6760,7008,8252,8253,8254,8995,11328) (16415,16720,17100,17126,17176,17210,17524,46379,46388,46389)(46390,46425,46439,46443,46465,46456,46466,46467,46469,46471)(46496,46499,90044,102847,111407).
CHILDREN: LIKELY SAFE
when cranberry juice is consumed in amounts commonly found in the diet (2811,6759,46441,46452,46470,111407).
There is insufficient reliable information available about the safety of cranberry when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when consumed in amounts commonly found in the diet.
There is insufficient reliable information available about the safety of cranberry when used therapeutically during pregnancy or lactation; avoid using.
LIKELY SAFE ...when used orally and appropriately. Selenium appears to be safe when taken short-term in amounts below the tolerable upper intake level (UL) of 400 mcg daily (4844,7830,7831,7836,7841,9724,9797,14447,17510,17511)(17512,17513,17515,17516,97087,97943,109085); however, there is concern that taking selenium long-term might not be safe. Some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). Some evidence also shows that taking a selenium supplement 200 mcg daily for an average of 3-8 years increases the risk of developing type 2 diabetes (97091,99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661). ...when used intravenously. Selenium, as selenious acid, is an FDA-approved drug. Sodium selenite intravenous infusions up to 1000 mcg daily have been safely used for up to 28 days (90347,92910).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. Doses above 400 mcg daily can increase the risk of developing selenium toxicity (4844,7825). Additionally, some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). There is also concern that taking a selenium supplement 200 mcg daily long-term, for an average of 3-8 years, increases the risk of developing type 2 diabetes (99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Selenium seems to be safe when used short-term in doses below the tolerable upper intake level (UL) of 45 mcg daily for infants up to age 6 months, 60 mcg daily for infants 7 to 12 months, 40-90 mcg daily for children 1 to 3 years, 100-150 mcg daily for children 4 to 8 years, 200-280 mcg daily for children 9 to 13 years, and 400 mcg daily for children age 14 years and older (4844,86095); however, there is some concern that long-term use might not be safe. ...when used via a nasogastric tube in premature infants (7835,9764).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily (4844,17507,74419,74481,74391); however, there is concern that long-term use might not be safe.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844).
LACTATION: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily when taken short-term (4844,74467); however, there is concern that long-term use might not be safe.
LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844,7838). ...when used orally in HIV-positive women. Selenium supplementation in HIV-positive women not taking highly active antiretroviral therapy may increase HIV-1 levels in breast milk (90358).
LIKELY SAFE ...when used orally or intramuscularly and appropriately. Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe in adults when taken in doses below the tolerable upper intake level (UL) of 10,000 IU (3000 mcg) daily (7135). Higher doses increase the risk of side effects. In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake refer to pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
POSSIBLY SAFE ...when used topically and appropriately, short-term. Retinol up to 0.5% has been used on the skin daily for up to 12 weeks with apparent safety. No serious adverse effects have been reported in clinical trials (103671,103680,114500).
POSSIBLY UNSAFE ...when used orally in high doses. Doses higher than the UL of 10,000 IU (3000 mcg) per day of pre-formed vitamin A (retinol or retinyl ester) might increase the risk of side effects (7135). While vitamin A 25,000 IU (as retinyl palmitate) daily for 6 months followed by 10,000 IU daily for 6 months has been used with apparent safety in one clinical trial (95052), prolonged use of excessive doses of vitamin A can cause hypervitaminosis A (7135). The risk for developing hypervitaminosis A is related to total cumulative dose of vitamin A rather than a specific daily dose (1467,1469). In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). There is insufficient reliable information available about the safety of using sublingual formulations of vitamin A.
CHILDREN: LIKELY SAFE
when used orally or intramuscularly and appropriately.
The amount of pre-formed vitamin A (retinol or retinyl ester) that is safe depends on age. For children up to 3 years of age, doses less than 2000 IU (600 mcg) per day seem to be safe. For children ages 4 to 8, doses less than 3000 IU (900 mcg) per day seem to be safe. For children ages 9 to 13, doses less than 5667 IU (1700 mcg) per day seem to be safe. For children 14 to 18, doses less than 9333 IU (2800 mcg) per day seem to be safe (7135). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount for determining safety.
CHILDREN: POSSIBLY UNSAFE
when pre-formed vitamin A (retinol or retinyl ester) is used orally in excessive doses.
For children up to 3 years of age, avoid doses greater than 2000 IU (600 mcg) per day. For children ages 4 to 8, avoid doses greater than 3000 IU (900 mcg) per day. For children ages 9 to 13, avoid doses greater than 5667 IU (1700 mcg) per day. For children ages 14 to 18, avoid doses greater than 9333 IU (2800 mcg) per day (7135). Higher doses of vitamin A supplementation have been associated with increased risk of side effects such as pneumonia, bone pain, and diarrhea (319,95051). Long-term supplementation with low to moderate doses on a regular basis can cause severe, but usually reversible, liver damage (11978).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally or intramuscularly and appropriately.
Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe during pregnancy and lactation when used in doses less than 10,000 IU (3000 mcg) per day in adults 19 years of age and older and 2800 mcg daily in those 14-18 years of age (7135,16823,107293). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally or intramuscularly in excessive doses.
Daily intake of greater than 10,000 IU (3000 mcg) can cause fetal malformations (3066,7135). Excessive dietary intake of vitamin A has also been associated with teratogenicity (11978). The first trimester of pregnancy seems to be the critical period for susceptibility to vitamin A-associated birth defects such as craniofacial abnormalities and abnormalities of the central nervous system (7135). Pregnant patients should monitor their intake of pre-formed vitamin A (retinol or retinyl ester). This form of vitamin A is found in several foods including animal products, particularly fish and animal liver, some fortified breakfast cereals, and dietary supplements (3066).
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
Below is general information about the interactions of the known ingredients contained in the product CranAssure. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, cranberry might increase levels and adverse effects of atorvastatin.
In one case report, a patient taking atorvastatin experienced upper back pain, rhabdomyolysis, and abnormal liver function after drinking cranberry juice 16 ounces daily for 2 weeks. Theoretically, this may have been caused by inhibition of cytochrome P450 3A4 (CYP3A4) enzymes by cranberry juice, as atorvastatin is a CYP3A4 substrate. Creatinine kinase and liver enzymes normalized within 2 weeks of stopping cranberry juice (90042). Patients taking atorvastatin should avoid large quantities of cranberry juice.
|
Theoretically, cranberry might increase the levels and adverse effects of CYP2C9 substrates. However, research is conflicting.
There is contradictory evidence about the effect of cranberry on CYP2C9 enzymes. In vitro evidence suggests that flavonoids in cranberry inhibit CYP2C9 enzymes (10452,11115,90048). However, clinical research shows that cranberry juice does not significantly affect the levels, metabolism, or elimination of the CYP2C9 substrates flurbiprofen or diclofenac (11094,90048). Also, in patients stabilized on warfarin, drinking cranberry juice 250 mL daily for 7 days does not significantly increase the anticoagulant activity of warfarin, a CYP2C9 substrate (15374). Additional pharmacokinetic research shows that cranberry juice does not increase peak plasma concentrations or area under the concentration-time curve of warfarin (15393).
|
Theoretically, cranberry might increase the levels and adverse effects of CYP3A4 substrates.
A case of upper back pain, rhabdomyolysis, and abnormal liver function has been reported for a patient taking atorvastatin, a CYP3A4 substrate, in combination with cranberry juice 16 ounces daily for 2 weeks. Creatinine kinase and liver enzymes normalized within 2 weeks of stopping cranberry juice (90042). Also, animal research suggests that cranberry juice, administered intraduodenally 30 minutes prior to nifedipine, a CYP3A4 substrate, inhibits nifedipine metabolism and increases the area under the concentration-time curve by 1.6-fold compared to control (46420).
|
Theoretically, cranberry might modestly increase the levels and adverse effects of diclofenac.
|
Theoretically, cranberry might increase the levels and adverse effects of nifedipine.
Animal research suggests that cranberry juice, administered intraduodenally 30 minutes prior to nifedipine treatment, inhibits nifedipine metabolism and increases the area under the concentration-time curve by 1.6-fold compared to control (46420). This interaction has not been reported in humans.
|
Theoretically, cranberry might increase the levels and adverse effects of warfarin. However, research is conflicting.
There is contradictory evidence about the effect of cranberry juice on warfarin. Case reports have linked cranberry juice consumption to increases in the international normalized ratio (INR) in patients taking warfarin, resulting in severe spontaneous bleeding and excessive postoperative bleeding (10452,12189,12668,21187,21188,21189,46378,46396,46411)(46415,90043). Daily consumption of cranberry sauce for one week has also been linked to an increase in INR in one case report (16816). In a small study in healthy young males, taking a high dose of 3 grams of cranberry juice concentrate capsules, equivalent to 57 grams of fruit daily, for 2 weeks produced a 30% increase in the area under the INR-time curve after a single 25-mg dose of warfarin (16416). However, 3 very small clinical studies in patients stabilized on warfarin reported that cranberry juice 250 mL once or twice daily for 7 days (27% cranberry juice or pure cranberry juice) or 240 mL once daily for 14 days does not significantly increase INR or affect plasma warfarin levels (15374,17124,90045). The reasons for these discrepant findings are unclear. It is possible that the form and dose of cranberry may play a role, as cranberry extracts and juices contain different constituents. Additionally, an in vitro study evaluating 5 different cranberry juices found varying effects, with only a cranberry concentrate, and not diluted cranberry juices, inhibiting CYP2C9. However, this concentrate did not inhibit CYP2C9 activity in humans (108062).
|
Selenium may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Clinical research suggests that taking selenium 10 mcg/kg/day can increase bleeding times by increasing prostacyclin production, which inhibits platelet activity (14540). Other clinical research suggests that taking selenium 75 mcg daily, in combination with ascorbic acid 600 mg, alpha-tocopherol 300 mg, and beta-carotene 27 mg, reduces platelet aggregation (74406).
|
Theoretically, selenium might prolong the sedating effects of barbiturates.
|
Contraceptive drugs might increase levels of selenium, although the clinical significance of this effect is unclear.
Some research suggests that oral contraceptives increase serum selenium levels in women taking oral contraceptives; however, other research shows no change in selenium levels (14544,14545,14546,101343). It is suggested that an increase could be due to increased carrier proteins, indicating a redistribution of selenium rather than a change in total body selenium (14545).
|
Gold salts might interfere with selenium activity in tissues.
|
Theoretically, selenium supplementation may reduce the effectiveness of immunosuppressant therapy.
|
Selenium might reduce the beneficial effects of niacin on high-density lipoprotein (HDL) levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as selenium, or to the combination. It also is not known whether it will occur in other patient populations.
|
Theoretically, selenium might interfere with warfarin activity.
Animal research suggests that selenium can increase warfarin activity. Selenium might interact with warfarin by displacing it from albumin binding sites, reducing its metabolism in the liver, or by decreasing production of vitamin K-dependent clotting factors (14541). Selenium can also prolong bleeding times in humans by increasing prostacyclin production, which inhibits platelet activity (14540).
|
Theoretically, taking high doses of vitamin A in combination with other potentially hepatotoxic drugs might increase the risk of liver disease.
|
Concomitant use of retinoids with vitamin A supplements might produce supratherapeutic vitamin A levels.
Retinoids, which are vitamin A derivatives, could have additive toxic effects when taken with vitamin A supplements (3046).
|
Theoretically, taking tetracycline antibiotics with high doses of vitamin A can increase the risk of pseudotumor cerebri.
Benign intracranial hypertension (pseudotumor cerebri) can occur with tetracyclines and with acute or chronic vitamin A toxicity. Case reports suggest that taking tetracyclines and vitamin A concurrently can increase the risk of this condition (10545,10546,10547). Avoid high doses of vitamin A in people taking tetracyclines chronically.
|
Theoretically, high doses of vitamin A could increase the risk of bleeding with warfarin.
Vitamin A toxicity is associated with hemorrhage and hypoprothrombinemia, possibly due to vitamin K antagonism (505). Advise patients taking warfarin to avoid doses of vitamin A above the tolerable upper intake level of 10,000 IU/day for adults.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Below is general information about the adverse effects of the known ingredients contained in the product CranAssure. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally, cranberry seems to be well tolerated.
Most Common Adverse Effects:
Orally: Diarrhea and gastrointestinal discomfort.
Dermatologic ...Orally, skin redness and itching has been reported in one patient (46389).
Gastrointestinal ...In very large doses, for example 3-4 L per day of juice, cranberry can cause gastrointestinal upset and diarrhea, particularly in young children (46364). There are reports of abdominal and gastrointestinal discomfort after taking cranberry tablets, extracts, and juice in clinical trials (16720,46379,111407). Nausea, vomiting, and diarrhea have also been reported with consumption of lower doses of cranberry juice cocktail, 16 ounces per day, equivalent to about 4 ounces cranberry juice, for several weeks (16415).
Genitourinary ...Vulvovaginal candidiasis has been associated with ingestion of cranberry juice (46374). Clinical research suggests that ingestion of cranberry juice may be associated with vaginal itching and vaginal dryness (46471). One patient in clinical research stopped taking dried cranberry juice due to excessive urination (46437), and an isolated case of nocturia following ingestion of cranberry tablets has been reported (16720).
Hematologic ...Thrombocytopenia has been reported as an adverse event to cranberry juice (46459).
Other ...An isolated case of sensitive swollen nipples after taking cranberry tablets has been reported (16720).
General
...Orally, selenium is generally well-tolerated when used in doses that do not exceed the tolerable upper intake level (UL) of 400 mcg daily.
Intravenously, selenium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Gastric discomfort, headache, and rash. Excessive amounts can cause alopecia, dermatitis, fatigue, nail changes, nausea and vomiting, and weight loss.
Serious Adverse Effects (Rare):
Orally: Excessive ingestion has led to cases of multi-organ failure and death.
Dermatologic ...Excess selenium can produce selenosis in humans, affecting liver, skin, nails, and hair (74304,74326,74397,74495,90360,113660) as well as dermatitis (74304). Results from the Nutritional Prevention of Cancer Trial conducted among individuals at high risk of nonmelanoma skin cancer demonstrate that selenium supplementation is ineffective at preventing basal cell carcinoma and that it increases the risk of squamous cell carcinoma and total nonmelanoma skin cancer (10687). Mild skin rash has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Endocrine
...Multiple clinical studies have found an association between increased intake of selenium, either in the diet or as a supplement, and the risk for type 2 diabetes (97091,99661).
One meta-analysis shows that a selenium plasma level of 90 mcg/L or 140 mcg/L is associated with a 50% or 260% increased risk for developing type 2 diabetes, respectively, when compared with plasma levels below 90 mcg/L. Additionally, consuming selenium in amounts exceeding the recommended dietary allowance (RDA) is associated with an increased risk of developing diabetes when compared with consuming less than the RDA daily. Also, taking selenium 200 mcg daily as a supplement is associated with an 11% increased risk for diabetes when compared with a placebo supplement (99661).
Hypothyroidism, secondary to iodine deficiency, has been reported as a result of selenium intravenous administration (14563,14565). One large human clinical trial suggested a possible increased risk of type 2 diabetes mellitus in the selenium group (16707).
Gastrointestinal ...In human research, nausea, vomiting, and liver dysfunction has been reported as a result of high selenium exposure (74439,74376,113660). Mild gastric discomfort has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Genitourinary ...The effect of selenium supplementation on semen parameters is unclear. In human research, selenium supplementation may reduce sperm motility (9729); however, follow-up research reported no effect on sperm motility or any other semen quality parameter (74441).
Musculoskeletal ...Chronic selenium exposure of 30 mg daily for up to 24 weeks may cause arthralgia, myalgia, and muscle spasms (113660).
Neurologic/CNS ...Chronic exposure to organic and inorganic selenium may cause neurotoxicity, particularly motor neuron degeneration, leading to an increased risk of amyotrophic lateral sclerosis (ALS) (74304). Headache has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months and in patients taking sodium selenate 30 mg daily for up to 24 weeks (97943,113660).
General
...Orally, vitamin A is generally well-tolerated at doses below the tolerable upper intake level (UL).
Serious Adverse Effects (Rare):
Orally: In very high doses, vitamin A can cause pseudotumor cerebri, pain, liver toxicity, coma, and even death.
Dermatologic ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity including dry skin and lips; cracking, scaling, and itchy skin; skin redness and rash; hyperpigmentation; shiny skin, and massive skin peeling (7135,95051). Hypervitaminosis A can cause brittle nails, cheilitis, gingivitis, and hair loss (15,95051). Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause skin redness and generalized peeling of the skin a few days later and may last for several weeks (15).
Gastrointestinal ...There is some evidence that oral vitamin A supplementation might increase the risk of diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with diarrhea in well-nourished children (319). Diarrhea (82326,82389), nausea (7135,100329), abdominal pain (95051), abdominal fullness (100329), and vomiting (7135,82559,95051,109755) have been reported following use of large doses of oral vitamin A. Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause vomiting and diarrhea (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including anorexia, abdominal discomfort, and nausea and vomiting (7135).
Genitourinary ...Hypervitaminosis A can cause reduced menstrual flow (15). Intravaginally, all-trans retinoic acid can cause vaginal discharge, itching, irritation, and burning (9199).
Hematologic ...Hypervitaminosis A can cause spider angiomas, anemia, leukopenia, leukocytosis, and thrombocytopenia (15,95051).
Hepatic ...Since the liver is the main storage site for vitamin A, hypervitaminosis A can cause hepatotoxicity, with elevated liver enzymes such as alanine aminotransferase (ALT, formerly SGPT) and aspartate aminotransferase (AST, formerly SGOT), as well as fibrosis, cirrhosis, hepatomegaly, portal hypertension, and death (6377,7135,95051).
Musculoskeletal
...Vitamin A can increase the risk for osteoporosis and fractures.
Observational research has found that chronic, high intake of vitamin A 10,000 IU or more per day is associated with an increased risk of osteoporosis and hip fracture in postmenopausal adults, as well as overall risk of fracture in middle-aged males (7712,7713,9190). A meta-analysis of these and other large observational studies shows that high dietary intake of vitamin A or retinol is associated with a 23% to 29% greater risk of hip fracture when compared with low dietary intake (107294). High serum levels of vitamin A as retinol also increase the risk of fracture in males. Males with high serum retinol levels are seven times more likely to fracture a hip than those with lower serum retinol levels (9190). Vitamin A damage to bone can occur subclinically, without signs or symptoms of hypervitaminosis A. Some researchers are concerned that consumption of vitamin A fortified foods such as margarine and low-fat dairy products in addition to vitamin A or multivitamin supplements might cause excessive serum retinol levels. Older people have higher levels of vitamin A and might be at increased risk for vitamin A-induced osteoporosis.
Vitamin A's effects on bone resorption could lead to hypercalcemia (95051).
Hypervitaminosis can cause slow growth, premature epiphyseal closure, painful hyperostosis of the long bones, general joint pain, osteosclerosis, muscle pain, and calcium loss from the bones (15,95051). One child experienced severe bone pain after taking vitamin A 600,000 IU daily for more than 3 months (95051). Vitamin A was discontinued and symptoms lessened over a period of 2 weeks. The patient made a full recovery 2 months later.
Neurologic/CNS
...Orally, adverse effects from a single large dose of vitamin A are more common in young children than adults (15).
Headache, increased cerebrospinal fluid pressure, vertigo, and blurred vision have been reported following an acute oral dose of vitamin A 500,000 IU (7135). In children, approximately 25,000 IU/kg can cause headache, irritability, drowsiness, dizziness, delirium, and coma (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including fatigue, malaise, lethargy, and irritability (7135).
There are reports of bulging of the anterior fontanelle associated with an acute high oral dose of vitamin A in infants (7135,90784,95053,95054). In children, approximately 25,000 IU/kg can cause increased intracranial pressure with bulging fontanelles in infants (15). Also, muscular incoordination has been reported following short-term high doses of vitamin A (7135).
A case of intracranial hypertension involving diffuse headaches and brief loss of vision has been reported secondary to topical use of vitamin A. The patient was using over-the-counter vitamin A preparations twice daily including Avotin 0.05% cream, Retin-A gel 0.01%, and Isotrexin gel containing isotretinoin 0.05% and erythromycin 2%, for treatment of facial acne. Upon exam, the patient was noted to have bilateral optic disc edema. The patient discontinued use of topical vitamin A products. Two months later, the patient reported decreased headaches and an improvement in bilateral optic disc edema was seen (95056).
Ocular/Otic ...In children, oral vitamin A approximately 25,000 IU/kg can cause swelling of the optic disk, bulging eyeballs, and visual disturbances (15). Adverse effects from a single ingestion of a large dose of vitamin A are more common in young children than adults (15).
Oncologic ...There is concern that high intake of vitamin A might increase some forms of cancer. Population research suggests high vitamin A intake might increase the risk of gastric carcinoma (9194).
Psychiatric ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity, which can include symptoms that mimic severe depression or schizophrenic disorder (7135).
Pulmonary/Respiratory ...There is some evidence that oral vitamin A supplementation might increase the risk of pneumonia and diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with pneumonia and diarrhea in well-nourished children (319). In preschool children, high-dose vitamin A also increases the risk of respiratory infection (82288).
Other ...Chronic use of large amounts of vitamin A (>25,000 IU daily for more than 6 years or 100,000 IU daily for more than 6 months) can cause symptoms of vitamin A toxicity including mild fever and excessive sweating (7135). High intakes of vitamin A may result in a failure to gain weight normally in children and weight loss in adults (15).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).