Each 1 heaped tsp (6 grams) serving contains: Vitamin C (as ascorbic acid) 4000 mg • Calcium (as ascorbate) 100 mg • Magnesium (as ascorbate) 160 mg • Zinc (as ascorbate) 7.5 mg • Selenium (as aspartate) 50 mcg • Manganese (as aspartate) 5 mg • Chromium (as nicotinate) 100 mcg • Molybdenum (as aspartate) 100 mcg • Sodium (as ascorbate) 175 mg • Potassium (as ascorbate) 100 mg • Vanadium (as aspartate) 100 mcg • Grapeseed extract (95% proanthocyanidins) 25 mg • Citrus Bioflavonoids 20 mg. Other Ingredients: Sodium Bicarbonate.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product Buffered Vitamin C Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Buffered Vitamin C Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Chromium has been safely used in doses up to 1000 mcg daily for up to 6 months (1934,5039,5040,6858,6859,6860,6861,6862,6867,6868)(7135,7137,10309,13053,14325,14440,17224,90057,90061)(90063,94234,95095,95096,95097,98687); however, most of these studies have used chromium doses in a range of 150-600 mcg. The Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, long-term. Chromium has been safely used in a small number of studies at doses of 200-1000 mcg daily for up to 2 years (7060,7135,42618,42628,42666,110605,110607,110609). However, the Food and Drug Administration (FDA) and Institute of Medicine (IOM) evaluations of the safety of chromium suggest that it is safe when used in doses of 200 mcg daily for up to 6 months (13241,13242).
CHILDREN: LIKELY SAFE
when used orally and appropriately in amounts not exceeding the daily adequate intake (AI) levels by age: 0-6 months, 0.
2 mcg; 7-12 months, 5.5 mcg; 1-3 years, 11 mcg; 4-8 years, 15 mcg; males 9-13 years, 25 mcg; males 14-18 years, 35 mcg; females 9-13 years, 21 mcg; females 14-18 years, 24 mcg (7135). POSSIBLY SAFE...when used orally and appropriately in amounts exceeding AI levels. Chromium 400 mcg daily has been used safely for up to 6 weeks (42680).
PREGNANCY: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for pregnancy is 28 mcg daily for those 14-18 years of age and 30 mcg daily for those 19-50 years of age (7135).
PREGNANCY: POSSIBLY SAFE
when used orally in amounts exceeding the adequate intake (AI) levels.
There is some evidence that patients with gestational diabetes can safely use chromium in doses of 4-8 mcg/kg (1953); however, patients should not take chromium supplements during pregnancy without medical supervision.
LACTATION: LIKELY SAFE
when used orally and appropriately in amounts not exceeding adequate intake (AI) levels.
The AI for lactation is 44 mcg daily for those 14-18 years of age and 45 mcg daily for those 19-50 years of age (7135). Chromium supplements do not seem to increase normal chromium concentration in human breast milk (1937). There is insufficient reliable information available about the safety of chromium when used in higher amounts while breast-feeding.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912).
POSSIBLY SAFE ...when the whole fruit of the grape, or extracts of the fruit, seed, or leaf, are used orally and appropriately in medicinal amounts. Grape seed extracts have been used with apparent safety in doses up to 200 mg daily for up to 11 months (9182,53016) and in doses up to 2000 mg daily for up to 3 months (53149,53190). Specific grape fruit extracts (Stilvid, Actafarma; Cognigrape, Bionap srl) have been used with apparent safety in doses up to 250-350 mg daily for 3-12 months or 700 mg daily for 6 months (53254,53256,96198). A specific grape leaf extract (AS 195, Antistax, Boehringer Ingelheim) has been used with apparent safety in doses up to 720 mg daily for up to 3 months (2538,52985,53005,53206). A preparation of dehydrated whole grapes, equivalent to 250 grams of fresh grapes daily, has also been used with apparent safety for up to 30 days (18228). A specific grape seed extract (Enovita; Indena SpA) 150 mg twice daily, standardized to provide at least 95% oligomeric proanthocyanins, has been used with apparent safety for up to 16 weeks (108091) ...when used topically and appropriately. Creams and ointments containing grape seed extract 2% or 5% have been used topically with apparent safety for up to 3 weeks (91539,100955). There is insufficient reliable information available about the safety of other grape plant parts when used topically.
CHILDREN: LIKELY SAFE
when used orally in amounts commonly found in foods.
Grapes and grape skin extracts have Generally Recognized As Safe (GRAS) status for use in foods in the US (4912). However, whole grapes should be eaten with caution in children aged 5 years and under. Whole grapes can be a choking hazard for young children (96193). To reduce the risk of choking, whole grapes should be cut in half or quartered before being given to children. There is insufficient reliable information available about the safety of grape when used in medicinal amounts in children.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts commonly found in foods.
There is insufficient reliable information available about the safety of medicinal amounts during pregnancy and breast-feeding; avoid using in amounts greater than what is commonly found in foods.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Grapefruit has Generally Recognized as Safe status (GRAS) in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately for medicinal purposes. A grapefruit seed extract has been safely used in clinical research (5866). In addition, capsules containing grapefruit pectin 15 grams daily have been used in clinical research for up to 16 weeks (2216).
POSSIBLY UNSAFE ...when used orally in excessive amounts. Preliminary population research shows that consuming a quarter or more of a whole grapefruit daily is associated with a 25% to 30% increased risk of postmenopausal breast cancer (14858). Grapefruit juice is thought to reduce estrogen metabolism resulting in increased endogenous estrogen levels. More evidence is needed to validate this finding.
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of using medicinal amounts of grapefruit during pregnancy and lactation; avoid using.
LIKELY SAFE ...when used in amounts commonly found in foods. Lemon has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when inhaled in amounts used for aromatherapy, short-term. Lemon essential oil has been used with apparent safety as aromatherapy for up to 2 weeks in clinical research (93475,98128,98129). There is insufficient reliable information available about the safety of lemon when used topically, or when used orally or intranasally in medicinal amounts.
PREGNANCY AND LACTATION:
Insufficient reliable information available.
Avoid using in amounts greater than those typically found in foods.
LIKELY SAFE ...when used orally and appropriately. Oral magnesium is safe when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555). ...when used parenterally and appropriately. Parenteral magnesium sulfate is an FDA-approved prescription product (96484).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 350 mg daily frequently cause loose stools and diarrhea (7555).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe when used in doses below the tolerable upper intake level (UL) of 65 mg daily for children 1 to 3 years, 110 mg daily for children 4 to 8 years, and 350 mg daily for children older than 8 years (7555,89396). ...when used parenterally and appropriately (96483).
CHILDREN: LIKELY UNSAFE
when used orally in excessive doses.
Tell patients not to use doses above the tolerable upper intake level (UL). Higher doses can cause diarrhea and symptomatic hypermagnesemia including hypotension, nausea, vomiting, and bradycardia (7555,8095).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Magnesium is safe for those pregnant and breast-feeding when used in doses below the tolerable upper intake level (UL) of 350 mg daily (7555).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for up to 5 days (12592,89397,99354,99355).
However, due to potential adverse effects associated with intravenous and intramuscular magnesium, use during pregnancy is limited to patients with specific conditions such as severe pre-eclampsia or eclampsia. There is some evidence that intravenous magnesium can increase fetal mortality and adversely affect neurological and skeletal development (12590,12593,60818,99354,99355). However, a more recent analysis of clinical research shows that increased risk of fetal mortality seems to occur only in the studies where antenatal magnesium is used for tocolysis and not for fetal neuroprotection or pre-eclampsia/eclampsia (102457). Furthermore, antenatal magnesium does not seem to be associated with increased risk of necrotizing enterocolitis in preterm infants (104396). There is also concern that magnesium increases the risk of maternal adverse events. A meta-analysis of clinical research shows that magnesium sulfate might increase the risk of maternal adverse events, especially in Hispanic mothers compared to other racial and ethnic groups (60971,99319).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients to avoid exceeding the tolerable upper intake level (UL) of 350 mg daily. Taking magnesium orally in higher doses can cause diarrhea (7555). ...when prescription magnesium sulfate is given intramuscularly and intravenously prior to delivery for longer than 5 days (12592,89397,99354,99355). Maternal exposure to magnesium for longer than 5-7 days is associated with an increase in neonatal bone abnormalities such as osteopenia and fractures. The U.S. Food and Drug Administration (FDA) recommends that magnesium injection not be given for longer than 5-7 days (12590,12593,60818,99354,99355).
LIKELY SAFE ...when used orally and appropriately. Oral manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily for adults 19 years and older (1994,7135). ...when used parenterally and appropriately. Parenteral manganese chloride and manganese sulfate are FDA-approved prescription products.
POSSIBLY UNSAFE ...when used orally in high doses. Doses exceeding 11 mg daily can cause significant adverse effects (7135). ...when used parenterally in moderate or high doses, long-term. Reports of neurotoxicity and Parkinson-like symptoms have been reported with parenteral nutrition manganese doses above 60 mcg daily. It is recommended that adults on long-term parenteral nutrition receive manganese in doses of no more than 55 mcg daily (99302).
LIKELY UNSAFE ...when inhaled in moderate doses, long-term. According to the US Occupational Safety and Health Administration (OSHA), the permissible exposure limit (PEL) for manganese is 5 mg/m3. Exposure to higher amounts of manganese dust or fumes has been associated with central nervous system toxicity, Parkinson-like symptoms, and poor bone health (61296,102516).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Manganese is safe in children when used in daily doses less than the tolerable upper intake level (UL) of 2 mg in children 1-3 years, 3 mg in children 4-8 years, 6 mg in children 9-13 years, and 9 mg in children 14-18 years (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
Daily doses greater than the UL are associated with a greater risk of toxicity (7135).
CHILDREN: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Exposure to high amounts of manganese dust has been associated with central nervous system toxicity and Parkinson-like symptoms (61296).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Manganese is safe when used in doses below the tolerable upper intake level (UL) of 11 mg daily during pregnancy or lactation in those aged 19 or older. However, those under 19 years of age should limit doses to less than 9 mg daily (7135).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses over the UL are associated with a greater risk of toxicity (7135). Additionally, observational research shows that adults with higher blood manganese levels have greater odds of delivering low birth weight or small for gestational age (SGA) male, but not female, infants (102515).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when inhaled at moderate doses, long-term.
Manganese salts can cross the placenta, and animal research suggests that large amounts of manganese may be teratogenic (61296).
LIKELY SAFE ...when used orally and appropriately. Molybdenum is safe in amounts that do not exceed 2 mg/day, the Tolerable Upper Intake Level (UL) (7135).
POSSIBLY UNSAFE ...when used orally in high doses. Use of molybdenum in doses exceeding the Tolerable Upper Intake Level (UL) of 2 mg/day might not be safe (7135).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Molybdenum is safe in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 0.3 mg/day for children 1 to 3 years, 0.6 mg/day for children 4 to 8 years, 1.1 mg/day for children 9 to 13 years, and 1.7 mg/day for adolescents (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Molybdenum might not be safe when used in doses exceeding the UL of 0.3 mg/day for children 1 to 3 years, 0.6 mg/day for children 4 to 8 years, 1.1 mg/day for children 9 to 13 years, and 1.7 mg/day for adolescents (7135).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Molybdenum crosses the placenta by passive diffusion and is exchanged freely between the mother and fetus (16482). However, molybdenum is safe when used in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 1.7 mg/day for women 14 to 18 years, or 2 mg/day for women 19 years of age and older (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in high doses.
Molybdenum might not be safe during pregnancy when used in doses exceeding the UL of 1.7 mg/day for women 14 to 18 years, or 2 mg/day for women 19 and older (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Molybdenum is safe when used in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 2 mg/day for breast-feeding women 19 years of age or older, or 1.7 mg/day for breast-feeding women ages 14 to 18 years (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in high doses.
Molybdenum might not be safe when used in doses exceeding the UL of 2 mg/day for breast-feeding women 19 or older, or 1.7 mg/day for breast-feeding women ages 14 to 18 years (7135).
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
LIKELY SAFE ...when used orally and appropriately. Selenium appears to be safe when taken short-term in amounts below the tolerable upper intake level (UL) of 400 mcg daily (4844,7830,7831,7836,7841,9724,9797,14447,17510,17511)(17512,17513,17515,17516,97087,97943,109085); however, there is concern that taking selenium long-term might not be safe. Some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). Some evidence also shows that taking a selenium supplement 200 mcg daily for an average of 3-8 years increases the risk of developing type 2 diabetes (97091,99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661). ...when used intravenously. Selenium, as selenious acid, is an FDA-approved drug. Sodium selenite intravenous infusions up to 1000 mcg daily have been safely used for up to 28 days (90347,92910).
POSSIBLY UNSAFE ...when used orally in high doses or long-term. Doses above 400 mcg daily can increase the risk of developing selenium toxicity (4844,7825). Additionally, some evidence shows that consuming a diet containing more than the recommended dietary allowance (RDA) of selenium, which is 55 mcg daily for most adults, is associated with an increased risk for developing type 2 diabetes (99661). There is also concern that taking a selenium supplement 200 mcg daily long-term, for an average of 3-8 years, increases the risk of developing type 2 diabetes (99661). Higher serum levels of selenium are also associated with an increased risk of developing diabetes and increased mortality (16710,99661).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately.
Selenium seems to be safe when used short-term in doses below the tolerable upper intake level (UL) of 45 mcg daily for infants up to age 6 months, 60 mcg daily for infants 7 to 12 months, 40-90 mcg daily for children 1 to 3 years, 100-150 mcg daily for children 4 to 8 years, 200-280 mcg daily for children 9 to 13 years, and 400 mcg daily for children age 14 years and older (4844,86095); however, there is some concern that long-term use might not be safe. ...when used via a nasogastric tube in premature infants (7835,9764).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily (4844,17507,74419,74481,74391); however, there is concern that long-term use might not be safe.
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844).
LACTATION: POSSIBLY SAFE
when used orally and appropriately.
Selenium appears to be safe when used short-term in amounts that do not exceed the tolerable upper intake level (UL) of 400 mcg daily when taken short-term (4844,74467); however, there is concern that long-term use might not be safe.
LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Doses above 400 mcg daily may cause significant toxicity (4844,7838). ...when used orally in HIV-positive women. Selenium supplementation in HIV-positive women not taking highly active antiretroviral therapy may increase HIV-1 levels in breast milk (90358).
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when used orally and appropriately. Vanadium is safe when taken in amounts below the tolerable upper intake level (UL) of 1.8 mg daily (7135).
POSSIBLY UNSAFE ...when used orally in high doses. Taking more than the tolerable upper intake level (UL) of 1.8 mg daily can increase the risk of gastrointestinal side effects and theoretically, kidney toxicity (7135). In some cases, patients with diabetes have used very high doses (100 mg daily) safely for up to 4 weeks (3055,3056,3057). However, there is concern that prolonged use of high doses might cause serious side effects including kidney damage (7135). Doses of 22.5 mg daily for five months can cause cramps and diarrhea (3012).
CHILDREN: LIKELY SAFE
when used orally in amounts found in foods (7135).
There is insufficient reliable information available about the safety of vanadium when used in amounts greater than those typically found in foods.
PREGNANCY: LIKELY SAFE
when used orally in amounts found in foods (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in medicinal amounts.
Epidemiological research has found that increased urinary levels of vanadium are associated with an increased risk of both term and preterm premature rupture of membranes (PROM). When comparing tertiles of urinary vanadium levels, patients in the middle tertile had 1.66 times the risk of term PROM when compared with the lowest tertile, and those in the highest tertile had 3.75 times the risk. For preterm PROM (rupture prior to 37 weeks' gestation), those in the highest tertile had an 8.14 times increased risk when compared with those in the lowest tertile (99052). Epidemiological research has also found that higher prenatal serum levels of vanadium are associated with impaired fetal growth, particularly in male newborns. The risk appears greatest with vanadium exposure in the second trimester (102096).
LACTATION: LIKELY SAFE
when used orally in amounts found in foods (7135).
There is insufficient reliable information available about the safety of vanadium when used in amounts greater than those typically found in foods; avoid using.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
LIKELY SAFE ...when used orally and appropriately. Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 40 mg daily (7135). ...when used topically and appropriately (2688,6538,6539,7135,8623,11051,111291).
POSSIBLY SAFE ...when used orally and appropriately in doses higher than the tolerable upper intake level (UL). Because the UL of zinc is based on regular daily intake, short-term excursions above 40 mg daily are not likely to be harmful. In fact, there is some evidence that doses of elemental zinc as high as 80 mg daily in combination with copper 2 mg can be used safely for approximately 6 years without significant adverse effects (7303,8622,92212). However, there is some concern that doses higher than the UL of 40 mg daily might decrease copper absorption and result in anemia (7135).
POSSIBLY UNSAFE ...when used intranasally. Case reports and animal research suggest that intranasal zinc might cause permanent anosmia or loss of sense of smell (11155,11156,11703,11704,11705,11706,11707,16800,16801,17083). Several hundred reports of anosmia have been submitted to the US Food and Drug Administration (FDA) and the manufacturer of some intranasal zinc products (Zicam) (16800,16801). Advise patients not to use intranasal zinc products.
LIKELY UNSAFE ...when taken orally in excessive amounts. Ingestion of 10-30 grams of zinc sulfate can be lethal in adults (7135). Chronic intake of 450-1600 mg daily can cause multiple forms of anemia, copper deficiency, and myeloneuropathies (7135,17092,17093,112473). This has been reported with use of zinc-containing denture adhesives in amounts exceeding the labeled directions, such as several times a day for several years (17092,17093). Advise patients to follow the label directions on denture adhesives that contain zinc.
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL for children is based on age: 4 mg daily for 0-6 months, 5 mg daily for 7-12 months, 7 mg daily for 1-3 years, 12 mg daily for 4-8 years, 23 mg daily for 9-13 years, and 34 mg daily for 14-18 years (7135,97140).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Taking amounts greater than the UL can cause sideroblastic anemia and copper deficiency (7135). ...when used topically on damaged skin. An infant treated with 10% zinc oxide ointment for severe diaper rash with perianal erosions developed hyperzincemia. Absorption seemed to occur mainly via the erosions; plasma levels dropped after the erosions healed despite continued use of the ointment (106905).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during pregnancy in those 14-18 years of age and 40 mg daily in those 19-50 years of age (7135).
PREGNANCY: LIKELY UNSAFE
when used orally in doses exceeding the UL (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during lactation in those 14-18 years of age, and 40 mg daily for those 19-50 years of age (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses can cause zinc-induced copper deficiency in nursing infants (7135).
Below is general information about the interactions of the known ingredients contained in the product Buffered Vitamin C Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, chromium may have additive effects with antidiabetic agents and increase the risk of hypoglycemia.
|
Theoretically, aspirin might increase chromium absorption.
Animal research suggests that aspirin may increase chromium absorption and chromium levels in the blood (21055).
|
Theoretically, concomitant use of chromium and insulin might increase the risk of hypoglycemia.
|
Chromium might bind levothyroxine in the intestinal tract and decrease levothyroxine absorption.
Clinical research in healthy volunteers shows that taking chromium picolinate 1000 mcg with levothyroxine 1 mg decreases serum levels of levothyroxine by 17% when compared to taking levothyroxine alone (16012). Advise patients to take levothyroxine at least 30 minutes before or 3-4 hours after taking chromium.
|
NSAIDs might increase chromium levels in the body.
Drugs that are prostaglandin inhibitors, such as NSAIDs, seem to increase chromium absorption and retention (7135).
|
Theoretically, grape extracts may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
|
Ingesting grape juice with cyclosporine can reduce cyclosporine absorption.
A small pharmacokinetic study in healthy young adults shows that intake of purple grape juice 200 mL along with cyclosporine can decrease the absorption of cyclosporine by up to 30% when compared with water (53177). Separate doses of grape juice and cyclosporine by at least 2 hours to avoid this interaction.
|
Theoretically, grape juice might reduce the levels of CYP1A2 substrates.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of CYP1A2 (2539).
|
It is unclear if grape juice or grape seed extract inhibits CYP2C9; research is conflicting.
In vitro evidence shows that grape seed extract or grape juice might inhibit CYP2C9 enzymes (11094,53011,53089). However, a small pharmacokinetic study in healthy adults shows that drinking 8 ounces of grape juice once does not affect the clearance of flurbiprofen, a probe-drug for CYP2C9 metabolism (11094). The effects of continued grape juice consumption are unclear.
|
Theoretically, grape seed extract may increase the levels of CYP2D6 substrates.
In vitro evidence suggests that grape seed extract might inhibit CYP2D6 enzymes (53011). However, this interaction has not been reported in humans.
|
Theoretically, grape seed extract might increase the levels of CYP2E1 substrates.
In vitro and animal research suggests that grape seed proanthocyanidin extract inhibits CYP2E1 enzymes (52949). However, this interaction has not been reported in humans.
|
It is unclear if grape seed extract inhibits or induces CYP3A4; research is conflicting.
|
Theoretically, long-term intake of grape seed extract might decrease the effects of midazolam.
Animal research shows that subchronic ingestions of grape seed extract can increase the elimination of intravenous midazolam by increasing hepatic CYP3A4 activity. Single doses of grape seed extract do not appear to affect midazolam elimination (53011).
|
Grape juice might decrease phenacetin absorption.
A small pharmacokinetic study in healthy adults shows that ingestion of 200 mL of grape juice decreases phenacetin plasma levels. This is thought to be due to induction of cytochrome P450 1A2 (CYP1A2) (2539).
|
Grapefruit juice can decrease blood levels of acebutolol, potentially decreasing the clinical effects of acebutolol.
Clinical research shows that grapefruit juice can modestly decrease acebutolol levels by 7% and reduce peak plasma concentration by 19% by inhibiting organic anion transporting polypeptide (OATP) (17603,18101). The acebutolol half-life is also extended by 1.1 hours when grapefruit juice is consumed concomitantly (18101). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of aliskiren, potentially decreasing the clinical effects of aliskiren.
Clinical research shows that grapefruit juice can decrease aliskiren levels by approximately 60% by inhibiting organic anion transporting polypeptide (OATP) (91428). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of amiodarone, potentially increasing the effects and adverse effects of amiodarone.
|
Grapefruit juice might decrease blood levels of amprenavir, although this is not likely to be clinically significant.
Some clinical research shows that grapefruit juice can slightly decrease amprenavir levels (17673); however, this is probably not clinically significant.
|
Grapefruit juice can increase blood levels of oral artemether, potentially increasing the effects and adverse effects of artemether.
|
Grapefruit juice might increase blood levels of some oral benzodiazepines, potentially increasing the effects and adverse effects of these drugs.
Clinical research shows that grapefruit juice can increase plasma triazolam concentrations. Repeated consumption of grapefruit juice greatly increases triazolam concentrations and prolongs the half-life, probably due to inhibition of cytochrome P450 3A4 (CYP3A4) (7776,22118,22131,22133). Some studies show that grapefruit juice, particularly when taken in large quantities, reduces the clearance and increases the maximum blood levels, area under the plasma concentration curve (AUC), and duration of effect of midazolam. However, there is no effect on intravenous midazolam (4300,10159,11275,17601,22117,22119,16711,91427,95978). Grapefruit juice has also been shown to increase the maximum blood levels and duration of effect of diazepam, but the clinical significance of this is not known (3228). This interaction does not appear to occur with alprazolam (17674).
|
Grapefruit juice can increase blood levels of blonanserin, potentially increasing the effects and adverse effects of blonanserin.
Blonanserin is metabolized primarily by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral blonanserin increases exposure to blonanserin almost 6-fold due to inhibition of intestinal CYP3A4 by grapefruit juice and prolongs the elimination half-life of blonanserin by 2.2-fold due to inhibition of hepatic CYP3A4 by grapefruit juice (96943).
|
Grapefruit juice can increase blood levels of budesonide, potentially increasing the effects and adverse effects of budesonide.
Budesonide is metabolized by cytochrome P450 3A4 (CYP3A4). A small clinical study shows that taking grapefruit juice along with oral budesonide increases the plasma concentration of budesonide. This effect is attributed to grapefruit-induced inhibition of CYP3A4 in both the colon and small intestine (91425).
|
Grapefruit juice can increase blood levels of buspirone, potentially increasing the effects and adverse effects of buspirone.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of buspirone (3771).
|
Grapefruit juice can decrease the clearance of caffeine, potentially increasing the effects and adverse effects of caffeine.
Clinical research shows that grapefruit juice decreases caffeine clearance (4300).
|
Grapefruit juice can increase blood levels of oral calcium channel blockers, potentially increasing the effects and adverse effects of these drugs.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of amlodipine (523), nifedipine (528,22114), nisoldipine (529), verapamil (7779,8285), felodipine, nimodipine, nicardipine, diltiazem, pranidipine, nitrendipine, and manidipine (524,528,1388,4300,7780,11276,22136,53338,22138,22139) (22140,22141,22142,22143,22147,22148,22149,53367,22158),
This interaction is likely the result of the inhibition of intestinal metabolism of these drugs by CYP3A4 (7779,7780), although some research suggests grapefruit may alter plasma drug levels by reducing the rate of gastric emptying (22167). Consuming grapefruit juice 1 liter daily increases steady state concentrations of verapamil by as much as 50% (8285). However, some references dispute the clinical relevance of the interactions with amlodipine, diltiazem, and verapamil (3230,4300,22159). Other research in healthy individuals suggests plasma levels of felodipine and nifedipine are not affected when given intravenously (22144,22146). There is considerable interindividual variability in the effect of grapefruit juice on drug metabolism, which might account for inconsistent study results (7777,7779,8285). In healthy older adults, the hemodynamic response to felodipine plus grapefruit juice might be influenced by altered autonomic regulation. In older healthy adults, a single dose of grapefruit juice and felodipine enhanced the blood pressure-lowering effects of felodipine. However, after a week of grapefruit juice and felodipine (steady state), the hypotensive activity was reduced, possibly due to compensatory tachycardia (1392). Research indicates it is necessary to withhold grapefruit juice for as long as 3 days to avoid interactions with felodipine and nisoldipine (5068,5069,6453,22145).
|
Grapefruit juice can increase blood levels of carbamazepine, potentially increasing the effects and adverse effects of carbamazepine.
Clinical research shows that grapefruit juice increases absorption and plasma concentrations of carbamazepine (524).
|
Grapefruit juice can increase blood levels of carvedilol, potentially increasing the effects and adverse effects of carvedilol.
Clinical research shows that grapefruit juice increases the bioavailability of a single dose of carvedilol by 16% (5071).
|
Grapefruit juice can decrease blood levels of celiprolol, potentially decreasing the clinical effects of celiprolol.
In human research, taking grapefruit juice within two hours of celiprolol appears to decrease absorption and blood levels of celiprolol by approximately 85% (91421). This interaction is due to grapefruit-induced inhibition of organic anion transporting polypeptide (OATP) (17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of cisapride, potentially increasing the effects and adverse effects of cisapride.
|
Theoretically, grapefruit juice might increase blood levels of clomipramine, potentially increasing the effects and adverse effects of clomipramine.
Case reports have shown that clomipramine trough levels increase significantly after the addition of grapefruit juice to the therapeutic regimen (5064).
|
Grapefruit juice can decrease blood levels of the active metabolite of clopidogrel, thereby decreasing the antiplatelet effect of clopidogrel.
Clopidogrel is an antiplatelet prodrug that is metabolized primarily by cytochrome P450 2C19 (CYP2C19) to form the active metabolite. A small clinical study shows that taking grapefruit juice with clopidogrel decreases plasma levels of the active metabolite by more than 80% and impairs the antiplatelet effect of clopidogrel. This effect is possibly due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase blood levels of colchicine, potentially increasing the effects and adverse effects of colchicine.
Colchicine is an alkaloid that undergoes P-glycoprotein (P-gp) mediated drug efflux in the intestines, followed by metabolism by cytochrome P450 3A4 (CYP3A4). There is concern that grapefruit juice will increase the effects and adverse effects of colchicine due to grapefruit-induced inhibition of P-gp and/or CYP3A4. In vitro evidence shows that grapefruit juice increases absorption of colchicine by inhibiting P-gp (94158). A case of acute colchicine toxicity has been reported for an 8-year-old female who drank grapefruit juice while taking high-dose colchicine, long-term (94157). However, one small clinical study in healthy adults shows that drinking grapefruit juice 240 mL twice daily for 4 days does not affect the bioavailability or adverse effects of a single dose of colchicine 0.6 mg taken on the fourth day (35762).
|
Grapefruit juice can increase blood levels of oral cyclosporine, potentially increasing the effects and adverse effects of cyclosporine.
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP1A2.
In vitro research suggests that grapefruit juice might inhibit CYP1A2 enzymes (12479). So far, this interaction has not been reported in humans.
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C19.
In vitro research suggests that grapefruit juice might inhibit CYP2C19 enzymes (12479). Also, a small clinical study shows that taking grapefruit juice with clopidogrel, an antiplatelet prodrug that is metabolized primarily by CYP2C19, decreases plasma levels of the active metabolite and impairs the antiplatelet effect of clopidogrel. This effect is likely due to grapefruit-induced inhibition of CYP2C19 (91419).
|
Theoretically, grapefruit juice might increase levels of drugs metabolized by CYP2C9.
In vitro research suggests that grapefruit juice might inhibit CYP2C9 enzymes (12479). So far, this interaction has not been reported in humans.
|
Grapefruit juice can increase levels of drugs metabolized by CYP3A4.
Clinical research shows that grapefruit juice can inhibit CYP3A4 metabolism of drugs, causing increased drug levels and potentially increasing the risk of adverse effects (3227,3774,8283,8285,8286,22129,91427,104190). When taken orally, effects of grapefruit juice on CYP3A4 levels appear to last at least 48 hours (91427). Grapefruit's ability to inhibit CYP3A4 has even been harnessed to intentionally increase levels of venetoclax, which is metabolized by CYP3A4, in an elderly patient with acute myeloid leukemia who could not afford full dose venetoclax. The lower dose of venetoclax in combination with grapefruit juice resulted in serum levels of venetoclax in the therapeutic reference range of full dose venetoclax and positive treatment outcomes for the patient (112287).
Professional consensus recommends the consideration of patient age, existing medical conditions, additional medications, and the potential for additive adverse effects when evaluating the risks of concomitant use of grapefruit juice with any medication metabolized by CYP3A4. While all patients are at risk for interactions with grapefruit juice consumption, patients older than 70 years of age and those taking multiple medications are at the greatest risk for a serious or fatal interaction with grapefruit juice (95970,95972). |
Grapefruit juice can increase blood levels of dapoxetine, potentially increasing the effects and adverse effects of dapoxetine.
Pharmacokinetic research shows that drinking grapefruit juice 250 mL prior to taking dapoxetine 60 mg can increase the maximum plasma concentration of dapoxetine by 80% and prolong the elimination half-life by 43%. This effect is attributed to the inhibition of both intestinal and hepatic cytochrome P450 3A4 (CYP3A4) by grapefruit (95975).
|
Grapefruit juice can increase blood levels of dextromethorphan, potentially increasing the effects and adverse effects of dextromethorphan.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism, causing increased dextromethorphan levels (11362).
|
Theoretically, grapefruit juice may increase the levels and clinical effects of empagliflozin.
Animal research suggests grapefruit juice increases the peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of empagliflozin, possibly due to inhibition of metabolism by uridine diphosphoglucuronosyl transferase (UGT) (115467). This effect has not been reported in humans.
|
Grapefruit juice can increase blood levels of erythromycin, potentially increasing the effects and adverse effects of erythromycin.
Clinical research shows that concomitant use of erythromycin with grapefruit can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of erythromycin, increasing plasma concentrations of erythromycin by 35% (8286).
|
Grapefruit juice can increase blood levels of estrogens, potentially increasing the effects and adverse effects of estrogens.
Clinical research shows that grapefruit increases the levels of endogenous and exogenous estrogens by inhibiting cytochrome P450 3A4 (CYP3A4) enzymes (525,526,14858). Grapefruit juice increases exogenously administered 17-beta-estradiol by about 20% in females without ovaries and ethinyl-estradiol in healthy females (525,526,22160).
|
Grapefruit juice can decrease blood levels of etoposide, potentially decreasing the clinical effects of etoposide.
Clinical research shows that grapefruit juice decreases the absorption and plasma concentrations of etoposide. There is some evidence that grapefruit juice co-administered with oral etoposide can reduce levels of etoposide by about 26% (8744). Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of fexofenadine, thereby decreasing the clinical effects of fexofenadine.
Clinical research shows that grapefruit juice can significantly decrease oral absorption and blood levels of fexofenadine. In one study, consuming a drink containing grapefruit juice 25% decreased bioavailability of fexofenadine by about 24%. Consuming a full-strength grapefruit juice drink reduced bioavailability by 67% (7046). In another study, consuming grapefruit juice 300 mL decreased fexofenadine levels by 42%. Consuming 1200 mL of grapefruit juice reduced levels by 64% (17602). Similarly, drinking grapefruit juice 240 mL decreased the oral bioavailability of fexofenadine by 25% in another pharmacokinetic study (112288). Fexofenadine manufacturer data indicates that concomitant administration of grapefruit juice and fexofenadine results in larger wheal and flare sizes in research models. This suggests that grapefruit also reduces the clinical response to fexofenadine (17603).
Grapefruit juice seems to inhibit organic anion transporting polypeptide (OATP), which is a drug transporter in the gut, liver, and kidney (7046,17603,17604,22161). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604). |
Grapefruit juice can increase blood levels of fluvoxamine, potentially increasing the effects and adverse effects of fluvoxamine.
Clinical research shows that grapefruit juice inhibits metabolism and increases fluvoxamine levels and peak concentration (17675).
|
Grapefruit juice can increase blood levels of halofantrine, potentially increasing the effects and adverse effects of halofantrine.
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism, which increases halofantrine levels and peak concentration, as well as a marker of ventricular tachyarrhythmia potential (22129).
|
Grapefruit juice can increase blood levels of statins that are metabolized by cytochrome P450 3A4 (CYP3A4), potentially increasing the effects and adverse effects of these statins. Additionally, grapefruit juice might interfere with the bioavailability of statins that are substrates of organic anion transporting polypeptides (OATP).
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption and plasma concentrations of statins that are metabolized by CYP3A4. These include lovastatin (527,11274), simvastatin (3774,7782,22127), and atorvastatin (3227,12179,22126). Keep in mind that there is considerable variability in the effect of grapefruit juice on drug metabolism, so individual patient response is difficult to predict (7777,7781).
Some statins, including pravastatin, fluvastatin, pitavastatin, and rosuvastatin, are not metabolized by CYP3A4. However, grapefruit juice might still affect the bioavailability of these statins. These statins are substrates of OATP. Grapefruit juice can inhibit OATP. Therefore, grapefruit juice may reduce the bioavailability or increase drug levels of these statins depending on the type of OATP. However, grapefruit juice affects OATP for only a short time. Therefore, separating drug administration by at least 4 hours is likely to avoid this interaction (3227,12179,17601,22126,91420). |
Grapefruit juice can interfere with itraconazole absorption, although the clinical significance of this interaction is unclear.
|
Grapefruit juice can decrease blood levels of levothyroxine, potentially decreasing the effectiveness of levothyroxine.
Clinical research shows that grapefruit juice modestly decreases levothyroxine levels by 11% by inhibiting organic anion transporting polypeptide (OATP) (17604,22163). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can decrease blood levels of the active metabolite of losartan, potentially decreasing the clinical effects of losartan.
Losartan is an inactive prodrug which must be metabolized to its active form, E-3174, to be effective. In one human study, grapefruit juice reduced losartan metabolism, increased losartan AUC, and reduced the AUC of the major active losartan metabolite, E-3174 (1391).
|
Grapefruit juice can increase blood levels of methadone, potentially increasing the effects and adverse effects of methadone.
Clinical research shows that grapefruit juice inhibits the metabolism of methadone, increasing methadone levels and peak concentrations (17676). In one case, a 51-year-old male taking methadone 90 mg daily and no other medications was found unresponsive. The patient reported drinking grapefruit juice 500 mL daily for 3 days prior to the event. Methadone is a substrate of cytochrome P450 3A4 (CYP3A4), and grapefruit juice-induced inhibition of CYP3A4 is the likely cause of this interaction (102056).
|
Grapefruit juice can increase blood levels of methylprednisolone, potentially increasing the effects and adverse effects of methylprednisolone.
Clinical research shows that grapefruit juice can increase the plasma concentration of orally administered methylprednisolone. Grapefruit juice 200 mL three times daily given with methylprednisolone 16 mg increased methylprednisolone half-life by 35%, peak plasma concentration by 27%, and total area under the curve by 75% (3123).
|
Grapefruit juice might decrease blood levels of nadolol, potentially decreasing the clinical effects of nadolol.
Nadolol is a substrate of organic anion transporting polypeptide 1A2 (OATP1A2) (17603,17604,22161). Some research shows that grapefruit juice and its constituent naringin can inhibit organic anion transporting polypeptides (OATP), which can reduce the bioavailability of OATP substrates (17603,17604,22161,91427). However, preliminary clinical research shows that grapefruit juice containing a low amount of naringin does not significantly affect levels of nadolol (91422). It is not known if grapefruit juice containing higher amounts of naringin reduces the bioavailability of nadolol.
|
Grapefruit juice can increase blood levels of nilotinib, potentially increasing the effects and adverse effects of nilotinib.
Clinical research shows that grapefruit juice inhibits metabolism and increases absorption of nilotinib. Grapefruit juice increases nilotinib levels by 29% and peak concentration by 60% (17677).
|
Grapefruit juice can decrease levels of drugs that are substrates of OATP.
In vitro and clinical research show that consuming grapefruit juice inhibits OATP, which reduces the bioavailability of oral drugs that are substrates of OATP. Various clinical studies have shown reduced absorption of OATP substrates when taken with grapefruit, including fexofenadine, acebutolol, aliskiren, celiprolol, levothyroxine, nadolol, and pitavastatin (17603,17604,18101,22126,22134,22161,22163,91420,91427,91428,112288). Grapefruit juice is thought to affect OATP for only a short time. Therefore, separating drug administration and consumption of grapefruit by at least 4 hours is likely to prevent this interaction (17603,17604).
|
Grapefruit juice can increase blood levels of oxycodone, potentially increasing the effects and adverse effects of oxycodone.
Oxycodone is metabolized by both cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6). A small clinical study shows that grapefruit juice can increase plasma levels of oral oxycodone about 1.7-fold by inhibiting CYP3A4. While the analgesic effects of oxycodone do not seem to be affected, taking grapefruit juice along with oxycodone may theoretically increase the adverse effects of oxycodone (91423).
|
Grapefruit juice does not seem to affect renal P-glycoprotein (P-gp). Theoretically, it might inhibit intestinal P-gp, but evidence is conflicting.
While most in vitro research shows that grapefruit products inhibit P-gp, (1390,11270,11278,11362,95976), research in humans is less clear. Two small clinical studies in healthy adults using digoxin as a probe substrate show that grapefruit juice does not inhibit P-gp in the kidneys (11277,11282). It is unclear whether this applies to intestinal P-gp, for which digoxin is not considered to be a sensitive probe (105568). Grapefruit juice has been shown to reduce levels of fexofenadine (7046,17602,112288), and increase levels of quinidine (5067,22121). However, as both of these drugs are also substrates of other enzymes and transporters, it is unclear what role, if any, intestinal P-gp has in these findings.
|
Grapefruit juice can increase blood levels of pitavastatin, potentially increasing the effects and adverse effects of pitavastatin.
Pharmacokinetic research shows that taking grapefruit juice with pitavastatin 2-4 mg can increase blood levels of pitavastatin by 13% to 14%. Unlike simvastatin and atorvastatin, pitavastatin is not significantly metabolized by cytochrome P450 3A4 (CYP3A4) enzymes. Grapefruit juice appears to increase levels of pitavastatin by inhibiting its uptake by organic anion transporting polypeptide 1B1 (OATP1B1) into hepatocytes for metabolism and clearance from the body (22126,91420). Grapefruit juice seems to increase levels of pitavastatin to a greater degree in patients homozygous for a specific polymorphism (388A>G) in the OATP1B1 gene compared to those heterozygous for this polymorphism (91420).
|
Grapefruit juice can decrease blood levels of the active metabolite of prasugrel, thereby decreasing the antiplatelet effect of prasugrel.
Prasugrel is a prodrug that is metabolized by cytochrome P450 3A4 (CYP3A4) into its active metabolite. A small pharmacokinetic study in healthy volunteers shows that drinking grapefruit juice 200 mL three times daily for 4 days and taking a single dose of prasugrel 10 mg with an additional 200 mL of grapefruit juice on day 3, results in a 49% lower peak plasma level and a 26% lower overall plasma exposure to the active metabolite when compared with drinking water. However, despite the reduced exposure, platelet aggregation seems to be reduced by an average of only 5% (105567). The clinical significance of this interaction is unclear.
|
Grapefruit juice can increase blood levels of praziquantel, potentially increasing the effects and adverse effects of praziquantel.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of praziquantel. Plasma concentrations of praziquantel can increase by as much as 160% when administered with 250 mL of commercially available grapefruit juice (8282).
|
Grapefruit juice may increase blood levels of primaquine, potentially increasing the effects and adverse effects of primaquine.
Clinical research shows that grapefruit juice increases the bioavailability of primaquine by approximately 20% (22130). The clinical significance of this interaction is not clear.
|
Grapefruit or grapefruit juice, especially if consumed in large amounts, can cause additive QT interval prolongation when taken with QT interval-prolonging drugs, potentially increasing the risk of ventricular arrhythmias.
Clinical research in healthy volunteers shows that drinking 6 liters of grapefruit juice over 6 hours prolonged the QTc by a peak amount of 14 milliseconds (ms). This prolongation was similar to the QT prolongation caused by the drug moxifloxacin. In individuals with long QT syndrome, a smaller dose of grapefruit juice, 1.5 liters, resulted in a greater peak QTc prolongation of about 30 ms (100249). The effect of smaller quantities of grapefruit juice on the QT interval is unclear.
|
Grapefruit juice may increase blood levels of quetiapine, increasing the effects and adverse effects of quetiapine.
Quetiapine is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4 (3227,3774,8283,8285,8286,22129,91427,104190). In one case report, a healthy 28-year-old female with bipolar disorder stabilized on quetiapine 800 mg daily presented with quetiapine toxicity considered to be related to consuming a gallon of grapefruit juice over the past 24 hours (108848).
|
Grapefruit juice can alter blood levels of quinidine, potentially increasing or decreasing the clinical effects of quinidine.
|
Theoretically, grapefruit juice may increase the concentration and clinical effects of rivaroxaban.
Rivaroxaban is metabolized partially by cytochrome P450 3A4 (CYP3A4). Grapefruit juice can inhibit CYP3A4. Animal research shows that grapefruit juice increases the peak plasma concentration (Cmax) of rivaroxaban by about four-fold, without increasing the area under the drug concentration-time curve (AUC) (115468).
|
Grapefruit juice can increase blood levels of saquinavir, potentially increasing the effects and adverse effects of saquinavir.
|
Grapefruit juice can increase blood levels of scopolamine, potentially increasing the effects and adverse effects of scopolamine.
Clinical research shows that grapefruit juice can inhibit cytochrome P450 3A4 (CYP3A4) metabolism of scopolamine, increasing its absorption and plasma concentrations. Oral bioavailability of scopolamine can increase by 30% when administered with 150 mL of grapefruit juice (8284).
|
Grapefruit juice can increase blood levels of sertraline, potentially increasing the effects and adverse effects of sertraline.
Clinical research shows that grapefruit juice inhibits the cytochrome P450 3A4 (CYP3A4) metabolism of sertraline, increasing blood levels of sertraline (22122).
|
Grapefruit juice can increase blood levels of sildenafil, potentially increasing the effects and adverse effects of sildenafil.
Clinical research shows that grapefruit juice inhibits cytochrome P450 3A4 (CYP3A4) metabolism of sildenafil, increasing its absorption and plasma concentrations. Oral bioavailability of sildenafil can increase by 23% when administered with 500 mL of commercially available grapefruit juice (8283).
|
Grapefruit juice may slightly increase blood levels of sunitinib, potentially increasing the effects and adverse effects of sunitinib.
Sunitinib is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit and grapefruit juice can inhibit CYP3A4 and increase levels of some drugs metabolized by this enzyme. One small clinical study shows that drinking 200 mL of grapefruit juice three times daily can increase the bioavailability of sunitinib by 11% (91429). While this effect is unlikely to be clinically significant, patients should use caution when using grapefruit along with sunitinib. Dose adjustments may be necessary.
|
Grapefruit juice can increase blood levels of tacrolimus, potentially increasing the effects and adverse effects of tacrolimus.
Clinical research shows that drinking grapefruit juice 200 mL daily while taking tacrolimus 3 mg daily increases the trough blood concentration of tacrolimus by approximately 3-fold in patients with connective tissue diseases (95974). A single case has also reported a 10-fold increase in tacrolimus trough levels after the ingestion of grapefruit juice over 3 days (22122). This effect is attributed to the inhibition of cytochrome P450 3A4 (CYP3A4) by grapefruit (95974).
|
Theoretically, grapefruit juice might increase blood levels of tadalafil, potentially increasing the effects and adverse effects of tadalafil.
Animal research shows that grapefruit juice increases tadalafil serum concentrations and overall exposure, likely through inhibition of cytochrome P450 3A4 enzymes (104189).
|
Grapefruit juice might decrease blood levels of talinolol, potentially decreasing the clinical effects of talinolol.
Clinical research suggests that grapefruit juice reduces talinolol bioavailability, likely by inhibiting intestinal uptake (22135). The clinical significance of this effect is unclear.
|
Grapefruit juice can increase blood levels of terfenadine, potentially increasing the effects and adverse effects of terfenadine.
|
Grapefruit juice can decrease blood levels of theophylline, potentially decreasing the effectiveness of theophylline.
Clinical research shows that grapefruit juice seems to modestly decrease theophylline levels when given concurrently with sustained-release theophylline (11013). The mechanism of this interaction is unknown.
|
Grapefruit juice can increase blood levels of ticagrelor, thereby increasing the effects and adverse effects of ticagrelor.
Ticagrelor is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that taking grapefruit juice with ticagrelor increases blood levels of ticagrelor more than two-fold and increases the antiplatelet activity of ticagrelor (91418). Additionally, animal research shows that grapefruit juice increases peak plasma concentration (Cmax) and the area under the drug concentration-time curve (AUC) of ticagrelor (115468).
|
Grapefruit juice can increase blood levels of tolvaptan, potentially increasing the effects and adverse effects of tolvaptan.
Tolvaptan is metabolized by cytochrome P450 3A4 (CYP3A4). Grapefruit can inhibit CYP3A4. A small clinical study shows that grapefruit juice can increase the bioavailability and blood levels of tolvaptan by approximately 1.6-fold for up to 16 hours (91426).
|
Theoretically, drinking large amounts of grapefruit juice might increase the effects and adverse effects of warfarin.
In one case report, a patient experienced significantly increased international normalized ratio (INR) associated with consumption of 50 ounces of grapefruit juice daily (12061). However, smaller amounts of grapefruit juice might not be a problem. In a small clinical trial, consumption of 24 ounces of grapefruit juice daily for one week had no effect on INR in males treated with warfarin (12063).
|
Theoretically, taking itraconazole capsules or tablets with a beverage containing lemon might increase the levels and clinical effects of itraconazole.
In one case report, dissolving itraconazole tablets in a small amount of specific beverages containing lemon prior to administration increased the level of itraconazole in a lung transplant patient. In this case, the increased bioavailability was desirable and was likely due to improved tablet dissolution in the acidic beverage (110781).
|
Concomitant use of aminoglycoside antibiotics and magnesium can increase the risk for neuromuscular weakness.
Both aminoglycosides and magnesium reduce presynaptic acetylcholine release, which can lead to neuromuscular blockade and possible paralysis. This is most likely to occur with high doses of magnesium given intravenously (13362).
|
Use of acid reducers may reduce the laxative effect of magnesium oxide.
A retrospective analysis shows that, in the presence of H2 receptor antagonists (H2RAs) or proton pump inhibitors (PPIs), a higher dose of magnesium oxide is needed for a laxative effect (90033). This may also occur with antacids. Under acidic conditions, magnesium oxide is converted to magnesium chloride and then to magnesium bicarbonate, which has an osmotic laxative effect. By reducing acidity, antacids may reduce the conversion of magnesium oxide to the active bicarbonate salt.
|
Theoretically, magnesium may have antiplatelet effects, but the evidence is conflicting.
In vitro evidence shows that magnesium sulfate inhibits platelet aggregation, even at low concentrations (20304,20305). Some preliminary clinical evidence shows that infusion of magnesium sulfate increases bleeding time by 48% and reduces platelet activity (20306). However, other clinical research shows that magnesium does not affect platelet aggregation, although inhibition of platelet-dependent thrombosis can occur (60759).
|
Magnesium can decrease absorption of bisphosphonates.
Cations, including magnesium, can decrease bisphosphonate absorption. Advise patients to separate doses of magnesium and these drugs by at least 2 hours (13363).
|
Magnesium can have additive effects with calcium channel blockers, although evidence is conflicting.
Magnesium inhibits calcium entry into smooth muscle cells and may therefore have additive effects with calcium channel blockers. Severe hypotension and neuromuscular blockades may occur when nifedipine is used with intravenous magnesium (3046,20264,20265,20266), although some contradictory evidence suggests that concurrent use of magnesium with nifedipine does not increase the risk of neuromuscular weakness (60831). High doses of magnesium could theoretically have additive effects with other calcium channel blockers.
|
Magnesium salts may reduce absorption of digoxin.
|
Gabapentin absorption can be decreased by magnesium.
Clinical research shows that giving magnesium oxide orally along with gabapentin decreases the maximum plasma concentration of gabapentin by 33%, time to maximum concentration by 36%, and area under the curve by 43% (90032). Advise patients to take gabapentin at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Magnesium might precipitate ketamine toxicity.
In one case report, a 62-year-old hospice patient with terminal cancer who had been stabilized on sublingual ketamine 150 mg four times daily experienced severe ketamine toxicity lasting for 2 hours after taking a maintenance dose of ketamine following an infusion of magnesium sulfate 2 grams (105078). Since both magnesium and ketamine block the NMDA receptor, magnesium is thought to have potentiated the effects of ketamine.
|
Magnesium can reduce the bioavailability of levodopa/carbidopa.
Clinical research in healthy volunteers shows that taking magnesium oxide 1000 mg with levodopa 100 mg/carbidopa 10 mg reduces the area under the curve (AUC) of levodopa by 35% and of carbidopa by 81%. In vitro and animal research shows that magnesium produces an alkaline environment in the digestive tract, which might lead to degradation and reduced bioavailability of levodopa/carbidopa (100265).
|
Potassium-sparing diuretics decrease excretion of magnesium, possibly increasing magnesium levels.
Potassium-sparing diuretics also have magnesium-sparing properties, which can counteract the magnesium losses associated with loop and thiazide diuretics (9613,9614,9622). Theoretically, increased magnesium levels could result from concomitant use of potassium-sparing diuretics and magnesium supplements.
|
Magnesium decreases absorption of quinolones.
Magnesium can form insoluble complexes with quinolones and decrease their absorption (3046). Advise patients to take these drugs at least 2 hours before, or 4 to 6 hours after, magnesium supplements.
|
Sevelamer may increase serum magnesium levels.
In patients on hemodialysis, sevelamer use was associated with a 0.28 mg/dL increase in serum magnesium. The mechanism of this interaction remains unclear (96486).
|
Parenteral magnesium alters the pharmacokinetics of skeletal muscle relaxants, increasing their effects and accelerating the onset of effect.
Parenteral magnesium shortens the time to onset of skeletal muscle relaxants by about 1 minute and prolongs the duration of action by about 2 minutes. Magnesium potentiates the effects of skeletal muscle relaxants by decreasing calcium-mediated release of acetylcholine from presynaptic nerve terminals, reducing postsynaptic sensitivity to acetylcholine, and having a direct effect on the membrane potential of myocytes (3046,97492,107364). Magnesium also has vasodilatory actions and increases cardiac output, allowing a greater amount of muscle relaxant to reach the motor end plate (107364). A clinical study found that low-dose rocuronium (0.45 mg/kg), when given after administration of magnesium 30 mg/kg over 10 minutes, has an accelerated onset of effect, which matches the onset of effect seen with a full-dose rocuronium regimen (0.6 mg/kg) (96485). In another clinical study, onset times for rocuronium doses of 0.3, 0.6, and 1.2 mg/kg were 86, 76, and 50 seconds, respectively, when given alone, but were reduced to 66, 44, and 38 seconds, respectively, when the doses were given after a 15-minute infusion of magnesium sulfate 60 mg/kg (107364). Giving intraoperative intravenous magnesium sulfate, 50 mg/kg loading dose followed by 15 mg/kg/hour, reduces the onset time of rocuronium, enhances its clinical effects, reduces the dose of intraoperative opiates, and prolongs the spontaneous recovery time (112781,112782). It does not affect the activity of subsequently administered neostigmine (112782).
|
Magnesium increases the systemic absorption of sulfonylureas, increasing their effects and side effects.
Clinical research shows that administration of magnesium hydroxide with glyburide increases glyburide absorption, increases maximal insulin response by 35-fold, and increases the risk of hypoglycemia, when compared with glyburide alone (20307). A similar interaction occurs between magnesium hydroxide and glipizide (20308). The mechanism of this effect appears to be related to the elevation of gastrointestinal pH by magnesium-based antacids, increasing solubility and enhancing absorption of sulfonylureas (22364).
|
Magnesium decreases absorption of tetracyclines.
Magnesium can form insoluble complexes with tetracyclines in the gut and decrease their absorption and antibacterial activity (12586). Advise patients to take these drugs 1 hour before or 2 hours after magnesium supplements.
|
Theoretically, the risk for manganese toxicity might increase when taken with antipsychotic drugs.
Hallucinations and behavioral changes have been reported in a patient with liver disease who was taking haloperidol and manganese. Researchers speculate that taking manganese along with haloperidol, phenothiazine-derivatives, or other antipsychotic medications might increase the risk of manganese toxicity in some patients (61493).
|
Theoretically, manganese might reduce the absorption of quinolone antibiotics.
Manganese is a multivalent cation. Interactions resulting in reduced quinolone absorption have been reported between quinolones and other multivalent cations, such as calcium and iron (488).
|
Theoretically, manganese might reduce the absorption of tetracycline antibiotics.
Manganese is a multivalent cation. Interactions resulting in reduced tetracycline absorption have been reported between tetracyclines and other multivalent cations, such as calcium and iron (488).
|
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Selenium may have antiplatelet effects and may increase the risk of bleeding if used with anticoagulant or antiplatelet drugs.
Clinical research suggests that taking selenium 10 mcg/kg/day can increase bleeding times by increasing prostacyclin production, which inhibits platelet activity (14540). Other clinical research suggests that taking selenium 75 mcg daily, in combination with ascorbic acid 600 mg, alpha-tocopherol 300 mg, and beta-carotene 27 mg, reduces platelet aggregation (74406).
|
Theoretically, selenium might prolong the sedating effects of barbiturates.
|
Contraceptive drugs might increase levels of selenium, although the clinical significance of this effect is unclear.
Some research suggests that oral contraceptives increase serum selenium levels in women taking oral contraceptives; however, other research shows no change in selenium levels (14544,14545,14546,101343). It is suggested that an increase could be due to increased carrier proteins, indicating a redistribution of selenium rather than a change in total body selenium (14545).
|
Gold salts might interfere with selenium activity in tissues.
|
Theoretically, selenium supplementation may reduce the effectiveness of immunosuppressant therapy.
|
Selenium might reduce the beneficial effects of niacin on high-density lipoprotein (HDL) levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as selenium, or to the combination. It also is not known whether it will occur in other patient populations.
|
Theoretically, selenium might interfere with warfarin activity.
Animal research suggests that selenium can increase warfarin activity. Selenium might interact with warfarin by displacing it from albumin binding sites, reducing its metabolism in the liver, or by decreasing production of vitamin K-dependent clotting factors (14541). Selenium can also prolong bleeding times in humans by increasing prostacyclin production, which inhibits platelet activity (14540).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Theoretically, vanadium might increase the risk of bleeding when taken with anticoagulant/antiplatelet drugs.
In vitro research shows that the sodium orthovanadate form of vanadium prolongs clotting time, likely through inhibition of thrombin and factor Xa (3054).
|
Theoretically, vanadium might increase the risk of hypoglycemia when taken with antidiabetes drugs.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Amiloride can modestly reduce zinc excretion and increase zinc levels.
Clinical research shows that amiloride can reduce urinary zinc excretion, especially at doses of 10 mg per day or more. This zinc-sparing effect can help to counteract zinc losses caused by thiazide diuretics, but it is unlikely to cause zinc toxicity at usual amiloride doses (830,11626,11627,11634). The other potassium-sparing diuretics, spironolactone (Aldactone) and triamterene (Dyrenium), do not seem to have a zinc-sparing effect.
|
Zinc modestly reduces levels of atazanavir, although this effect does not seem to be clinically significant.
Clinical research shows that zinc might decrease serum atazanavir levels by chelating with atazanavir in the gut and preventing its absorption (93578). Although a single dose of zinc sulfate (Solvazinc tablets) 125 mg orally does not affect atazanavir concentrations in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate 125 mg daily for 2 weeks reduces plasma levels of atazanavir by about 22% in these patients. However, despite this decrease, atazanavir levels still remain at high enough concentrations for the prevention of HIV virus replication (90216).
|
Zinc might decrease cephalexin levels by chelating with cephalexin in the gut and preventing its absorption.
A pharmacokinetic study shows that zinc sulfate 250 mg taken concomitantly with cephalexin 500 mg decreases peak levels of cephalexin by 31% and reduces the exposure to cephalexin by 27%. Also, taking zinc sulfate 3 hours before cephalexin decreases peak levels of cephalexin by 11% and reduces the exposure to cephalexin by 18%. By decreasing cephalexin levels, zinc might increase the risk of treatment failure. This effect does not occur when zinc is taken 3 hours after the cephalexin dose (94163). To avoid an interaction, advise patients take zinc sulfate 3 hours after taking cephalexin.
|
Theoretically, zinc might interfere with the therapeutic effects of cisplatin.
Animal research suggests that zinc stimulates tumor cell production of the protein metallothionein, which binds and inactivates cisplatin (11624,11625). It is not known whether zinc supplements or high dietary zinc intake can cause clinically significant interference with cisplatin therapy. Cisplatin might also increase zinc excretion.
|
Theoretically, taking zinc along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
|
Zinc might reduce the levels and clinical effects of penicillamine.
By forming an insoluble complex with penicillamine, zinc interferes with penicillamine absorption and activity. Zinc supplements reduce the efficacy of low-dose penicillamine (0.5-1 gram/day), but do not seem to affect higher doses (1-2.75 gram/day), provided dosing times are separated (2678,4534,11605). Advise patients to take zinc and penicillamine at least 2 hours apart.
|
Zinc can decrease the levels and clinical effects of quinolones antibiotics.
|
Zinc modestly reduces levels of ritonavir.
Clinical research shows that zinc might reduce serum ritonavir levels by chelating with ritonavir in the gut and preventing its absorption (93578). In patients with HIV, ritonavir is taken with atazanavir to prevent the metabolism and increase the effects of atazanavir. A pharmacokinetic study shows that, in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate (Solvazinc tablets) 125 mg as a single dose or as multiple daily doses for 2 weeks reduces plasma levels of ritonavir by about 16% (90216). However, atazanavir levels still remains high enough to prevent HIV virus replication. Therefore, the decrease in ritonavir levels is not likely to be clinically significant.
|
Zinc might reduce levels of tetracycline antibiotics.
Tetracyclines form complexes with zinc in the gastrointestinal tract, which can reduce absorption of both the tetracycline and zinc when taken at the same time (3046,4945). Taking zinc sulfate 200 mg with tetracycline reduces absorption of the antibiotic by 30% to 40% (11615). Demeclocycline and minocycline cause a similar interaction (4945). However, doxycycline does not seem to interact significantly with zinc (11615). Advise patients to take tetracyclines at least 2 hours before, or 4-6 hours after, zinc supplements to avoid any interactions.
|
Below is general information about the adverse effects of the known ingredients contained in the product Buffered Vitamin C Powder. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, chromium is generally well tolerated.
Most Common Adverse Effects:
Orally: Gastrointestinal irritation, headaches, insomnia, irritability, mood changes.
Serious Adverse Effects (Rare):
Orally: Rare cases of kidney and liver damage, rhabdomyolysis, and thrombocytopenia have been reported.
Dermatologic
...Orally, chromium-containing supplements may cause acute generalized exanthematous pustulosis (42561), skin rashes (42679), and urticaria (17224).
Also, chromium picolinate or chromium chloride may cause systemic contact dermatitis when taken orally, especially in patients with contact allergy to chromium (6624,90058). In one clinical study, a patient taking chromium nicotinate 50 mcg daily reported itchy palms that improved after the intervention was discontinued. It is unclear of this effect was due to the chromium or another factor (95096).
Topically, hexavalent chromium, which can be present in some cement, leather products, or contaminated soil, may cause allergic contact dermatitis (42645,42789,90060,90064,110606).
A case of lichen planus has been reported for a patient following long-term occupational exposure to chromium (42688).
Endocrine ...Orally, cases of hypoglycemia have been reported for patients taking chromium picolinate 200-1000 mcg daily alone or 200-300 mcg two or three times weekly in combination with insulin (42672,42783). Chromium picolinate has also been associated with weight gain in young females who do not exercise and in those following a weight-lifting program (1938).
Gastrointestinal
...Orally, chromium in the form of chromium picolinate, chromium polynicotinate, chromium-containing brewer's yeast, or chromium-containing milk powder may cause nausea, vomiting, diarrhea, decreased appetite, constipation, flatulence, or gastrointestinal upset (14325,42594,42607,42622,42643,42679).
Long-term exposure to heavy metals, including chromium, has been associated with increased risk of gallbladder disease and cancer (42682,42704).
Genitourinary ...Orally, chromium polynicotinate has been associated with disrupted menstrual cycles in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Hematologic ...Anemia, hemolysis, and thrombocytopenia were reported in a 33 year-old female taking chromium picolinate 1200-2400 mcg daily for 4-5 months (554). The patient received supportive care, blood product transfusions, and hemodialysis and was stabilized and discharged a few days later. Lab values were normal at a one-year follow-up.
Hepatic ...Liver damage has been reported for a 33-year-old female taking chromium picolinate 1200 mcg daily for 4-5 months (554). Also, acute hepatitis has been reported in a patient taking chromium polynicotinate 200 mcg daily for 5 months (9141). Symptoms resolved when the product was discontinued. Two cases of hepatotoxicity have been reported in patients who took a specific combination product (Hydroxycut), which also contained chromium polynicotinate in addition to several herbs (13037).
Musculoskeletal ...Acute rhabdomyolysis has been reported for a previously healthy 24-year-old female who ingested chromium picolinate 1200 mcg over a 48-hour time period (42786). Also, chromium polynicotinate has been associated with leg pain and paresthesia in patients taking the supplement to prevent weight gain during smoking cessation (42643).
Neurologic/CNS ...Orally, chromium picolinate may cause headache, paresthesia, insomnia, dizziness, and vertigo (6860,10309,14325,42594). Vague cognitive symptoms, slowed thought processes, and difficulty driving occurred on three separate occasions in a healthy 35-year-old male after oral intake of chromium picolinate 200-400 mcg (42751). Transient increases in dreaming have been reported in three patients with dysthymia treated with chromium picolinate in combination with sertraline (2659). A specific combination product (Hydroxycut) containing chromium, caffeine, and ephedra has been associated with seizures (10307). But the most likely causative agent in this case is ephedra.
Psychiatric ...Orally, chromium picolinate has been associated with irritability and mood changes in patients taking the supplement to lose weight, while chromium polynicotinate has been associated with agitation and mood changes in patients taking the supplement to prevent weight gain during smoking cessation (6860,42643).
Renal
...Orally, chromium picolinate has been associated with at least one report of chronic interstitial nephritis and two reports of acute tubular necrosis (554,1951,14312).
Laboratory evidence suggests that chromium does not cause kidney tissue damage even after long-term, high-dose exposure (7135); however, patient- or product-specific factors could potentially increase the risk of chromium-related kidney damage. More evidence is needed to determine what role, if any, chromium has in potentially causing kidney damage.
Intravenously, chromium is associated with decreased glomerular filtration rate (GFR) in children who receive long-term chromium-containing total parenteral nutrition - TPN (11787).
Topically, burns caused by chromic acid, a hexavalent form of chromium, have been associated with acute chromium poisoning with acute renal failure (42699). Early excision of affected skin and dialysis are performed to prevent systemic toxicity.
Other ...Another form of chromium, called hexavalent chromium, is unsafe. This type of chromium is a by-product of some manufacturing processes. Chronic exposure can cause liver, kidney, or cardiac failure, pulmonary complications, anemia, and hemolysis (9141,11786,42572,42573,42699). Occupational inhalation of hexavalent chromium can cause ulceration of the nasal mucosa and perforation of the nasal septum, and has been associated with pneumoconiosis, allergic asthma, cough, shortness of breath, wheezing, and increased susceptibility to respiratory tract cancer and even stomach and germ cell cancers (42572,42573,42601,42610,42636,42667,42648,42601,42788,90056,90066). Although rare, cases of interstitial pneumonia associated with chromium inhalation have been reported. Symptoms resolved with corticosteroid treatment (42614).
General
...Orally, the whole fruit, as well as the seed, fruit, and leaf extracts, seem to be well tolerated.
Topically, grape seed extracts seem to be well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, dry mouth, dyspepsia, headache, joint pain, and nausea.
Serious Adverse Effects (Rare):
Orally: Anaphylaxis to grape skin has been reported.
Dermatologic ...Orally, mild hair thinning has been reported in a patient taking a specific grape leaf extract AS195 KG) (2538). Urticaria (hives) has also been reported with this same extract (53206). Cases of contact dermatitis have been reported in grape workers, including those working in California vineyards (53270,53272,53275).
Gastrointestinal ...Orally, abdominal pain and nausea have been reported with use of grape seed extract, but these effects typically occur at rates similar to placebo (9182,13162). In a case report of a 57-year-old man, intermittent nausea, vomiting, and diarrhea occurred over a 10-day period and improved once grape seed extract was stopped (96764). Gastrointestinal adverse effects have also been reported with use of a different grape seed extract (Entelon, Hanlim Pharm). However, the specific types of gastrointestinal effects were not described (100954). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused flatulence, mild constipation, gastrointestinal discomfort, diarrhea, dyspepsia, dry mouth, and retching (2538,52985,53206). Diarrhea, gastrointestinal distress, indigestion, and aversion to taste have been reported with use of Concord grape juice (52972,53166,53175,53181,53199). Loose stools have been reported in a clinical trial of grape pomace (99270). Bowel obstruction caused by intact grapes and grape seeds has been described in case reports (53241,53284,53278). Excessive consumption of grapes, dried grapes, raisins, or sultanas might cause diarrhea due to laxative effects (4201).
Hematologic ...Orally, one case of leg hematoma following a minor trauma was reported in a person using grape leaf extract (2538). Also, one case of bruising was reported in a person drinking Concord grape juice daily for 2 weeks (52972).
Immunologic ...Orally, there is one report of an anaphylactic reaction to oral grape skin extract, which included urticaria and angioedema (4073).
Musculoskeletal ...Orally, musculoskeletal disorders, including back pain, have been reported with use of a specific grape leaf extract AS195 KG) (2538,53206). Joint pain and lumbago have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (91541).
Neurologic/CNS ...Orally, headache has been reported with use of grape seed extract, but this effect occurs at rates similar to placebo (9182,91541). A specific grape leaf extract AS195 (Antistax, Boehringer Ingelheim Pharma GmbH & Co. KG) has reportedly caused dizziness, tiredness, headache, and sleep problems (2538,53206). As a class, nervous system adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of adverse neurologic effects were not described (100954).
Ocular/Otic ...Orally, ocular adverse effects have been reported with use of a specific grape seed extract (Entelon, Hanlim Pharm). However, the specific types of ocular adverse effects were not described (100954).
Pulmonary/Respiratory ...Orally, nasopharyngitis and oropharyngeal pain have been reported with use of a specific grape leaf extract AS195 KG) (53206). Sore throat, cough, allergic rhinitis, and nasopharyngitis have been reported with use of grape seed extract, but these effects occur at rates similar to placebo (9182,91541). One case report describes a 16-year-old female who developed increased levels of immunoglobulin E (IgE) following skin-prick exposure to grape vine pollen, as well as positive test responses following bronchial and conjunctival provocation (53301). Reduced forced vital capacity has been described in California grape workers (53080,53081). Occupational eosinophilic lung was diagnosed in a grape grower with a history of asthma. Respiratory exposure to sulfites in grape was implicated as the cause of the adverse reaction (53285).
Other
...Orally, grape products can cause adverse effects due to contamination with pesticides or mycotoxins.
Some evidence has shown that pesticides used in vineyards may remain on grape surfaces post-harvesting. For example, the fungicide folpet sprayed on grapevines has been shown to remain on the grape surface. Although there was minimal penetration of the epicuticular wax, it showed high resistance to washing (52935). Carbaryl has been identified in over 58% of juice samples collected in Canada. This pesticide reportedly occurred more frequently in grape than in other juices. However, estimates of short-term intake were below proposed acute reference doses (53003).
Ochratoxin A is a mycotoxin that is suspected to be nephrotoxic, teratogenic, hepatotoxic and carcinogenic and has been identified in grape juice, frozen grape pulps, and red and white wine sold in Rio de Janeiro, Brazil. However, the highest levels identified in grape products were lower than the established virtually safe dose of 5 ng/kg of body weight daily (53010,53004). Ochratoxin A has also been identified in red, but not white, grape juice marketed in Switzerland, Canada, and the U.S. (53292,53020).
General
...Orally, grapefruit and grapefruit juice are generally well tolerated.
Serious Adverse Effects (Rare):
Orally: Allergic reactions in sensitive individuals have been reported. When large quantities are consumed, arrhythmias, mineralocorticoid excess, QT prolongation, and pseudohyperaldosteronism have been reported. There is also some concern for increased breast cancer risk with grapefruit consumption.
Cardiovascular ...Orally, consumption of pink grapefruit juice 1000 mL can cause QT prolongation and cause arrhythmias in healthy patients and worsen arrhythmias in cardiomyopathy patients (13031,91424).
Endocrine ...Orally, high doses of grapefruit juice have been observed to cause pseudohyperaldosteronism and mineralocorticoid excess (53340,53346).
Gastrointestinal ...In a case report, grapefruit juice held against the teeth resulted in enamel and tooth surface loss (53368).
Immunologic ...Orally, grapefruit can cause allergic sensitization characterized by eosinophilic gastroenteritis, urticaria, and generalized pruritus (53351,53360).
Oncologic ...Preliminary population research shows that postmenopausal adults who consume a quarter or more of a whole grapefruit daily have a 25% to 30% increased risk of developing breast cancer (14858). Grapefruit is a potent inhibitor of cytochrome P450 3A4, which metabolizes estrogen. Consuming large amounts of grapefruit might significantly increase endogenous estrogen levels and therefore increase the risk of breast cancer. More evidence is needed to validate these findings. Until more is known, advise patients to consume grapefruit in moderation.
Renal ...In population research, consumption of 240 mL/day of grapefruit juice is associated with an increased risk of kidney stones (4216,53372).
General
...Orally, lemon is well tolerated in amounts commonly found in foods.
A thorough evaluation of safety outcomes has not been conducted on the use of larger amounts.
Most Common Adverse Effects:
Orally: Epigastralgia and heartburn with the regular consumption of fresh lemon juice.
Dermatologic ...Topically, the application of lemon oil might cause photosensitivity, due to furocoumarin derivative content. This occurs most often in fair-skinned people (11019).
Gastrointestinal ...Orally, fresh lemon juice, taken as 60 mL twice daily, has been reported to cause gastrointestinal disturbances in 37% of patients in one clinical trial, compared with 8% of patients in the placebo group. Specifically, of the patients consuming lemon juice, 21% experienced heartburn and 8% experienced epigastralgia, compared to 1% and 3%, respectively, in the placebo group (107489).
General
...Magnesium is generally well tolerated.
Some clinical research shows no differences in adverse effects between placebo and magnesium groups.
Most Common Adverse Effects:
Orally: Diarrhea, gastrointestinal irritation, nausea, and vomiting.
Intravenously: Bradycardia, dizziness, flushing sensation, hypotension, and localized pain and irritation. In pregnancy, may cause blurry vision, dizziness, lethargy, nausea, nystagmus, and perception of warmth.
Serious Adverse Effects (Rare):
All ROAs: With toxic doses, loss of reflexes and respiratory depression can occur. High doses in pregnancy can increase risk of neonatal mortality and neurological defects.
Cardiovascular
...Intravenously, magnesium can cause bradycardia, tachycardia, and hypotension (13356,60795,60838,60872,60960,60973,60982,61001,61031,114681).
Inhaled magnesium administered by nebulizer may also cause hypotension (113466). Magnesium sulfate may cause rapid heartbeat when administered antenatally (60915,114681).
In one case report, a 99-year-old male who took oral magnesium oxide 3000 mg daily for chronic constipation was hospitalized with hypermagnesemia, hypotension, bradycardia, heart failure, cardiomegaly, second-degree sinoatrial block, and complete bundle branch block. The patient recovered after discontinuing the magnesium oxide (108966).
Dermatologic ...Intravenously, magnesium may cause flushing, sweating, and problems at the injection site (including burning pain) (60960,60982,111696,114681). In a case study, two patients who received intravenous magnesium sulfate for suppression of preterm labor developed a rapid and sudden onset of an urticarial eruption (a skin eruption of itching welts). The eruption cleared when magnesium sulfate was discontinued (61045). Orally, magnesium oxide may cause allergic skin rash, but this is rare. In one case report, a patient developed a rash after taking 600 mg magnesium oxide (Maglax) (98291).
Gastrointestinal
...Orally, magnesium can cause gastrointestinal irritation, nausea, vomiting, and diarrhea (1194,4891,10661,10663,18111,60951,61016,98290).
In rare cases, taking magnesium orally might cause a bezoar, an indigestible mass of material which gets lodged in the gastrointestinal tract. In a case report, a 75-year-old female with advanced rectal cancer taking magnesium 1500 mg daily presented with nausea and anorexia from magnesium oxide bezoars in her stomach (99314). Magnesium can cause nausea, vomiting, or dry mouth when administered intravenously or by nebulization (60818,60960,60982,104400,113466,114681). Antenatal magnesium sulfate may also cause nausea and vomiting (60915,114681). Two case reports suggest that giving magnesium 50 grams orally for bowel preparation for colonoscopy in patients with colorectal cancer may lead to intestinal perforation and possibly death (90006).
Delayed meconium passage and obstruction have been reported rarely in neonates after intravenous magnesium sulfate was given to the mother during pregnancy (60818). In a retrospective study of 200 neonates born prematurely before 32 weeks of gestation, administration of prenatal IV magnesium sulfate, as a 4-gram loading dose and then 1-2 grams hourly, was not associated with the rate of meconium bowel obstruction when compared with neonates whose mothers had not received magnesium sulfate (108728).
Genitourinary ...Intravenously, magnesium sulfate may cause renal toxicity or acute urinary retention, although these events are rare (60818,61012). A case of slowed cervical dilation at delivery has been reported for a patient administered intravenous magnesium sulfate for eclampsia (12592). Intravenous magnesium might also cause solute diuresis. In a case report, a pregnant patient experienced polyuria and diuresis after having received intravenous magnesium sulfate in Ringer's lactate solution for preterm uterine contractions (98284).
Hematologic ...Intravenously, magnesium may cause increased blood loss at delivery when administered for eclampsia or pre-eclampsia (12592). However, research on the effect of intravenous magnesium on postpartum hemorrhage is mixed. Some research shows that it does not affect risk of postpartum hemorrhage (60982), while other research shows that intrapartum magnesium administration is associated with increased odds of postpartum hemorrhage, increased odds of uterine atony (a condition that increases the risk for postpartum hemorrhage) and increased need for red blood cell transfusions (97489).
Musculoskeletal
...Intravenously, magnesium may cause decreased skeletal muscle tone, muscle weakness, or hypocalcemic tetany (60818,60960,60973).
Although magnesium is important for normal bone structure and maintenance (272), there is concern that very high doses of magnesium may be detrimental. In a case series of 9 patients receiving long-term tocolysis for 11-97 days, resulting in cumulative magnesium sulfate doses of 168-3756 grams, a lower bone mass was noted in 4 cases receiving doses above 1000 grams. There was one case of pregnancy- and lactation-associated osteoporosis and one fracture (108731). The validity and clinical significance of this data is unclear.
Neurologic/CNS
...Intravenously, magnesium may cause slurred speech, dizziness, drowsiness, confusion, or headaches (60818,60960,114681).
With toxic doses, loss of reflexes, neurological defects, drowsiness, confusion, and coma can occur (8095,12589,12590).
A case report describes cerebral cortical and subcortical edema consistent with posterior reversible encephalopathy syndrome (PRES), eclampsia, somnolence, seizures, absent deep tendon reflexes, hard to control hypertension, acute renal failure and hypermagnesemia (serum level 11.5 mg/dL), after treatment with intravenous magnesium sulfate for preeclampsia in a 24-year-old primigravida at 39 weeks gestation with a previously uncomplicated pregnancy. The symptoms resolved after 4 days of symptomatic treatment in an intensive care unit, and emergency cesarian delivery of a healthy infant (112785).
Ocular/Otic ...Intravenously, magnesium may cause blurred vision (114681). Additionally, cases of visual impairment or nystagmus have been reported following magnesium supplementation, but these events are rare (18111,60818).
Psychiatric ...A case of delirium due to hypermagnesemia has been reported for a patient receiving intravenous magnesium sulfate for pre-eclampsia (60780).
Pulmonary/Respiratory ...Intravenously, magnesium may cause respiratory depression and tachypnea when used in toxic doses (12589,61028,61180).
Other ...Hypothermia from magnesium used as a tocolytic has been reported (60818).
General
...Orally and parenterally, manganese is generally well tolerated when used in appropriate doses.
High doses might be unsafe.
Serious Adverse Effects (Rare):
All routes of administration: Neurotoxicity, including Parkinson-like extrapyramidal symptoms, when used in high doses.
Cardiovascular ...Chronic occupational exposure to manganese dust or fumes can cause orthostatic hypotension, and heart rate and rhythm disturbances (61363).
Endocrine ...Chronic occupational exposure to manganese dust or fumes can cause elevations in thyrotropin-releasing hormone (TRH), follicle-stimulating hormone (FSH), and luteinizing hormone (LH) levels (61378).
Hepatic ...Manganese intoxication may cause cirrhosis and hepatic steatosis. In one case, a 13-year-old female with manganese intoxication developed severe, life-threatening neurological symptoms, with liver biopsy indicating incomplete cirrhosis and microvesicular steatosis. Chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of manganese exposure was not identified, and it is not clear if the impaired liver function contributed to the manganese accumulation or if elevated manganese exposure led to the liver damage.
Musculoskeletal ...Chronic occupational exposure to manganese dust or fumes has been associated with lower bone quality in females, but not males, suggesting that prolonged manganese exposure might increase the risk of osteoporosis in females (102516). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower motor function scores (108537).
Neurologic/CNS
...Orally, there is concern that higher doses of manganese might increase the risk of neurotoxicity, including Parkinson-like extrapyramidal symptoms (7135,10665,10666).
One severe case of irreversible Parkinson disease possibly related to taking manganese 100 mg daily for 2-4 years has been reported (96418). In another case, a 13-year-old female with manganese intoxication (diagnosed from blood manganese levels and cranial MRI evidence) developed severe neurological symptoms including loss of consciousness, decorticate posture, clonus, increased reflexes in the extremities, isochoric pupils, and no painful stimulus response. Liver biopsy also showed incomplete cirrhosis and microvesicular steatosis. The patient was intubated, and chelation therapy and multiple rounds of therapeutic plasma exchange were required before symptoms resolved. The source of the child's manganese exposure was not identified (112137). Individuals with impaired manganese excretion can also experience these effects even with very low manganese intake. Manganese accumulation due to chronic liver disease seems to cause Parkinson-like extrapyramidal symptoms, encephalopathy, and psychosis (1992,7135). One review recommends stopping supplementation if aminotransferase or alkaline phosphatase levels rise beyond twice normal (99302).
Chronic occupational exposure to manganese dust or fumes can also cause extrapyramidal reactions (1990,7135). In 1837, Couper observed that exposure to manganese dust particles produces a neurological syndrome characterized by muscle weakness, tremor, bent posture, whispered speech, and excess salivation (61264). Additionally, observational research in children has found that elevated manganese levels detected in the hair and fingernails due to environmental exposure may be associated with impaired neurocognitive function or development (108535). A meta-analysis of 11 observational studies in adults also suggests that increased environmental exposure to airborne manganese sources is associated with lower cognitive function scores (108537).
Intravenously, manganese might increase the risk of neurotoxicity when administered at high doses or for an extended duration. Cases of Parkinson-like symptoms have been reported in patients receiving parenteral nutrition containing more than 60 mcg of manganese daily. Moderate MRI intensity uptake for manganese in the globus pallidus and basal ganglion areas of the brain has been shown in patients receiving parenteral manganese (96416,99302).
Psychiatric ...Chronic occupational exposure to manganese dust or fumes can cause mood disturbance and dementia (1990,7135). A case report describes a man who presented with confusion, psychosis, dystonic limb movements, and cognitive impairment after chronic industrial manganese exposure (99415). Symptoms of manganese toxicity from inhalational exposure develop slowly with initial fatigue and personality changes, progressing to hallucinations, delusions, hyperexcitability, Parkinson-like symptoms, dystonia, and dementia (99415). Additionally, observational research has found that chronic environmental exposure to manganese sources such as mining operations and various industrial processes may be associated with a greater risk for developing symptoms of depression (108536).
Pulmonary/Respiratory ...Chronic occupational exposure to manganese dust or fumes can cause acute chemical pneumonitis, pulmonary edema, or acute tracheobronchitis (61495).
General ...Orally, molybdenum is generally well tolerated when used appropriately in amounts that do not exceed the Tolerable Upper Intake Level (UL) of 2 mg/day (7135).
Genitourinary ...Environmental exposure to molybdenum has been reported to be a reproductive toxicant in men. Circulating levels of molybdenum are inversely associated with testosterone levels and sperm concentration (63482,63484).
Hematologic ...Orally, in an area of Armenia, a very high dietary molybdenum intake of 10 to 15 mg/day due to high local soil levels has resulted in an increased incidence of hyperuricemia (7135,16478,16487). The mechanism likely involves increased xanthine oxidase activity, leading to increased uric acid production (2663).
Immunologic ...Molybdenum is present in some stainless steel angioplasty stents. Multiple cases report on patients with these stents who have developed a contact allergy to molybdenum, as indicated by positive skin patch tests. It is suggested that this increases the risk for restenosis of the stented artery (16485).
Musculoskeletal ...Orally, in an area of Armenia, a very high dietary molybdenum intake of 10 to 15 mg/day due to high local soil levels has resulted in an increased incidence of hyperuricemia, gout, and arthralgias (7135,16478,16487). There is also a case report of gout in a man with industrial exposure to molybdenum metal dust (16480). The mechanism likely involves increased xanthine oxidase activity, leading to increased uric acid production (2663).
Neurologic/CNS ...In one case report of a man in his late thirties, dietary supplementation with molybdenum 300-800 micrograms daily for a cumulative dose of 13. 5 mg over 18 days resulted in acute psychosis with visual and auditory hallucinations, petit mal seizures, and a life-threatening grand mal attack, related to frontal cortical damage. Chelation therapy with calcium ethylene diamine tetraacetic acid (CaEDTA) was required. A year later, the man was diagnosed with toxic encephalopathy with executive deficiencies, learning disability, major depression, and post-traumatic stress disorder (63368).
Psychiatric ...In one case report of a man in his late thirties, dietary supplementation with molybdenum 300-800 micrograms daily for a cumulative dose of 13. 5 mg over 18 days resulted in acute psychosis with visual and auditory hallucinations, petit mal seizures, and a life-threatening grand mal attack, related to frontal cortical damage. Chelation therapy with calcium ethylene diamine tetraacetic acid (CaEDTA) was required. A year later, the man was diagnosed with toxic encephalopathy with executive deficiencies, learning disability, major depression, and post-traumatic stress disorder (63368).
Pulmonary/Respiratory ...Pneumoconiosis has been reported with excessive intake of molybdenum or exposure in the workplace (63365,63547,63510).
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Orally, selenium is generally well-tolerated when used in doses that do not exceed the tolerable upper intake level (UL) of 400 mcg daily.
Intravenously, selenium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Gastric discomfort, headache, and rash. Excessive amounts can cause alopecia, dermatitis, fatigue, nail changes, nausea and vomiting, and weight loss.
Serious Adverse Effects (Rare):
Orally: Excessive ingestion has led to cases of multi-organ failure and death.
Dermatologic ...Excess selenium can produce selenosis in humans, affecting liver, skin, nails, and hair (74304,74326,74397,74495,90360,113660) as well as dermatitis (74304). Results from the Nutritional Prevention of Cancer Trial conducted among individuals at high risk of nonmelanoma skin cancer demonstrate that selenium supplementation is ineffective at preventing basal cell carcinoma and that it increases the risk of squamous cell carcinoma and total nonmelanoma skin cancer (10687). Mild skin rash has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Endocrine
...Multiple clinical studies have found an association between increased intake of selenium, either in the diet or as a supplement, and the risk for type 2 diabetes (97091,99661).
One meta-analysis shows that a selenium plasma level of 90 mcg/L or 140 mcg/L is associated with a 50% or 260% increased risk for developing type 2 diabetes, respectively, when compared with plasma levels below 90 mcg/L. Additionally, consuming selenium in amounts exceeding the recommended dietary allowance (RDA) is associated with an increased risk of developing diabetes when compared with consuming less than the RDA daily. Also, taking selenium 200 mcg daily as a supplement is associated with an 11% increased risk for diabetes when compared with a placebo supplement (99661).
Hypothyroidism, secondary to iodine deficiency, has been reported as a result of selenium intravenous administration (14563,14565). One large human clinical trial suggested a possible increased risk of type 2 diabetes mellitus in the selenium group (16707).
Gastrointestinal ...In human research, nausea, vomiting, and liver dysfunction has been reported as a result of high selenium exposure (74439,74376,113660). Mild gastric discomfort has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months (97943).
Genitourinary ...The effect of selenium supplementation on semen parameters is unclear. In human research, selenium supplementation may reduce sperm motility (9729); however, follow-up research reported no effect on sperm motility or any other semen quality parameter (74441).
Musculoskeletal ...Chronic selenium exposure of 30 mg daily for up to 24 weeks may cause arthralgia, myalgia, and muscle spasms (113660).
Neurologic/CNS ...Chronic exposure to organic and inorganic selenium may cause neurotoxicity, particularly motor neuron degeneration, leading to an increased risk of amyotrophic lateral sclerosis (ALS) (74304). Headache has been reported in patients taking up to 200 mcg of selenium daily for up to 12 months and in patients taking sodium selenate 30 mg daily for up to 24 weeks (97943,113660).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, vanadium is well tolerated when taken in amounts below the tolerable upper intake level (UL) of 1.
8 mg daily. Higher doses may cause adverse effects.
Most Common Adverse Effects:
Orally: Gastrointestinal adverse effects, including abdominal discomfort, diarrhea, flatulence, and nausea, when taken at doses above the UL.
Serious Adverse Effects (Rare):
Orally: Kidney damage, when taken long-term at high doses.
Topically: Contact dermatitis and other allergic reactions in sensitive individuals.
Cardiovascular ...Higher levels of vanadium in the body have been associated with a greater risk for hypertension (107923). However, it is unclear if oral supplementation with vanadium causes elevated blood pressure.
Dermatologic ...Allergic reactions to vanadium metal have been reported (99051,102095). A 68-year-old female developed an itchy, erythematous rash, ocular pruritus, and a positive skin test to vanadium after implantation of a vanadium-containing knee prosthesis (99051). Contact dermatitis, presenting as pruritic eczema of the hand, and a positive skin patch test to vanadium was reported in a 39-year-old male who worked with vanadium-containing tools (102095).
Endocrine ...In some cases, patients with diabetes have used very high doses (100 mg daily) safely for up to 4 weeks (3055,3056,3057). However, high body levels of vanadium have been associated with an increased incidence malnutrition-related diabetes mellitus (3020).
Gastrointestinal ...Orally, vanadium most commonly causes mild gastrointestinal upset (7135). There is concern that taking doses exceeding the tolerable upper intake level (UL) of 1.8 mg per day can increase the risk of gastrointestinal side effects and possibly lead to more severe toxicity. At higher doses, vanadium frequently causes gastrointestinal effects including abdominal discomfort, diarrhea, nausea, and flatulence (3012,3055,3056,3057,12557,12558). Doses of 22.5 mg daily can also cause cramps (3012). Vanadium has also been associated with green discoloration of the tongue, which is unrelated to dose (7135).
Immunologic
...Allergic reactions to vanadium metal have been reported (99051,102095).
A 68-year-old female developed an itchy, erythematous rash, ocular pruritus, and a positive skin test to vanadium after implantation of a vanadium-containing knee prosthesis (99051). Contact dermatitis, presenting as pruritic eczema of the hand, and a positive skin patch test to vanadium was reported in a 39-year-old male who worked with vanadium-containing tools (102095).
Higher levels of vanadium in the body have been associated with a weakened immune system in children, as measured by reductions in CD3+ and CD4+ cell counts (107924). However, it is unclear if oral supplementation with vanadium causes a weakened immune system or increases the risk of infection.
Neurologic/CNS ...Orally, vanadium has been rarely associated with fatigue, lethargy, and focal neurological lesions, which are unrelated to dose (7135).
Pulmonary/Respiratory ...Severe and chronic respiratory tract disorders have been reported from occupational exposure to vanadium dusts (17).
Renal ...In some cases, patients with diabetes have used very high doses (100 mg daily) of vanadium safely for up to 4 weeks (3055,3056,3057). However, there is concern based on animal research that prolonged use of high doses might cause serious side effects including kidney damage (7135). High body levels of vanadium have also been associated with an increased incidence of kidney stones, distal renal tubular acidosis, hypokalemic periodic paralysis, and sudden unexplained nocturnal death (3020).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).
General
...Orally, zinc is well tolerated in doses below the tolerable upper intake level (UL), which is 40 mg daily for adults.
Topically, zinc is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, metallic taste, nausea and vomiting (dose-related).
Topically: Burning, discoloration, itching, stinging, and tingling when applied to irritated tissue.
Intranasally: Bad taste, dry mouth, headache, irritation, reduced sense of smell.
Serious Adverse Effects (Rare):
Orally: There have been cases of acute renal tubular necrosis, interstitial nephritis, neurological complications, severe vomiting, and sideroblastic anemia after zinc overdose.
Intranasally: There have been cases where intranasal zinc caused permanent loss of smell (anosmia).
Dermatologic
...Topically, zinc can cause burning, stinging, itching, and tingling when applied to inflamed tissue (6911,8623,87297).
Zinc oxide can be deposited in the submucosal tissue and cause dark discoloration of the skin. This can occur with prolonged topical application to intact skin, application to eroded or ulcerated skin, or penetrating traumatic exposure, and also parenteral administration (8618).
In rare cases, oral zinc has resulted in worsened acne (104056), skin sensitivity (6592), a leishmanial reaction with a macular rash that occurred on exposed parts of the body (86935), eczema (104055), systemic contact dermatitis (109457), and the development of severe seborrheic dermatitis (86946).
Gastrointestinal
...Orally, zinc can cause nausea (338,2663,2681,6592,6700,18216,106230,106233,106227,113661), vomiting (2663,2681,6519,6592,96069,96074), a metallic or objectionable taste in the mouth (336,338,6700,11350,18216,106902,113661), abdominal cramping (6592,96069), indigestion (87227), heartburn (96069), dry mouth (87533), and mouth irritation (336,2619).
When used orally in amounts above the tolerable upper intake level, zinc may cause irritation and corrosion of the gastrointestinal tract (331,86982,87315,106902), watery diarrhea (1352), epigastric pain (2663,2681), and severe vomiting (2663,2681).
Intranasally, zinc can cause bad taste, dry mouth, and burning and irritation of the throat (8628,8629).
When used topically as a mouth rinse, zinc may cause tooth staining (90206).
Hematologic ...There is concern that high daily doses of zinc, above the tolerable upper intake level (UL) of 40 mg per day, might increase the risk of copper deficiency, potentially leading to anemia and leukopenia (7135,112473). To prevent copper deficiency, some clinicians give a small dose of copper when zinc is used in high doses, long-term (7303).
Hepatic ...There are two cases of liver deterioration in patients with Wilson disease following initiation of treatment with zinc 50-200 mg three times daily. The mechanism of action is not understood, and the event is extremely uncommon (86927,87470).
Immunologic ...Daily doses of 300 mg of supplemental zinc for 6 weeks appear to impair immune response (7135). A case of erythematosus-like syndrome, including symptoms such as fever, leg ulcers, and rash, has been reported following intake of effervescent tablets (Solvezink) containing zinc 45 mg (87506). In another case, severe neutropenia was reported after taking supplemental zinc 900 mg daily for an unknown duration (112473).
Musculoskeletal ...Orally, zinc may cause body aches in children (113661).
Neurologic/CNS
...Zinc-containing denture adhesives can cause toxicity if used more frequently than recommended for several years.
Case reports describe hyperzincemia, low copper levels, blood dyscrasias, and neurological problems, including sensory disturbances, numbness, tingling, limb weakness, and difficulty walking in patients applying denture adhesive multiple times daily for several years (17092,17093,90205,90233). Due to reports of zinc toxicity associated with use of excessive amounts of zinc-containing denture adhesives for several years, GlaxoSmithKline has reformulated Polygrip products to remove their zinc content (17092,17093).
Intranasally (8628) and orally (87534), zinc can cause headache. When used orally in amounts above the tolerable upper intake level (UL), zinc may cause central nervous system (CNS) symptoms including lethargy, fatigue, neuropathy, dizziness, and paresthesia (2663,2681,87369,87470,87533,87534,112473).
Oncologic ...There is concern that zinc might worsen prostate disease. For example, some preliminary evidence suggests that higher dietary zinc intake increases the risk for benign prostatic hyperplasia (6908). Epidemiological evidence suggests that taking more than 100 mg of supplemental zinc daily or taking supplemental zinc for 10 or more years doubles the risk of developing prostate cancer (10306). Another large-scale population study also suggests that men who take a multivitamin more than 7 times per week and who also take a separate zinc supplement have a significantly increased risk of prostate cancer-related mortality (15607). However, a large analysis of population research suggests that there is no association between zinc intake and the risk of prostate cancer (96075).
Pulmonary/Respiratory
...There are several hundred reports of complete loss of sense of smell (anosmia) that may be permanent with use of zinc gluconate nasal gel, such as Zicam (11306,11155,11707,16800,16801,17083,86999,87535).
Loss of sense of smell is thought to be dose related but has also been reported following a single application (11306,11155,11707,16800). Patients often report having sniffed deeply when applying the gel, then experiencing an immediate burning sensation, and noticing anosmia within 48 hours (17083). On June 16, 2009, the US Food and Drug Administration (FDA) advised patients not to use a specific line of commercial zinc nasal products (Zicam) after receiving 130 reports of loss of smell (16800). The manufacturer of these products had also received several hundred reports of loss of smell related to its intranasal zinc products (16801). Zinc sulfate nasal spray was used unsuccessfully for polio prophylaxis before the polio vaccine was developed. It caused loss of smell and/or taste, which was sometimes permanent (11713). Animal studies suggest that zinc sulfate negatively affects smell, possibly by damaging the olfactory epithelium and neurons (11156,11703,11704,11705,11706). Zinc gluconate nasal spray has not been tested for safety in animals or humans. The clinical studies of intranasal zinc have not described anosmia as an adverse effect, but testing was not done to see if zinc use adversely affected sense of smell (6471,8628,8629,10247). Also, these clinical studies reported tingling or burning sensation in the nostril, dry nose, nose pain, and nosebleeds.
When used in amounts above the tolerable upper intake level (UL), zinc may cause flu-like symptoms including coughing (2663).
Renal ...In overdose, zinc can cause acute renal tubular necrosis and interstitial nephritis (331,1352,87338).
Other ...Occupational inhalation of zinc oxide fumes can cause metal fume fever with symptoms including fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, and salivation (331).