Each level scoop serving (30 grams) contains: Calcium 81 mg • Sodium 30 mg • Potassium 101 mg • Tyrosine 1.8 grams • Cherry powder (low G.I. carb) 1.8 grams • Phenylalanine 0.9 grams • Leucine 0.9 grams • Isoleucine 0.9 grams • Whey 20.2 grams (providing 2 grams lactose) • Sunflower Lecithin 0.3 grams • Stevia 0.2 grams. Other Ingredients: Chocolate flavor contains: Natural Chocolate.
Brand name products often contain multiple ingredients. To read detailed information about each ingredient, click on the link for the individual ingredient shown above.
Below is general information about the effectiveness of the known ingredients contained in the product SFH Fortified. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product SFH Fortified. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. BCAAs 12 grams daily have not been associated with significant adverse effects in studies lasting for up to 2 years (68,72,73,74,10117,10146,10147,37120,92643,97531,103351,103352). ...when used intravenously and appropriately. BCAAs are an FDA-approved injectable product (13309).
CHILDREN: LIKELY SAFE
when used orally in dietary amounts of 71-134 mg/kg daily (11120,13308).
CHILDREN: POSSIBLY SAFE
when larger, supplemental doses are used orally and appropriately for up to 6 months (13307,13308,37127).
PREGNANCY:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although adverse effects have not been reported in humans, some animal research suggests that consumption of supplemental isoleucine, a BCAA, during the first half of pregnancy may have variable effects on birth weight, possibly due to abnormal placental development (103350).
LACTATION:
Insufficient reliable information available; avoid using amounts greater than those found in food.
Although the safety of increased BCAA consumption during lactation is unclear, some clinical research suggests that a higher concentration of isoleucine and leucine in breastmilk during the first 6 months postpartum is not associated with infant growth or body composition at 2 weeks, 2 months, or 6 months (108466).
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally in amounts commonly found in foods. Lecithin has Generally Recognized As Safe (GRAS) status in the US (2619,105544). ...when used orally and appropriately in medicinal amounts. Lecithin has been used safely in doses of up to 30 grams daily for up to 6 weeks (5140,5149,5152,5156,14817,14822,14838,19212). ...when used topically (4914).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in food amounts.
Lecithin has Generally Recognized As Safe (GRAS) status in the US (105544). There is insufficient reliable information available about the safety of medicinal amounts of lecithin during pregnancy or lactation; avoid using.
LIKELY SAFE ...when L-phenylalanine is consumed in amounts typically found in foods (11120).
POSSIBLY SAFE ...when L-phenylalanine is used orally in doses up to 100 mg/kg daily for up to 3 months (2463,2464,2466,2467,2469). ...when D-phenylalanine is used orally in doses up to 1 gram daily for up to 4 weeks, or as a single dose of 4-10 grams (2455,2456,2459,68795,104792). ...when DL-phenylalanine is used orally in doses up to 200 mg daily for up to 4 weeks (2468,68795,68825). ...when phenylalanine cream is applied topically, short-term (2461,92704).
PREGNANCY: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with normal phenylalanine metabolism (2020,11120).
PREGNANCY: UNSAFE
when L-phenylalanine is consumed in amounts typically found in foods by pregnant patients with high serum phenylalanine concentrations, such as those with phenylketonuria (PKU).
Serum levels of phenylalanine greater than 360 micromol/L increase the risk of birth defects (1402,11468). Experts recommend that patients with high phenylalanine serum concentrations follow a low phenylalanine diet for at least 20 weeks prior to conception to decrease the risk for birth defects (1402).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in large doses during pregnancy; avoid using.
There is insufficient reliable information available about the safety of oral D-phenylalanine during pregnancy; avoid using.
LACTATION: LIKELY SAFE
when L-phenylalanine is consumed in amounts typically found in foods by breast-feeding patients with normal phenylalanine metabolism (2020,11120).
There is insufficient reliable information available about the safety of L-phenylalanine when taken by mouth in medicinal amounts during lactation; avoid using. There is insufficient reliable information available about the safety of oral D-phenylalanine during lactation; avoid using.
LIKELY SAFE ...when used orally in doses up to 100 mEq total potassium daily, not to exceed 200 mEq in a 24-hour period (95010,107989). Oral potassium chloride and potassium citrate are FDA-approved prescription products (95010,107989). Larger doses increase the risk of hyperkalemia (15). ...when administered intravenously (IV) at appropriate infusion rates (95011). Parenteral potassium is an FDA-approved prescription product (15,95011). A tolerable upper intake level (UL) for potassium has not been established; however, potassium levels should be monitored in individuals at increased risk for hyperkalemia, such as those with kidney disease, heart failure, and adrenal insufficiency (100310,107966).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243,100310).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 40-80 mEq daily (15).
A tolerable upper intake level (UL) has not been established for healthy individuals (100310).
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when certain stevia constituents, including stevioside and rebaudiosides A, D, and M, are used orally as sweeteners in foods. These constituents have generally recognized as safe (GRAS) status in the US for this purpose (16699,16700,16702,16705,16706,108049). The stevia constituent stevioside has been safely used in doses of up to 1500 mg daily for 2 years (11809,11810,11811,113006). There is insufficient reliable information available about the safety of whole stevia or stevia extracts when used orally. The European Food Safety Authority (EFSA) has determined that the acceptable intake of steviol glycosides is 4 mg/kg daily (106456); however, it is unclear how this relates to the use of whole stevia or stevia extract.
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
LIKELY SAFE ...when the fruit is consumed in amounts commonly found in foods (14056,14058,93197,94712). ...when the fruit is used orally in medicinal amounts, short-term. Sweet cherry 280 grams daily for 28 days has been safely used in clinical research (94712). There is insufficient reliable information available about the safety of sweet cherry when used orally in medicinal amounts, long-term.
PREGNANCY AND LACTATION: LIKELY SAFE
when the fruit is consumed in amounts commonly found in foods (14056,14058).
There is insufficient reliable information available about the safety of sweet cherry when used in medicinal amounts during pregnancy or lactation.
LIKELY SAFE ...when used orally in amounts commonly found in foods. Tyrosine has Generally Recognized as Safe (GRAS) status in the US (4912).
POSSIBLY SAFE ...when used orally and appropriately in medicinal amounts, short-term. Tyrosine has been used safely in doses up to 150 mg/kg daily for up to 3 months (7210,7211,7215). ...when used topically and appropriately (6155).
PREGNANCY AND LACTATION:
There is insufficient reliable information available about the safety of tyrosine during pregnancy and lactation when used in medicinal amounts.
Some pharmacokinetic research shows that taking a single dose of tyrosine 2-10 grams orally can modestly increase levels of free tyrosine in breast milk. However, total levels are not affected, and levels remain within the range found in infant formulas. Therefore, it is not clear if the increase in free tyrosine is a concern (91467).
LIKELY SAFE ...when used orally and appropriately. Whey protein up to 30 grams has been safely used in clinical trials for up to 6 months (4930,16728,16729,105587).
CHILDREN: LIKELY SAFE
when used orally and appropriately as a dietary protein in food or infant formula.
Hydrolyzed whey protein-based formula has been safely used in infants for up to 6 months in clinical trials (4927,105585,105594).
PREGNANCY AND LACTATION:
Insufficient reliable information available; avoid using.
Below is general information about the interactions of the known ingredients contained in the product SFH Fortified. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Theoretically, BCAAs might alter the effects of antidiabetes medications.
|
BCAAs in large doses can reduce the effects of levodopa.
BCAAs may compete with levodopa for transport systems in the intestine and brain and decrease the effectiveness of levodopa (66,2719). Small clinical studies how that concomitant ingestion of protein or high doses of leucine or isoleucine (100 mg/kg) and levodopa can exacerbate tremor, rigidity, and the "on-off" syndrome in patients with Parkinson disease (3291,3292,3293,3294).
|
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Concomitant intake of phenylalanine may reduce the intestinal absorption of baclofen.
Phenylalanine and baclofen share the same intestinal carrier for absorption; phenylalanine competitively inhibits the absorption of baclofen, reducing its plasma levels (23788).
|
Phenylalanine, especially in high doses, can reduce the effectiveness of levodopa.
|
Theoretically, concomitant use of L-phenylalanine and non-selective MAOIs might increase the risk of hypertensive crisis.
L-phenylalanine is metabolized to tyrosine (2052,9949). Some evidence suggests that L-phenylalanine, given with the non-selective MAOI pargyline, might prevent the elimination of tyramine, increasing the risk of hypertensive crisis (2021). However, this was not reported in a small number of patients when using L-phenylalanine with the partially selective MAO-B inhibitor, selegiline (2469).
|
Using ACEIs with high doses of potassium increases the risk of hyperkalemia.
ACEIs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Using ARBs with high doses of potassium increases the risk of hyperkalemia.
ARBs block the actions of the renin-angiotensin-aldosterone system and reduce potassium excretion (95628). Concomitant use of these drugs with potassium supplements increases the risk of hyperkalemia (15,23207). However, concomitant use of these drugs with moderate dietary potassium intake (about 3775-5200 mg daily) does not increase serum potassium levels (95628).
|
Concomitant use increases the risk of hyperkalemia.
Using potassium-sparing diuretics with potassium supplements increases the risk of hyperkalemia (15).
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Theoretically, stevia might increase the risk for hypoglycemia when combined with antidiabetes drugs.
Preliminary clinical research in patients with type 2 diabetes suggests that taking a single dose of stevia extract 1000 mg reduces postprandial blood glucose levels when taken with a meal (11812). However, other clinical research in patients with type 1 or type 2 diabetes suggests that taking stevioside 250 mg three times daily does not significantly affect blood glucose levels or glycated hemoglobin (HbA1C) after three months of treatment (16705).
|
Theoretically, combining stevia or stevia constituents with antihypertensive agents might increase the risk of hypotension.
|
Theoretically, stevia might decrease clearance and increase levels of lithium.
|
Theoretically, tyrosine might decrease the effectiveness of levodopa.
Tyrosine and levodopa compete for absorption in the proximal duodenum by the large neutral amino acid (LNAA) transport system (2719). Advise patients to separate doses of tyrosine and levodopa by at least 2 hours.
|
Theoretically, tyrosine might have additive effects with thyroid hormone medications.
Tyrosine is a precursor to thyroxine and might increase levels of thyroid hormones (7212).
|
Theoretically, whey protein might reduce the absorption of bisphosphonates.
|
Theoretically, whey protein might decrease levodopa absorption.
|
Theoretically, whey protein might decrease quinolone absorption.
|
Theoretically, whey protein might decrease tetracycline absorption.
|
Below is general information about the adverse effects of the known ingredients contained in the product SFH Fortified. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally or intravenously, BCAAs are generally well tolerated.
Most Common Adverse Effects:
Orally: Abdominal distension, diarrhea, nausea, vomiting.
All routes of administration: High doses can lead to fatigue and loss of motor coordination.
Cardiovascular ...Orally, a single case of hypertension following the use of BCAAs has been reported (37143).
Dermatologic ...Orally, a single case of skin blanching following the use of BCAAs has been reported (681). It is not known if this effect was due to use of BCAAs or other factors.
Gastrointestinal ...Orally, BCAAs can cause nausea, vomiting, diarrhea, and abdominal distension. Nausea and diarrhea has been reported to occur in about 10% of people taking BCAAs (10117,37143,92643,97531).
Neurologic/CNS ...Orally and intravenously, BCAAs can cause fatigue and loss of motor coordination due to increased plasma ammonia levels (693,694,10117). Short-term use of 60 grams of BCAAs containing leucine, isoleucine, and valine for 7 days in patients with normal metabolic function seems to increase levels of ammonia, but not to toxic plasma levels (10117). However, liver function should be monitored with high doses or long-term use (10117). Due to the potential of increased plasma levels of ammonia and subsequent fatigue and loss of motor coordination, BCAAs should be used cautiously before or during activities where performance depends on motor coordination (75). Orally, BCAAs may also cause headache, but this has only been reported in one clinical trial (681).
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General
...Orally, lecithin is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, diarrhea, fullness, and nausea.
Dermatologic ...Orally, lecithin can cause allergic skin reactions in people with egg or soy allergies (15705).
Gastrointestinal ...Orally, lecithin may cause abdominal pain, diarrhea, fullness, and nausea (5140,6243,14817,14822,14838,19204,59281).
Neurologic/CNS ...Orally, lecithin caused CNS complaints and agitation in one patient in a clinical trial (59261).
General
...Orally, L-phenylalanine and D-phenylalanine are generally well tolerated when used in typical doses.
Most Common Adverse Effects:
Orally: Anxiety, constipation, headache, heartburn, insomnia, nausea, and sedation.
Topically: Burning, erythema, and itching.
Cardiovascular ...One patient in a small case series developed extrasystoles after 10 days of treatment with DL-phenylalanine, but this resolved on the 12th day of treatment without discontinuing phenylalanine (68825).
Dermatologic ...Topically, erythema, itching, and burning have been reported in some patients using an undecylenoyl phenylalanine 2% cream for treatment of age spots (92704).
Gastrointestinal ...Orally, constipation, heartburn, and nausea has been reported in some patients taking phenylalanine (2463,68827,68829,68830).
Neurologic/CNS
...Orally, headaches, which are typically transient and do not require treatment or dosage reduction, have been reported during the first 10 days of treatment with L-, D-, and DL-phenylalanine (68795,68825,68827,68829).
Transient vertigo has also been reported with D- and DL-phenylalanine (68795).
In patients with Parkinson disease, taking DL-phenylalanine, especially in high doses, interferes with levodopa transport into the brain, causing increased rigidity, tremor, and occurrence of the on-off phenomenon. Akinesia has been reported more rarely (3291,3292,3293,3294,68828). In patients with schizophrenia, taking a single dose of L-phenylalanine 100 mg/kg has been associated with worsening of medication-induced tardive dyskinesia (2457).
Psychiatric ...Orally, L-phenylalanine has been associated with anxiety, insomnia, and, more rarely, hypomania (68827,68829). DL-phenylalanine has been associated with fatigue and sedation (9951).
General
...Orally or intravenously, potassium is generally well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal pain, belching, diarrhea, flatulence, nausea, and vomiting.
Serious Adverse Effects (Rare):
All ROAs: High potassium levels can cause arrhythmia, heart block, hypotension, and mental confusion.
Cardiovascular ...Orally or intravenously, high potassium levels can cause hypotension, cardiac arrhythmias, heart block, or cardiac arrest (15,16,3385,95011,95626,95630).
Gastrointestinal ...Orally or intravenously, high doses of potassium can cause, nausea, vomiting, abdominal pain, diarrhea, and flatulence (95010,95011). Bleeding duodenal ulcers have also been associated with ingestion of slow-release potassium tablets (69625,69672).
Neurologic/CNS ...Orally or intravenously, high potassium levels can cause paresthesia, generalized weakness, flaccid paralysis, listlessness, vertigo, or mental confusion (15,16,3385,95011).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally, stevia and steviol glycosides appear to be well tolerated.
Most minor adverse effects seem to resolve after the first week of use.
Most Common Adverse Effects:
Abdominal bloating, dizziness, headache, myalgia, nausea, and numbness.
Serious Adverse Effects (Rare):
Allergic reactions.
Gastrointestinal ...Orally, stevia and steviol glycosides such as stevioside, can cause gastrointestinal adverse effects such as abdominal fullness and nausea. However, these generally resolve after the first week of use (11809,11810,113005).
Immunologic ...Theoretically, stevia might cause allergic reactions in individuals sensitive to plants in the Asteraceae/Compositae family (11811). Members of this family include ragweed, chrysanthemums, marigolds, daisies, and many other herbs.
Musculoskeletal ...Orally, stevia and steviol glycosides may cause myalgia, but this generally resolves after the first week of use (11809,11810).
Neurologic/CNS ...Orally, stevia and steviol glycosides may cause headache, dizziness, and numbness (11809,11810).
General ...Orally, sweet cherry is generally well tolerated.
Immunologic ...Orally, sweet cherry can cause allergic reactions in sensitive patients. These reactions can range from mucosal irritation to urticaria, angioedema, dyspnea, cough, and gastrointestinal symptoms (14057).
General
...Orally, tyrosine seems to be well tolerated.
No serious adverse effects have been documented; however, a thorough evaluation of safety outcomes has not been conducted.
Most Common Adverse Effects:
Orally: Fatigue, headache, heartburn, and nausea.
Gastrointestinal ...Orally, tyrosine can cause nausea and heartburn when taken at a dose of 150 mg/kg (7211). Taking tyrosine 4 grams daily in combination with 5-hydroxytryptophan 800 mg and carbidopa 100 mg can cause diarrhea, nausea, and vomiting. These effects can be mitigated by lowering the dosage (918).
Musculoskeletal ...Orally, larger doses of tyrosine (150 mg/kg) can cause arthralgia, but this is uncommon (7211).
Neurologic/CNS ...Orally, larger doses of tyrosine (150 mg/kg) can cause headache and fatigue (7211). Taking a combination of tyrosine 4 grams, 5-hydroxytryptophan 800 mg, and carbidopa 100 mg can cause drowsiness and agitation. These effects can be mitigated by lowering the dosage (918).
General
...Orally, whey protein is generally well tolerated.
Most Common Adverse Effects:
Orally: Acne, bloating, cramps, diarrhea, fatigue, headache, nausea, reflux, reduced appetite, and thirst. Most adverse effects are dose-related.
Cardiovascular ...In one case report, use of an unclear quantity of whey protein over one month was thought to be probably responsible for the development of coronary embolism in three coronary arteries in a 33-year-old male with no history of atherosclerosis risk factors. The patient required treatment with intravenous glycoprotein IIb/IIIa inhibitor and heparin (96023).
Dermatologic ...Orally, whey protein has been reported to trigger the onset or worsening of acne. Multiple case reports in teenagers and young adults have associated intake of whey protein with the development of acne or the worsening of existing acneiform lesions. In these reports, the discontinuation of whey protein was typically associated with the clearance of acne lesions. In some cases, patients who were unresponsive to acne treatments while using whey protein became responsive after whey protein discontinuation (103965,103970,103971). Cow's milk, which is comprised of 20% whey protein, is also thought to exacerbate acne. It is theorized that this effect may be due to the growth factor and alpha-lactalbumin content of whey protein (103971,103982).
Gastrointestinal ...Orally, whey protein, especially in higher doses of 2. 3-6.5 grams/kg daily, may cause increased bowel movements, nausea, thirst, bloating, esophageal reflux, cramps, and reduced appetite (2640,85961,85702,86043,86074,86075,86084,86089,86095).
Hepatic ...In two case reports, acute cholestatic liver injury occurred after consumption of the combination of whey protein and creatine supplements (46701,90319).
Musculoskeletal ...In one case report, a 26-year-old male experienced fasciitis, or swelling of the forearms, hands, and legs, after consuming the supplement Pure Whey (85895).
Neurologic/CNS ...Orally, high doses of whey protein may cause tiredness or fatigue and headache (2640). Mild drowsiness has also been reported (86089,86092,86124).