Ingredients | Amount Per Serving |
---|---|
(Beta-Carotene, Vitamin A Acetate)
(Vitamin A (Form: as Vitamin A Acetate, and as 33% Beta Carotene) )
|
1500 IU |
(Ascorbic Acid)
|
30 mg |
(Cholecalciferol)
|
300 IU |
(DL-Alpha-Tocopheryl Acetate)
(Vitamin E (Form: as DL-Alpha Tocopheryl Acetate) )
|
15 IU |
(Thiamine Mononitrate)
(Thiamin (Form: as Thiamin Mononitrate) )
|
0.75 mg |
(Vitamin B2)
|
0.85 mg |
(Niacinamide)
(Niacin (Form: as Niacinamide) )
|
7.5 mg |
(Pyridoxine Hydrochloride)
(Vitamin B-6 (Form: as Pyridoxine HCl) )
|
1 mg |
200 mcg | |
(Cyanocobalamin)
(Vitamin B-12 (Form: as Cyanocobalamin) )
|
3 mcg |
20 mcg | |
(D-Calcium Pantothenate)
(Pantothenic Acid (Form: as D-Calcium Pantothenate) )
|
5 mg |
(Ca)
(Calcium Carbonate, Dicalcium Phosphate)
(Calcium (Form: as Calcium Carbonate, & Dicalcium Phosphate) )
|
52 mg |
(as Iron Glycinate)
(Iron (Form: as Iron Glycinate) )
|
9 mg |
(as Potassium Iodide)
(Iodine (Form: as Potassium Iodide) )
|
75 mcg |
(Zn)
(Zinc Oxide)
(Zinc (Form: as Zinc Oxide) )
|
6 mg |
(as Copper Oxide)
(Copper (Form: as Copper Oxide) )
|
1 mg |
(Na)
|
5 mg |
Sucrose, Sorbitol, Stearic Acid (Alt. Name: C18:0), Silicon Dioxide (Alt. Name: SiO2), Contains Less Than 2% of (Form: Artificial Colors (Form: FD&C Blue #2 Lake, FD&C Red #40, FD&C Yellow #6), Ascorbyl Palmitate, BHA, BHT, Citric Acid, DL-Alpha-Tocopherol, Gelatin, Gum Arabic, Magnesium Stearate, Natural Flavors, Starch, Sucralose, Vegetable Oil, Water)
Below is general information about the effectiveness of the known ingredients contained in the product Zoo Friends Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
INSUFFICIENT RELIABLE EVIDENCE to RATE
Below is general information about the safety of the known ingredients contained in the product Zoo Friends Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
LIKELY SAFE ...when used orally and appropriately. Biotin has been safely used in doses up to 300 mg daily for up to 6 months. A tolerable upper intake level (UL) has not been established (1900,6243,95662,102965). ...when applied topically as cosmetic products at concentrations of 0.0001% to 0.6% biotin (19344).
POSSIBLY SAFE ...when used intramuscularly and appropriately (8468,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at adequate intake doses of 5-25 mcg daily for up to 6 months (173,6243,19347,19348,111365). A tolerable upper intake level (UL) has not been established.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Biotin has been safely used at the adequate intake (AI) dose of 30 mcg daily during pregnancy and 35 mcg daily during lactation. It has also been used in supplemental doses of up to 300 mcg daily (6243,7878). A tolerable upper intake level (UL) has not been established.
LIKELY SAFE ...when used orally or intravenously and appropriately. Calcium is safe when used in appropriate doses (7555,12928,12946,95817). However, excessive doses should be avoided. The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: Age 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg; 19-50 years, 2500 mg; 51+ years, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stone, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients not to consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
POSSIBLY UNSAFE ...when used orally in excessive doses. The National Academy of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 19-50 years, 2500 mg; 51 years and older, 2000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome. There has also been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI). Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these studies, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Other clinical studies suggest that, when combined with vitamin D supplementation, calcium supplementation is not associated with an increased risk of CVD, CHD, or MI (93533,107231). Other analyses report conflicting results and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Advise patients to not consume more than the recommended daily intake of 1000-1200 mg per day, to consider total calcium intake from both dietary and supplemental sources (17484), and to combine calcium supplementation with vitamin D supplementation (93533).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Calcium is safe when used in appropriate doses (17506).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the daily tolerable upper intake level (UL) for calcium according to age as follows: 0-6 months, 1000 mg; 6-12 months, 1500 mg; 1-8 years, 2500 mg; 9-18 years, 3000 mg (17506). Doses over these levels can increase the risk of side effects such as kidney stones, hypercalciuria, hypercalcemia, and milk-alkali syndrome.
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (945,1586,3263,3264,17506).
The World Health Organization (WHO) recommends prescribing oral calcium supplementation 1.5-2 grams daily during pregnancy to those with low dietary calcium intake to prevent pre-eclampsia (97347).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
The Institute of Medicine sets the same daily tolerable upper intake level (UL) for calcium according to age independent of pregnancy status: 9-18 years, 3000 mg; 19-50 years, 2500 mg (17506). Doses over these amounts might increase the risk of neonatal hypocalcemia-induced seizures possibly caused by transient neonatal hypoparathyroidism in the setting of excessive calcium supplementation during pregnancy, especially during the third trimester. Neonatal hypocalcemia is a risk factor for neonatal seizures (97345).
LIKELY SAFE ...when used orally and appropriately. Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 10 mg daily (7135).
POSSIBLY SAFE ...when copper oxide is used topically. A wound dressing impregnated with copper oxide in concentrations of 3% by weight has been used with apparent safety in one clinical trial (105363).
POSSIBLY UNSAFE ...when used orally in doses exceeding the UL of 10 mg daily. Higher intake can cause liver damage (7135,45865). Kidney failure and death can occur with ingestion of as little as 1 gram of copper sulfate (17).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1 mg daily for 1-3 years of age, 3 mg daily for 4-8 years of age, 5 mg daily for 9-13 years of age, and 8 mg daily for 14-18 years of age (7135).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the UL (7135).
Higher intake can cause liver damage (7135).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
PREGNANCY: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Copper is safe in amounts that do not exceed the tolerable upper intake level (UL) of 8 mg daily for those 14-18 years of age or 10 mg daily for those 19 years and older (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause liver damage (7135).
LIKELY SAFE ...when used orally or parenterally and appropriately. Folic acid has been safely used in amounts below the tolerable upper intake level (UL). The UL for folic acid is based only on supplemental folic acid and is expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for folic acid in adults is 1000 mcg (6241). In cases of megaloblastic anemia resulting from folate deficiency or malabsorption disorders such as sprue, oral doses of 1-5 mg per day can also be used safely until hematologic recovery is documented, as long as vitamin B12 levels are routinely measured (6241,7725,8739).
POSSIBLY SAFE ...when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term. L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks (104913,104914) and a dose of 113 mcg daily for 24 weeks (104920). A specific L-5-MTHF product (Metafolin, Eprova) has been used with apparent safety at a dose of 1.3 mg daily for 12 weeks (104912).
POSSIBLY UNSAFE ...when used orally in large doses, long-term. Clinical research shows that taking folic acid daily in doses of 800 mcg to 1200 mcg for 3-10 years significantly increases the risk of developing cancer and adverse cardiovascular effects compared to placebo (12150,13482,16822,17041). Doses above 1 mg per day should also be avoided if possible to prevent precipitation or exacerbation of neuropathy related to vitamin B12 deficiency (6241,6242,6245). However, there is contradictory evidence suggesting that higher doses may not be harmful. There is some evidence that doses of 5 mg per day orally for up to 4 months can be used safely if vitamin B12 levels are routinely measured (7725). Also, other clinical research suggests that folic acid supplementation at doses up to 5 mg, usually in combination with vitamin B12, does not increase the risk of cancer when taken for 2-7 years (91312). Very high doses of 15 mg per day can cause significant central nervous system (CNS) and gastrointestinal side effects (505).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Folic acid has been safely used in children in amounts below the tolerable upper intake level (UL). The ULs for folic acid are based only on supplemental folic acid and are expressed in mcg folic acid. Dietary folate is not included in UL calculations, as dietary folate consumption has not been associated with adverse effects. The UL for children is: 1-3 years of age, 300 mcg; 4-8 years of age, 400 mcg; 9-13 years of age, 600 mcg; 14-18 years of age, 800 mcg (6241).
CHILDREN: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately.
One clinical study in infants aged 27 days and younger shows that consuming a formula containing L-5-MTHF (Metafolin, Merck & Cie) 10.4 mcg/100 mL daily has been used with apparent safety for up to 12 weeks (104918).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Folic acid 300-400 mcg is commonly used during pregnancy for prevention of neural tube defects (8739). Miscarriage rates and negative impacts on fetal growth have not been shown to increase with peri-conception supplemental folic acid intakes of 4 mg per day (91320,91322). However, other research shows that taking more than 5 mg per day during pregnancy may reduce development of cognitive, emotional, and motor skills in infants (91318). Also, the tolerable upper intake level (UL) of folic acid for pregnant or lactating women is 800 mcg daily for those 14-18 years of age and 1000 mcg daily for those 19 years and older (6241).
PREGNANCY AND LACTATION: POSSIBLY SAFE
when L-5-methyltetrahydrofolate (L-5-MTHF), the reduced form of folate, is used orally and appropriately, short-term.
L-5-MTHF has been used with apparent safety at a dose of 416 mcg daily for 16 weeks during lactation. Compared to folic acid, this form seems to further increase the folate concentration of red blood cells, but not breast milk (104913,104914).
LIKELY SAFE ...when used orally and appropriately. Iodine is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1100 mcg daily (7135,103070). Higher doses can be safely used with appropriate medical monitoring (2197,7080). In some regions of the world, such as Japan, daily dietary intake is estimated to be as high as 5,280-13,800 mcg without adverse outcomes (16747). ...when used topically and appropriately, as a 2% solution. A 2% iodine solution is an FDA-approved prescription product (15).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid prolonged use of doses exceeding the UL of 1100 mcg daily without proper medical supervision. There is concern that higher intake can increase the risk of side effects such as thyroid dysfunction, as well as thyroiditis, thyroid papillary cancer, thyrotoxicosis, and atrial fibrillation (7135,55962,56013). However, in some regions of the world such as Japan, daily dietary intake is estimated to be as high as 5,280-13,800 mcg without adverse outcomes (16747).
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Iodine is safe in amounts that do not exceed the tolerable upper intake level (UL) of 200 mcg daily for children 1-3 years, 300 mcg daily for children 4-8 years, 600 mcg daily for children 9-13 years, and 900 mcg daily for adolescents (7135). ...when used topically as a 2% solution (15). Iodine is an FDA-approved prescription product.
CHILDREN: POSSIBLY UNSAFE
when used orally in doses exceeding the UL (7135,108709).
Higher intake can cause thyroid dysfunction (7135) and may be associated with a modest reduction in intelligence (108709).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Iodine is safe in amounts that do not exceed the tolerable upper intake level (UL) of 1100 mcg daily in those 18 years and older or 900 mcg daily in those 14-18 years of age (7135,103070). Iodine needs increase during pregnancy and lactation and adequate intakes should begin as soon as a patient is aware of the pregnancy, or earlier in areas of potential deficiency (17920). ...when used topically as a 2% solution (15). Iodine is an FDA-approved prescription product.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher intake can cause thyroid dysfunction (7135). Also, higher intakes during pregnancy cause increased iodine levels in breast milk and infant blood samples. Higher iodine intake during pregnancy has also been associated with an increased risk of congenital hypothyroidism and reduced mental and physical development in the offspring (56089,91390,91394,91395).
LIKELY SAFE ...when used orally and appropriately. For people age 14 and older with adequate iron stores, iron supplements are safe when used in doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron. The UL is not meant to apply to those who receive iron under medical supervision (7135,96621). To treat iron deficiency, most people can safely take up to 300 mg elemental iron per day (15). ...when used intravenously and appropriately. Ferric carboxymaltose 200 mg and iron sucrose 200 mg have been given intravenously for up to 10 doses with no reported serious adverse effects (91179). A meta-analysis of clinical studies of hemodialysis patients shows that administering high-dose intravenous (IV) iron does not increase the risk of hospitalization, infection, cardiovascular events, or death when compared with low-dose IV iron, oral iron, or no iron treatment (102861). A more recent meta-analysis of clinical studies of all patient populations shows that administering IV iron does not increase the risk of hospital length of stay or mortality, although the risk of infection is increased by 16% when compared with oral iron or no iron (110186). Another meta-analysis of 3 large clinical trials in patients with heart failure shows that IV ferric carboxymaltose at a dose of around 1500 mg every 6 months for a year does not increase the incidence of adverse effects when compared with placebo (113901). Despite these findings, there are rare reports of hypophosphatemia and/or osteomalacia (112603,112608,112609,112610,113905).
LIKELY UNSAFE ...when used orally in excessive doses. Doses of 30 mg/kg are associated with acute toxicity. Long-term use of high doses of iron can cause hemosiderosis and multiple organ damage. The estimated lethal dose of iron is 180-300 mg/kg; however, doses as low as 60 mg/kg have also been lethal (15).
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135,91183,112601).
CHILDREN: LIKELY UNSAFE
when used orally in excessive amounts.
Tell patients who are not iron-deficient not to use doses above the tolerable upper intake level (UL) of 40 mg per day of elemental iron for infants and children aged 0-13 years and 45 mg per day for children aged 14-18 years. Higher doses frequently cause gastrointestinal side effects such as constipation and nausea (7135,20097). Iron is the most common cause of pediatric poisoning deaths. Doses as low as 60 mg/kg can be fatal (15).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Iron is safe during pregnancy and breast-feeding in patients with adequate iron stores when used in doses below the tolerable upper intake level (UL) of 45 mg daily of elemental iron (7135,96625,110180).
PREGNANCY AND LACTATION: LIKELY UNSAFE
when used orally in high doses.
Tell patients who are not iron deficient to avoid exceeding the tolerable upper intake level (UL) of 45 mg daily of elemental iron. Higher doses frequently cause gastrointestinal side effects such as nausea and vomiting (7135) and might increase the risk of preterm labor (100969). High hemoglobin concentrations at the time of delivery are associated with adverse pregnancy outcomes (7135,20109).
LIKELY SAFE ...when prescription products are used orally and appropriately (12033). ...when niacinamide supplements are taken orally in doses below the tolerable upper intake level (UL) set by the Institute of Medicine (IOM). The UL of niacinamide is 30 mg daily for adults 18 years of age and 35 mg daily for adults 19 years and older (6243).
POSSIBLY SAFE ...when used orally in doses greater than 30 mg but less than 900 mg daily. The European Food Safety Authority has set the tolerable upper intake level (UL) of niacinamide at 900 mg daily (104937). However, oral niacinamide has been safely used in doses up to 1500 mg daily for 12 weeks in some clinical trials (25561,94188,98940,107709,110502) and up to 1000 mg daily for 12 months in other trials (93362,113559,113560). ...when used topically and appropriately for up to 16 weeks (5940,93360,110497,110498,110501,113681,113683,113684).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Niacinamide has been safely used in children for up to 7 years in doses below the tolerable upper intake level (UL) (4874,9957). The UL of niacinamide for children by age is: 1-3 years, 10 mg daily; 4-8 years, 15 mg daily; 9-13 years, 20 mg daily; 14-18 years, 30 mg daily (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL) for niacinamide.
The UL of niacinamide during pregnancy and lactation is 30 mg daily for those 14-18 years of age and 35 mg daily for those 19 years and older (6243). There is insufficient reliable information available about the safety of larger oral doses of niacinamide or topical niacinamide; avoid using.
LIKELY SAFE ...when used orally and appropriately. The pantothenic acid derivative calcium pantothenate has a generally recognized as safe (GRAS) status for use in food products (111258). While a tolerable upper intake level (UL) has not been established, pantothenic has been used in doses of 10-20 grams daily with apparent safety (15,6243,111258) ...when applied topically and appropriately, short-term. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and its derivatives are safe for use in cosmetic products in concentrations up to 5.3% (111258). Gels or ointments containing a derivative of pantothenic acid, dexpanthenol, at concentrations of up to 5%, have been used safely for up to 30 days (67802,67806,67817).
POSSIBLY SAFE ...when applied intranasally and appropriately, short-term. A dexpanthenol nasal spray has been used with apparent safety up to four times daily for 4 weeks (67826). ...when applied in the eyes appropriately, short-term. Dexpanthenol 5% eyedrops have been used with apparent safety for up to 28 days (67783). ...when injected intramuscularly and appropriately, short-term. Intramuscular injections of dexpanthenol 500 mg daily for up to 5 days or 250 mg weekly for up to 6 weeks have been used with apparent safety (67822,111366).
CHILDREN: LIKELY SAFE
when used orally and appropriately (15,6243).
Calcium pantothenate is generally recognized as safe (GRAS) when used as a food additive and in infant formula (111258). However, a tolerable upper intake level (UL) has not been established (15,6243). ...when applied topically and appropriately (67795,105190,111262). Infant products containing pantothenic acid and its derivatives have been used safely in concentrations of up to 5% for infant shampoos and 2.5% for infant lotions and oils. The Cosmetic Ingredient Review Expert Panel has concluded that pantothenic acid and derivatives are safe for use in topical infant products. (111258).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during pregnancy is 6 mg (3094).
LACTATION: LIKELY SAFE
when used orally and appropriately.
The daily adequate intake (AI) during lactation is 7 mg (3094).
LIKELY SAFE ...when used orally and appropriately. Riboflavin 400 mg daily has been taken for up to 3 months, and 10 mg daily has been taken safely for up to 6 months (4912,91752,105480). A tolerable upper intake level (UL) has not been established (3094,91752,94089).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089). ...when used orally in higher doses for up to 1 year. Doses of 100-200 mg daily have been used safely for 4-12 months in children ages 9-13 years (71483,105484).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established (3094,94089).
LIKELY SAFE ...when used orally and appropriately. Sodium is safe in amounts that do not exceed the Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams daily (100310). Higher doses can be safely used therapeutically with appropriate medical monitoring (26226,26227).
POSSIBLY UNSAFE ...when used orally in high doses. Tell patients to avoid exceeding the CDRR intake level of 2.3 grams daily (100310). Higher intake can cause hypertension and increase the risk of cardiovascular disease (26229,98176,98177,98178,98181,98183,98184,100310,109395,109396,109398,109399). There is insufficient reliable information available about the safety of sodium when used topically.
CHILDREN: LIKELY SAFE
when used orally and appropriately (26229,100310).
Sodium is safe in amounts that do not exceed the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Tell patients to avoid prolonged use of doses exceeding the CDRR intake level of 1.2 grams daily for children 1 to 3 years, 1.5 grams daily for children 4 to 8 years, 1.8 grams daily for children 9 to 13 years, and 2.3 grams daily for adolescents (100310). Higher intake can cause hypertension (26229).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately.
Sodium is safe in amounts that do not exceed the CDRR intake level of 2.3 grams daily (100310).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in higher doses.
Higher intake can cause hypertension (100310). Also, both the highest and the lowest pre-pregnancy sodium quintile intakes are associated with an increased risk of hypertensive disorders of pregnancy, including gestational hypertension and pre-eclampsia, and the delivery of small for gestational age (SGA) infants when compared to the middle intake quintile (106264).
LIKELY SAFE ...when used orally and appropriately. A tolerable upper intake level (UL) has not been established for thiamine, and doses up to 50 mg daily have been used without adverse effects (15,6243). ...when used intravenously or intramuscularly and appropriately. Injectable thiamine is an FDA-approved prescription product (15,105445).
CHILDREN: LIKELY SAFE
when used orally and appropriately in dietary amounts.
A tolerable upper intake level (UL) has not been established for healthy individuals (6243).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally in dietary amounts of 1.
4 mg daily. A tolerable upper intake level (UL) has not been established for healthy individuals (3094,6243).
LIKELY SAFE ...when used orally or intramuscularly and appropriately. Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe in adults when taken in doses below the tolerable upper intake level (UL) of 10,000 IU (3000 mcg) daily (7135). Higher doses increase the risk of side effects. In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake refer to pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
POSSIBLY SAFE ...when used topically and appropriately, short-term. Retinol up to 0.5% has been used on the skin daily for up to 12 weeks with apparent safety. No serious adverse effects have been reported in clinical trials (103671,103680,114500).
POSSIBLY UNSAFE ...when used orally in high doses. Doses higher than the UL of 10,000 IU (3000 mcg) per day of pre-formed vitamin A (retinol or retinyl ester) might increase the risk of side effects (7135). While vitamin A 25,000 IU (as retinyl palmitate) daily for 6 months followed by 10,000 IU daily for 6 months has been used with apparent safety in one clinical trial (95052), prolonged use of excessive doses of vitamin A can cause hypervitaminosis A (7135). The risk for developing hypervitaminosis A is related to total cumulative dose of vitamin A rather than a specific daily dose (1467,1469). In an analysis of studies, taking vitamin A supplements alone or in combination with other antioxidants is associated with an increased risk of mortality from all causes (15305,90775). There is insufficient reliable information available about the safety of using sublingual formulations of vitamin A.
CHILDREN: LIKELY SAFE
when used orally or intramuscularly and appropriately.
The amount of pre-formed vitamin A (retinol or retinyl ester) that is safe depends on age. For children up to 3 years of age, doses less than 2000 IU (600 mcg) per day seem to be safe. For children ages 4 to 8, doses less than 3000 IU (900 mcg) per day seem to be safe. For children ages 9 to 13, doses less than 5667 IU (1700 mcg) per day seem to be safe. For children 14 to 18, doses less than 9333 IU (2800 mcg) per day seem to be safe (7135). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount for determining safety.
CHILDREN: POSSIBLY UNSAFE
when pre-formed vitamin A (retinol or retinyl ester) is used orally in excessive doses.
For children up to 3 years of age, avoid doses greater than 2000 IU (600 mcg) per day. For children ages 4 to 8, avoid doses greater than 3000 IU (900 mcg) per day. For children ages 9 to 13, avoid doses greater than 5667 IU (1700 mcg) per day. For children ages 14 to 18, avoid doses greater than 9333 IU (2800 mcg) per day (7135). Higher doses of vitamin A supplementation have been associated with increased risk of side effects such as pneumonia, bone pain, and diarrhea (319,95051). Long-term supplementation with low to moderate doses on a regular basis can cause severe, but usually reversible, liver damage (11978).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally or intramuscularly and appropriately.
Vitamin A, as pre-formed vitamin A (retinol or retinyl ester), is safe during pregnancy and lactation when used in doses less than 10,000 IU (3000 mcg) per day in adults 19 years of age and older and 2800 mcg daily in those 14-18 years of age (7135,16823,107293). Vitamin A is available in two different forms: pre-formed vitamin A (retinol or retinyl ester) and provitamin A (carotenoids). The safety concerns associated with high vitamin A intake occur with pre-formed vitamin A only. Some supplements contain vitamin A in both pre-formed and provitamin A forms. For these supplements, the amount of pre-formed vitamin A should be used as the reference amount to determine safety.
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally or intramuscularly in excessive doses.
Daily intake of greater than 10,000 IU (3000 mcg) can cause fetal malformations (3066,7135). Excessive dietary intake of vitamin A has also been associated with teratogenicity (11978). The first trimester of pregnancy seems to be the critical period for susceptibility to vitamin A-associated birth defects such as craniofacial abnormalities and abnormalities of the central nervous system (7135). Pregnant patients should monitor their intake of pre-formed vitamin A (retinol or retinyl ester). This form of vitamin A is found in several foods including animal products, particularly fish and animal liver, some fortified breakfast cereals, and dietary supplements (3066).
LIKELY SAFE ...when used orally, topically, intravenously, intramuscularly, or intranasally and appropriately. Vitamin B12 is generally considered safe, even in large doses (15,1344,1345,1346,1347,1348,2909,6243,7289,7881)(9414,9416,10126,14392,15765,82832,82949,82860,82864,90386)(111334,111551).
PREGNANCY: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA for vitamin B12 during pregnancy is 2.6 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 during pregnancy.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the recommended dietary allowance (RDA).
The RDA of vitamin B12 during lactation is 2.8 mcg daily (6243). There is insufficient reliable information available about the safety of larger amounts of vitamin B12 while breastfeeding.
LIKELY SAFE ...when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of 100 mg daily in the form of pyridoxine for adults (15,6243). ...when used parenterally and appropriately. Injectable vitamin B6 (pyridoxine) is an FDA-approved prescription product (15).
POSSIBLY SAFE ...when used orally and appropriately in doses of 101-200 mg daily (6243,8558).
POSSIBLY UNSAFE ...when used orally in doses at or above 500 mg daily. High doses, especially those exceeding 1000 mg daily or total doses of 1000 grams or more, pose the most risk. However, neuropathy can occur with lower daily or total doses (6243,8195). ...when used intramuscularly in high doses and frequency due to potential for rhabdomyolysis (90795).
CHILDREN: LIKELY SAFE
when used orally and appropriately in doses that do not exceed the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 30 mg daily for children aged 1-3 years, 40 mg daily for 4-8 years, 60 mg daily for 9-13 years, and 80 mg daily for 14-18 years (6243).
CHILDREN: POSSIBLY SAFE
when used orally and appropriately in amounts exceeding the recommended dietary allowance (5049,8579,107124,107125,107135).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses, long-term (6243).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
A special sustained-release product providing vitamin B6 (pyridoxine) 75 mg daily is FDA-approved for use in pregnancy. Vitamin B6 (pyridoxine) is also considered a first-line treatment for nausea and vomiting in pregnancy by the American College of Obstetrics and Gynecology (111601). However, it should not be used long-term or without medical supervision and close monitoring. The tolerable upper intake level (UL) refers to vitamin B6 in the form of pyridoxine and is 80 mg daily for those aged 14-18 years and 100 mg daily for 19 years and older (6243).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive doses.
There is some concern that high-dose maternal vitamin B6 (pyridoxine) can cause neonatal seizures (4609,6397,8197).
LACTATION: LIKELY SAFE
when used orally in doses not exceeding the tolerable upper intake level (UL) of vitamin B6 in the form of pyridoxine 80 mg daily for those aged 14-18 years and 100 mg daily for those 19 years and older.
The recommended dietary allowance (RDA) in lactating women is 2 mg daily (6243). There is insufficient reliable information available about the safety of vitamin B6 when used in higher doses in breast-feeding women.
LIKELY SAFE ...when used orally, topically, intramuscularly, or intravenously and appropriately. Vitamin C is safe when taken orally in doses below the tolerable upper intake level (UL). Tell patients not to exceed the UL of 2000 mg daily (1959,4713,4714,4844). ...when used intravenously or intramuscularly and appropriately. Injectable vitamin C is an FDA-approved prescription product (15) and has been used with apparent safety in clinical trials up to 150 mg/kg daily for up to 4 days (114489) and up to 200 mg/kg daily for up to 2 days (114492).
POSSIBLY UNSAFE ...when used orally in excessive doses. Doses greater than the tolerable upper intake level (UL) of 2000 mg daily can significantly increase the risk of adverse effects such as osmotic diarrhea and gastrointestinal upset (4844).
CHILDREN: LIKELY SAFE
when used orally and appropriately (4844,10352,14443).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 400 mg daily for children ages 1 to 3 years, 650 mg daily for children 4 to 8 years, 1200 mg daily for children 9 to 13 years, and 1800 mg daily for adolescents 14 to 18 years. Higher doses can cause osmotic diarrhea and gastrointestinal upset (4844).
PREGNANCY AND LACTATION: LIKELY SAFE
when used orally and appropriately (4844).
PREGNANCY AND LACTATION: POSSIBLY UNSAFE
when used orally in excessive doses.
Tell patients over age 19 not to use doses exceeding the UL of 2000 mg daily when pregnant or breast-feeding and for those 14-18 years of age not to use doses exceeding 1800 mg daily when pregnant or breast-feeding. Higher doses can cause osmotic diarrhea and gastrointestinal upset. Large doses of vitamin C during pregnancy can also cause newborn scurvy (4844); avoid using.
LIKELY SAFE ...when used orally or intramuscularly and appropriately. Vitamin D has been safely used in a wide range of doses (7555,16888,16891,17476,95913,98186,104619,105209,109040,109059)(115580,115590). When used orally long-term, doses should not exceed the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily for adults (17506,99773); however, much higher doses such as 50,000 IU (1250 mcg) weekly orally for 6-12 weeks are often needed for the short-term treatment of vitamin D deficiency (16891,17476,115590). Monthly oral doses of up to 60,000 IU (1500 mcg) have also been safely used for up to 5 years (105726). Toxicity usually does not occur until plasma levels exceed 150 ng/mL (17476).
POSSIBLY UNSAFE ...when used orally in excessive doses, long-term. Taking doses greater than the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily for adults for long periods can increase the risk of hypercalcemia (17506); however, much higher doses are often needed for short-term treatment of vitamin D deficiency. Toxicity typically occurs when levels exceed 150 ng/mL (17476).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
When used long-term, doses should not exceed the tolerable upper intake level (UL) of 1000 IU (25 mcg) daily for those 0-6 months of age, 1500 IU (37.5 mcg) daily for those 6-12 months of age, 2500 IU (62.5 mcg) daily for those 1-3 years of age, 3000 IU (75 mcg) daily for those 4-8 years of age, and 4000 IU (100 mcg) daily for those 9 years and older (17506); however, much higher doses are often needed for the short-term treatment of vitamin D deficiency. Some research shows that giving vitamin D 14,000 IU (350 mcg) weekly for a year in children aged 10-17 years is safe (16875). A meta-analysis of clinical studies shows that 1000 IU (25 mcg) daily in those up to a year of age and greater than 2000 IU (50 mcg) daily in those aged 1-6 years does not increase the risk of serious adverse events (108424).
CHILDREN: POSSIBLY UNSAFE
when used orally in excessive doses for longer than one year.
Taking doses greater than the tolerable upper intake level (UL) long-term can increase the risk of hypercalcemia (17506).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Vitamin D is safe when used in doses below the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily (17506,95910).
PREGNANCY: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily. Hypercalcemia during pregnancy due to excessive vitamin D intake can lead to several fetal adverse effects, including suppression of parathyroid hormone, hypocalcemia, tetany, seizures, aortic valve stenosis, retinopathy, and mental and/or physical developmental delay (17506).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Vitamin D is safe when used in doses below the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily (17506).
LACTATION: POSSIBLY UNSAFE
when used orally in excessive amounts.
Tell patients not to use doses above the tolerable upper intake level (UL) of 4000 IU (100 mcg) daily (17506).
LIKELY SAFE ...when used orally or topically and appropriately. Vitamin E is generally considered safe, even at doses exceeding the recommended dietary allowance (RDA); however, adverse effects are more likely to occur with higher doses. The tolerable upper intake level (UL) in healthy people is 1000 mg daily, equivalent to 1100 IU of synthetic vitamin E (all-rac-alpha-tocopherol) or 1500 IU of natural vitamin E (RRR-alpha-tocopherol) (4668,4681,4713,4714,4844,89234,90067,90069,90072,19206)(63244,97075). Although there is some concern that taking vitamin E in doses of 400 IU (form unspecified) per day or higher might increase the risk of adverse outcomes and mortality from all causes (12212,13036,15305,16709,83339), most of this evidence comes from studies that included middle-aged or older patients with chronic diseases or patients from developing countries in which nutritional deficiencies are prevalent.
POSSIBLY UNSAFE ...when used orally in high doses. Repeated doses exceeding the tolerable upper intake level (UL) of 1000 mg daily are associated with significant side effects in otherwise healthy people (4844). ...when used intravenously in large doses. Large repeated intravenous doses of all-rac-alpha-tocopherol (synthetic vitamin E) were associated with decreased activity of clotting factors and bleeding in one report (3074). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adults who use e-cigarette, or vaping, products, which often contain vitamin E acetate. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Vitamin E acetate has been detected in most bronchoalveolar lavage samples taken from patients with EVALI. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. While this association shows a correlation between vitamin E acetate inhalation and lung injury, a causal link has not yet been determined, and it is not clear if other toxic compounds are also involved (101061,101062,102970).
CHILDREN: LIKELY SAFE
when used orally and appropriately.
Vitamin E has been safely used in children in amounts below the tolerable upper intake level (UL). The UL for healthy children is: 200 mg in children aged 1-3 years, 300 mg in children aged 4-8 years, 600 mg in children aged 9-13 years, and 800 mg in children aged 14-18 years. A UL has not been established for infants up to 12 months of age (23388).
CHILDREN: POSSIBLY UNSAFE
when used orally in doses above the UL due to increased risk of adverse effects (23388).
...when alpha-tocopherol is used intravenously in large doses in premature infants. Large intravenous doses of vitamin E are associated with an increased risk of necrotizing enterocolitis and sepsis in this population (85062,85083). ...when inhaled. E-cigarette, or vaping, product-use associated lung injury (EVALI) has occurred among adolescents and teenagers who use e-cigarette, or vaping, products. In some cases, this has resulted in death. The majority of patients with EVALI reported using tetrahydrocannabinol (THC)-containing products in the 3 months prior to the development of symptoms. Constituents in E-cigarette or vaping products with the potential to cause lung injury or impaired lung function include lipids, such as vitamin E acetate. Vitamin E acetate has been detected in all bronchoalveolar lavage samples taken from patients with EVALI. No other ingredient, including THC or nicotine, was found in all samples, and other ingredients, including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable This shows that vitamin E acetate is at the primary site of lung injury. A causal link has not yet been described and it is not clear if other compounds are also involved (101061,101062).
PREGNANCY: POSSIBLY SAFE
when used orally and appropriately.
The tolerable upper intake level (UL) during pregnancy is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older. However, maternal supplementation is not generally recommended unless dietary vitamin E falls below the RDA (4260). No serious adverse effects were reported with oral intake of 400 IU per day starting at weeks 9-22 of pregnancy in healthy patients or those at high risk for pre-eclampsia (3236,97075), or with 600-900 IU daily during the last two months of pregnancy (4260). However, some preliminary evidence suggests that taking vitamin E supplements might be harmful when taken in early pregnancy. A case-control study found that taking a vitamin E supplement during the first 8 weeks of pregnancy is associated with a 1.7-9-fold increase in odds of congenital heart defects (16823). However, the exact amount of vitamin E consumed during pregnancy in this study is unclear. Until more is known, advise patients to avoid taking a vitamin E supplement in early pregnancy unless needed for an appropriate medical indication.
LACTATION: LIKELY SAFE
when used orally in amounts that do not exceed the tolerable upper intake level (UL).
The UL during lactation is 800 mg for those 14-18 years of age and 1000 mg for those 19 years and older (4844).
LACTATION: POSSIBLY UNSAFE
when used orally in amounts that exceed the UL due to increased risk of adverse effects (4844).
LIKELY SAFE ...when used orally and appropriately. Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 40 mg daily (7135). ...when used topically and appropriately (2688,6538,6539,7135,8623,11051,111291).
POSSIBLY SAFE ...when used orally and appropriately in doses higher than the tolerable upper intake level (UL). Because the UL of zinc is based on regular daily intake, short-term excursions above 40 mg daily are not likely to be harmful. In fact, there is some evidence that doses of elemental zinc as high as 80 mg daily in combination with copper 2 mg can be used safely for approximately 6 years without significant adverse effects (7303,8622,92212). However, there is some concern that doses higher than the UL of 40 mg daily might decrease copper absorption and result in anemia (7135).
POSSIBLY UNSAFE ...when used intranasally. Case reports and animal research suggest that intranasal zinc might cause permanent anosmia or loss of sense of smell (11155,11156,11703,11704,11705,11706,11707,16800,16801,17083). Several hundred reports of anosmia have been submitted to the US Food and Drug Administration (FDA) and the manufacturer of some intranasal zinc products (Zicam) (16800,16801). Advise patients not to use intranasal zinc products.
LIKELY UNSAFE ...when taken orally in excessive amounts. Ingestion of 10-30 grams of zinc sulfate can be lethal in adults (7135). Chronic intake of 450-1600 mg daily can cause multiple forms of anemia, copper deficiency, and myeloneuropathies (7135,17092,17093,112473). This has been reported with use of zinc-containing denture adhesives in amounts exceeding the labeled directions, such as several times a day for several years (17092,17093). Advise patients to follow the label directions on denture adhesives that contain zinc.
CHILDREN: LIKELY SAFE
when used orally and appropriately (7135).
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL). The UL for children is based on age: 4 mg daily for 0-6 months, 5 mg daily for 7-12 months, 7 mg daily for 1-3 years, 12 mg daily for 4-8 years, 23 mg daily for 9-13 years, and 34 mg daily for 14-18 years (7135,97140).
CHILDREN: POSSIBLY UNSAFE
when used orally in high doses.
Taking amounts greater than the UL can cause sideroblastic anemia and copper deficiency (7135). ...when used topically on damaged skin. An infant treated with 10% zinc oxide ointment for severe diaper rash with perianal erosions developed hyperzincemia. Absorption seemed to occur mainly via the erosions; plasma levels dropped after the erosions healed despite continued use of the ointment (106905).
PREGNANCY: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during pregnancy in those 14-18 years of age and 40 mg daily in those 19-50 years of age (7135).
PREGNANCY: LIKELY UNSAFE
when used orally in doses exceeding the UL (7135).
LACTATION: LIKELY SAFE
when used orally and appropriately.
Zinc is safe in amounts that do not exceed the tolerable upper intake level (UL) of 34 mg daily during lactation in those 14-18 years of age, and 40 mg daily for those 19-50 years of age (7135).
LACTATION: POSSIBLY UNSAFE
when used orally in doses exceeding the UL.
Higher doses can cause zinc-induced copper deficiency in nursing infants (7135).
Below is general information about the interactions of the known ingredients contained in the product Zoo Friends Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
Calcium citrate might increase aluminum absorption and toxicity. Other types of calcium do not increase aluminum absorption.
Calcium citrate can increase the absorption of aluminum when taken with aluminum hydroxide. The increase in aluminum levels may become toxic, particularly in individuals with kidney disease (21631). However, the effect of calcium citrate on aluminum absorption is due to the citrate anion rather than calcium cation. Calcium acetate does not appear to increase aluminum absorption (93006).
|
Calcium reduces the absorption of bisphosphonates.
Advise patients to take bisphosphonates at least 30 minutes before calcium, but preferably at a different time of day. Calcium supplements decrease absorption of bisphosphonates (12937).
|
Taking calcipotriene with calcium might increase the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (12938). Theoretically, combining calcipotriene with calcium supplements might increase the risk of hypercalcemia.
|
Intravenous calcium may decrease the effects of calcium channel blockers; oral calcium is unlikely to have this effect.
Intravenous calcium is used to decrease the effects of calcium channel blockers in the management of overdose. Intravenous calcium gluconate has been used before intravenous verapamil (Isoptin) to prevent or reduce the hypotensive effects without affecting the antiarrhythmic effects (6124). But there is no evidence that dietary or supplemental calcium when taken orally interacts with calcium channel blockers (12939,12947).
|
Co-administration of intravenous calcium and ceftriaxone can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys.
Avoid administering intravenous calcium in any form, such as parenteral nutrition or Lactated Ringers, within 48 hours of intravenous ceftriaxone. Case reports in neonates show that administering intravenous ceftriaxone and calcium can result in precipitation of a ceftriaxone-calcium salt in the lungs and kidneys. In several cases, neonates have died as a result of this interaction (15794,21632). So far there are no reports in adults; however, there is still concern that this interaction might occur in adults.
|
Using intravenous calcium with digoxin might increase the risk of fatal cardiac arrhythmias.
|
Theoretically, calcium may reduce the therapeutic effects of diltiazem.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, calcium might increase this risk of hypercalcemia and reduce the effectiveness of diltiazem.
|
Calcium seems to reduce levels of dolutegravir.
Advise patients to take dolutegravir either 2 hours before or 6 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium carbonate 1200 mg concomitantly with dolutegravir 50 mg reduces plasma levels of dolutegravir by almost 40%. Calcium appears to decrease levels of dolutegravir through chelation (93578).
|
Calcium seems to reduce levels of elvitegravir.
Advise patients to take elvitegravir either 2 hours before or 2 hours after taking calcium supplements. Pharmacokinetic research suggests that taking calcium along with elvitegravir can reduce blood levels of elvitegravir through chelation (94166).
|
Calcium seems to reduce the absorption and effectiveness of levothyroxine.
|
Theoretically, concomitant use of calcium and lithium may increase this risk of hypercalcemia.
Clinical research suggests that long-term use of lithium may cause hypercalcemia in 10% to 60% of patients (38953). Theoretically, concomitant use of lithium and calcium supplements may further increase this risk.
|
Calcium seems to reduce the absorption of quinolone antibiotics.
|
Calcium may reduce levels of raltegravir.
Pharmacokinetic research shows that taking a single dose of calcium carbonate 3000 mg along with raltegravir 400 mg twice daily modestly decreases the mean area under the curve of raltegravir, but the decrease does not necessitate a dose adjustment of raltegravir (94164). However, a case of elevated HIV-1 RNA levels and documented resistance to raltegravir has been reported for a patient taking calcium carbonate 1 gram three times daily plus vitamin D3 (cholecalciferol) 400 IU three times daily in combination with raltegravir 400 mg twice daily for 11 months. It is thought that calcium reduced raltegravir levels by chelation, leading to treatment failure (94165).
|
Calcium seems to reduce the absorption of sotalol.
Advise patients to separate doses by at least 2 hours before or 4-6 hours after calcium. Calcium appears to reduce the absorption of sotalol, probably by forming insoluble complexes (10018).
|
Calcium seems to reduce the absorption of tetracycline antibiotics.
Advise patients to take oral tetracyclines at least 2 hours before, or 4-6 hours after calcium supplements. Taking calcium at the same time as oral tetracyclines can reduce tetracycline absorption. Calcium binds to tetracyclines in the gut (1843).
|
Taking calcium along with thiazides might increase the risk of hypercalcemia and renal failure.
Thiazides reduce calcium excretion by the kidneys (1902). Using thiazides along with moderately large amounts of calcium carbonate increases the risk of milk-alkali syndrome (hypercalcemia, metabolic alkalosis, renal failure). Patients may need to have their serum calcium levels and/or parathyroid function monitored regularly.
|
Theoretically, calcium may reduce the therapeutic effects of verapamil.
Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically, use of calcium supplements may increase this risk of hypercalcemia and reduce the effectiveness of verapamil.
|
Theoretically, taking copper with contraceptive drugs might increase the levels and toxic effects of copper.
A meta-analysis of clinical studies suggests that chronic use of oral contraceptives increases serum copper levels by a mean of 57 mcg/dL. In most people, this resulted in levels above the normal reference range for copper (92395).
|
Theoretically, taking copper with penicillamine might decrease the absorption of penicillamine; separate dosing by at least 2 hours.
|
Theoretically, high doses of folic acid might increase the toxicity of 5-fluorouracil.
Increases in gastrointestinal side effects of 5-fluorouracil, such as stomatitis and diarrhea, have been described in two clinical studies when leucovorin, a form of folic acid, was administered with 5-fluorouracil (16845).
|
Use of high-dose folic acid might contribute to capecitabine toxicity.
Clinical research suggests that higher serum folate levels are associated with an increased risk for moderate or severe toxicity during capecitabine-based treatment for colorectal cancer (105402). Additionally, in one case report, taking folic acid 15 mg daily might have contributed to increased toxicity, including severe diarrhea, vomiting, edema, hand-foot syndrome, and eventually death, in a patient prescribed capecitabine (16837).
|
Folic acid might reduce the efficacy of methotrexate as a cancer treatment when given concurrently.
Methotrexate exerts its cytotoxic effects by preventing conversion of folic acid to the active form needed by cells. There is some evidence that folic acid supplements reduce the efficacy of methotrexate in the treatment of acute lymphoblastic leukemia, and theoretically they could reduce its efficacy in the treatment of other cancers (9420). Advise cancer patients to consult their oncologist before using folic acid supplements. In patients treated with long-term, low-dose methotrexate for rheumatoid arthritis (RA) or psoriasis, folic acid supplements can reduce the incidence of side effects, without reducing efficacy (768,2162,4492,4493,4494,4546,9369).
|
Folic acid might have antagonistic effects on phenobarbital and increase the risk for seizures.
|
Folic acid might reduce serum levels of phenytoin in some patients.
Folic acid may be a cofactor in phenytoin metabolism (4471). Folic acid, in doses of 1 mg daily or more, can reduce serum levels of phenytoin in some patients (4471,4477,4531,4536). Increases in seizure frequency have been reported. If folic acid supplements are added to established phenytoin therapy, monitor serum phenytoin levels closely. If phenytoin and folic acid are started at the same time and continued together, adverse changes in phenytoin pharmacokinetics are avoided (4471,4472,4473,4531). Note that phenytoin also reduces serum folate levels.
|
Folic acid might have antagonistic effects on primidone and increase the risk for seizures.
|
Folic acid might antagonize the effects of pyrimethamine.
Folic acid can antagonize the antiparasitic effects of pyrimethamine against toxoplasmosis and Pneumocystis carinii pneumonia. Folic acid doesn't antagonize the effects of pyrimethamine in the treatment of malaria, because malarial parasites cannot use exogenous folic acid. Use folinic acid as an alternative to folic acid when indicated (9380).
|
Combining iodine with amiodarone might cause excessively high iodine levels.
|
Iodine might alter the effects of antithyroid drugs.
|
Combining iodine with lithium might have additive hypothyroid effects.
Lithium can inhibit thyroid function. Several case reports suggest that concomitant use of lithium and potassium iodide can reduce thyroid function in otherwise healthy adults (17574). Monitor thyroid function.
|
Iron reduces the absorption of bisphosphonates.
Advise patients that doses of bisphosphonates should be separated by at least two hours from doses of all other medications, including supplements such as iron. Divalent cations, including iron, can decrease absorption of bisphosphonates by forming insoluble complexes in the gastrointestinal tract (15).
|
Theoretically, taking chloramphenicol with iron might reduce the response to iron therapy in iron deficiency anemia.
|
Administration of intravenous iron within one month of denosumab administration might increase the risk of severe hypophosphatemia and hypocalcemia.
A case of severe hypocalcemia (albumin corrected calcium 6.88 mg/dL, ionized calcium 3.68 mg/dL) and hypophosphatemia (<0.5 mg/dL) with respiratory acidosis, QT interval prolongation, and nonsustained ventricular tachycardia was reported in a 76-year-old male who had received an iron polymaltose infusion within 2 weeks of a subcutaneous injection of denosumab. Serum parathyroid hormone was also elevated (348 pg/mL). Subsequent iron infusions with iron polymaltose and ferric carboxymaltose were followed by transient hypophosphatemia, but without hypocalcemia. Additionally, a literature review describes 6 additional cases of hypophosphatemia and hypocalcemia in patients 52-92 years of age who had been administered intravenous iron as either ferric carboxymaltose or iron polymaltose and subcutaneous denosumab within 1-4 weeks of each other (113905).
|
Iron might decrease dolutegravir levels by reducing its absorption.
Advise patients to take dolutegravir at least 2 hours before or 6 hours after taking iron. Pharmacokinetic research shows that iron can decrease the absorption of dolutegravir from the gastrointestinal tract through chelation (93578). When taken under fasting conditions, a single dose of ferrous fumarate 324 mg orally along with dolutegravir 50 mg reduces overall exposure to dolutegravir by 54% (94190).
|
Theoretically, taking iron along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
Iron is a divalent cation. There is concern that iron may decrease the absorption of integrase inhibitors from the gastrointestinal tract through chelation (93578). One pharmacokinetic study shows that iron can decrease blood levels of the specific integrase inhibitor dolutegravir through chelation (94190). Also, other pharmacokinetic research shows that other divalent cations such as calcium can decrease the absorption and levels of some integrase inhibitors through chelation (93578,93579).
|
Iron might decrease levodopa levels by reducing its absorption.
Advise patients to separate doses of levodopa and iron as much as possible. There is some evidence in healthy people that iron forms chelates with levodopa, reducing the amount of levodopa absorbed by around 50% (9567). The clinical significance of this hasn't been determined.
|
Iron might decrease levothyroxine levels by reducing its absorption.
Advise patients to separate levothyroxine and iron doses by at least 2 hours. Iron can decrease the absorption and efficacy of levothyroxine by forming insoluble complexes in the gastrointestinal tract (9568).
|
Iron might decrease methyldopa levels by reducing its absorption.
|
Theoretically, iron might decrease mycophenolate mofetil levels by reducing its absorption.
Advise patients to take iron 4-6 hours before, or 2 hours after, mycophenolate mofetil. It has been suggested that a decrease of absorption is possible, probably by forming nonabsorbable chelates. However, mycophenolate pharmacokinetics are not affected by iron supplementation in available clinical research (3046,20152,20153,20154,20155).
|
Iron might decrease penicillamine levels by reducing its absorption.
Advise patients to separate penicillamine and iron doses by at least 2 hours. Oral iron supplements can reduce absorption of penicillamine by 30% to 70%, probably due to chelate formation. In people with Wilson's disease, this interaction has led to reduced efficacy of penicillamine (3046,3072,20156).
|
Iron might decrease levels of quinolone antibiotics by reducing their absorption.
|
Iron might decrease levels of tetracycline antibiotics by reducing their absorption.
Advise patients to take iron at least 2 hours before or 4 hours after tetracycline antibiotics. Concomitant use can decrease absorption of tetracycline antibiotics from the gastrointestinal tract by 50% to 90% (15).
|
Theoretically, niacinamide may have additive effects when used with anticoagulant or antiplatelet drugs, especially in patients on hemodialysis.
|
Niacinamide might increase the levels and adverse effects of carbamazepine.
Plasma levels of carbamazepine were increased in two children given high-dose niacinamide, 60-80 mg/kg/day. This might be due to inhibition of the cytochrome P450 enzymes involved in carbamazepine metabolism (14506). There is not enough data to determine the clinical significance of this interaction.
|
Niacinamide might increase the levels and adverse effects of primidone.
Case reports in children suggest niacinamide 60-100 mg/kg/day reduces hepatic metabolism of primidone to phenobarbital, and reduces the overall clearance rate of primidone (14506); however, there is not enough data to determine the clinical significance of this potential interaction.
|
Theoretically, taking riboflavin with tetracycline antibiotics may decrease the potency of these antibiotics.
In vitro research suggests that riboflavin may inhibit the potency of tetracycline antibiotics (23372). It is not clear if this effect is clinically significant, as this interaction has not been reported in humans.
|
Theoretically, a high intake of dietary sodium might reduce the effectiveness of antihypertensive drugs.
|
Concomitant use of mineralocorticoids and some glucocorticoids with sodium supplements might increase the risk of hypernatremia.
Mineralocorticoids and some glucocorticoids (corticosteroids) cause sodium retention. This effect is dose-related and depends on mineralocorticoid potency. It is most common with hydrocortisone, cortisone, and fludrocortisone, followed by prednisone and prednisolone (4425).
|
Altering dietary intake of sodium might alter the levels and clinical effects of lithium.
High sodium intake can reduce plasma concentrations of lithium by increasing lithium excretion (26225). Reducing sodium intake can significantly increase plasma concentrations of lithium and cause lithium toxicity in patients being treated with lithium carbonate (26224,26225). Stabilizing sodium intake is shown to reduce the percentage of patients with lithium level fluctuations above 0.8 mEq/L (112909). Patients taking lithium should avoid significant alterations in their dietary intake of sodium.
|
Concomitant use of sodium-containing drugs with additional sodium from dietary or supplemental sources may increase the risk of hypernatremia and long-term sodium-related complications.
The Chronic Disease Risk Reduction (CDRR) intake level of 2.3 grams of sodium daily indicates the intake at which it is believed that chronic disease risk increases for the apparently healthy population (100310). Some medications contain high quantities of sodium. When used in conjunction with sodium supplements or high-sodium diets, the CDRR may be exceeded. Additionally, concomitant use may increase the risk for hypernatremia; this risk is highest in the elderly and people with other risk factors for electrolyte disturbances.
|
Theoretically, concomitant use of tolvaptan with sodium might increase the risk of hypernatremia.
Tolvaptan is a vasopressin receptor 2 antagonist that is used to increase sodium levels in patients with hyponatremia (29406). Patients taking tolvaptan should use caution with the use of sodium salts such as sodium chloride.
|
Trimethoprim might increase blood levels of thiamine.
In vitro, animal, and clinical research suggest that trimethoprim inhibits intestinal thiamine transporter ThTR-2, hepatic transporter OCT1, and renal transporters OCT2, MATE1, and MATE2, resulting in paradoxically increased thiamine plasma concentrations (111678).
|
Theoretically, taking high doses of vitamin A in combination with other potentially hepatotoxic drugs might increase the risk of liver disease.
|
Concomitant use of retinoids with vitamin A supplements might produce supratherapeutic vitamin A levels.
Retinoids, which are vitamin A derivatives, could have additive toxic effects when taken with vitamin A supplements (3046).
|
Theoretically, taking tetracycline antibiotics with high doses of vitamin A can increase the risk of pseudotumor cerebri.
Benign intracranial hypertension (pseudotumor cerebri) can occur with tetracyclines and with acute or chronic vitamin A toxicity. Case reports suggest that taking tetracyclines and vitamin A concurrently can increase the risk of this condition (10545,10546,10547). Avoid high doses of vitamin A in people taking tetracyclines chronically.
|
Theoretically, high doses of vitamin A could increase the risk of bleeding with warfarin.
Vitamin A toxicity is associated with hemorrhage and hypoprothrombinemia, possibly due to vitamin K antagonism (505). Advise patients taking warfarin to avoid doses of vitamin A above the tolerable upper intake level of 10,000 IU/day for adults.
|
Theoretically, vitamin B6 might increase the photosensitivity caused by amiodarone.
|
Theoretically, vitamin B6 may have additive effects when used with antihypertensive drugs.
Research in hypertensive rats shows that vitamin B6 can decrease systolic blood pressure (30859,82959,83093). Similarly, clinical research in patients with hypertension shows that taking high doses of vitamin B6 may reduce systolic and diastolic blood pressure, possibly by reducing plasma levels of epinephrine and norepinephrine (83091).
|
Vitamin B6 may increase the metabolism of levodopa when taken alone, but not when taken in conjunction with carbidopa.
Vitamin B6 (pyridoxine) enhances the metabolism of levodopa, reducing its clinical effects. However, this interaction does not occur when carbidopa is used concurrently with levodopa (Sinemet). Therefore, it is not likely to be a problem in most people (3046).
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenobarbital.
|
High doses of vitamin B6 may reduce the levels and clinical effects of phenytoin.
|
High-dose vitamin C might slightly prolong the clearance of acetaminophen.
A small pharmacokinetic study in healthy volunteers shows that taking high-dose vitamin C (3 grams) 1.5 hours after taking acetaminophen 1 gram slightly increases the apparent half-life of acetaminophen from around 2.3 hours to 3.1 hours. Ascorbic acid competitively inhibits sulfate conjugation of acetaminophen. However, to compensate, elimination of acetaminophen glucuronide and unconjugated acetaminophen increases (6451). This effect is not likely to be clinically significant.
|
Theoretically, antioxidant effects of vitamin C might reduce the effectiveness of alkylating agents.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs that generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin C have on chemotherapy.
|
Vitamin C can increase the amount of aluminum absorbed from aluminum compounds.
Research in animals and humans shows that vitamin C increases aluminum absorption, theoretically by chelating aluminum and keeping it in solution where it is available for absorption (10549,10550,10551,21556). In people with normal renal function, urinary excretion of aluminum will likely increase, making aluminum retention and toxicity unlikely (10549). Patients with renal failure who take aluminum-containing compounds such as phosphate binders should avoid vitamin C supplements in doses above the recommended dietary allowances.
|
Theoretically, the antioxidant effects of vitamin C might reduce the effectiveness of antitumor antibiotics.
The use of antioxidants like vitamin C during chemotherapy is controversial. There is concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as doxorubicin (391). In contrast, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that could interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effects, if any, antioxidants such as vitamin C have on chemotherapy.
|
Acidification of the urine by vitamin C might increase aspirin levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction is not clinically significant.
|
Acidification of the urine by vitamin C might increase choline magnesium trisalicylate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046,4531). However, short-term use of up to 6 grams daily of vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
Vitamin C might increase blood levels of estrogens.
Increases in plasma estrogen levels of up to 55% occur under some circumstances when vitamin C is taken concurrently with oral contraceptives or hormone replacement therapy, including topical products (129,130,11161). It is suggested that vitamin C prevents oxidation of estrogen in the tissues, regenerates oxidized estrogen, and reduces sulfate conjugation of estrogen in the gut wall (129,11161). When tissue levels of vitamin C are high, these processes are already maximized and supplemental vitamin C does not have any effect on estrogen levels. Increases in plasma estrogen levels may occur when patients who are deficient in vitamin C take supplements (11161). Monitor these patients for estrogen-related side effects.
|
Theoretically, vitamin C might decrease levels of fluphenazine.
In one patient there was a clinically significant decrease in fluphenazine levels when vitamin C (500 mg twice daily) was started (11017). The mechanism is not known, and there is no further data to confirm this interaction.
|
Vitamin C can modestly reduce indinavir levels.
One pharmacokinetic study shows that taking vitamin C 1 gram orally once daily along with indinavir 800 mg orally three times daily reduces the area under the concentration-time curve of indinavir by 14%. The mechanism of this interaction is unknown, but it is unlikely to be clinically significant in most patients. The effect of higher doses of vitamin C on indinavir levels is unknown (11300,93578).
|
Vitamin C can increase levothyroxine absorption.
Two clinical studies in adults with poorly controlled hypothyroidism show that swallowing levothyroxine with a glass of water containing vitamin C 500-1000 mg in solution reduces thyroid stimulating hormone (TSH) levels and increases thyroxine (T4) levels when compared with taking levothyroxine alone. This suggests that vitamin C increases the oral absorption of levothyroxine, possibly due to a reduction in pH (102978).
|
Vitamin C might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises HDL cholesterol levels in patients with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% in patients with coronary disease (7388,11537). It is not known whether this adverse effect is due to a single antioxidant such as vitamin C, or to the combination. It also is not known whether it will occur in other patient populations.
|
Acidification of the urine by vitamin C might increase salsalate levels.
It has been suggested that acidification of the urine by vitamin C could increase reabsorption of salicylates by the renal tubules, and increase plasma salicylate levels (3046). However, short-term use of up to 6 grams/day vitamin C does not seem to affect urinary pH or salicylate excretion (10588,10589), suggesting this interaction probably is not clinically significant.
|
High-dose vitamin C might reduce the levels and effectiveness of warfarin.
Vitamin C in high doses may cause diarrhea and possibly reduce warfarin absorption (11566). There are reports of two people who took up to 16 grams daily of vitamin C and had a reduction in prothrombin time (9804,9806). Lower doses of 5-10 grams daily can also reduce warfarin absorption. In many cases, this does not seem to be clinically significant (9805,9806,11566,11567). However, a case of warfarin resistance has been reported for a patient who took vitamin C 500 mg twice daily. Cessation of vitamin C supplementation resulted in a rapid increase in international normalized ratio (INR) (90942). Tell patients taking warfarin to avoid taking vitamin C in excessively high doses (greater than 10 grams daily). Lower doses may be safe, but the anticoagulation activity of warfarin should be monitored. Patients who are stabilized on warfarin while taking vitamin C should avoid adjusting vitamin C dosage to prevent the possibility of warfarin resistance.
|
Vitamin D might increase aluminum absorption and toxicity, but this has only been reported in people with renal failure.
The protein that transports calcium across the intestinal wall can also bind and transport aluminum. This protein is stimulated by vitamin D, which may therefore increase aluminum absorption (11595,11597,22916). This mechanism may contribute to increased aluminum levels and toxicity in people with renal failure, when they take vitamin D and aluminum-containing phosphate binders chronically (11529,11596,11597).
|
Vitamin D might reduce absorption of atorvastatin.
A small, low-quality clinical study shows that taking vitamin D reduces levels of atorvastatin and its active metabolites by up to 55%. However, while atorvastatin levels decreased, total cholesterol, low-density lipoprotein (LDL) cholesterol, and high-density lipoprotein (HDL) cholesterol levels did not substantially change (16828). Atorvastatin is metabolized in the gut by CYP3A4 enzymes, and researchers theorized that vitamin D might induce CYP3A4, causing reduced levels of atorvastatin. However, this proposed mechanism was not specifically studied.
|
Taking calcipotriene with vitamin D increases the risk for hypercalcemia.
Calcipotriene is a vitamin D analog used topically for psoriasis. It can be absorbed in sufficient amounts to cause systemic effects, including hypercalcemia (15). Theoretically, combining calcipotriene with vitamin D supplements might increase the risk of hypercalcemia.
|
Vitamin D might induce CYP3A4 enzymes and reduce the bioavailability of CYP3A4 substrates.
There is some concern that vitamin D might induce CYP3A4. In vitro research suggests that vitamin D induces CYP3A4 transcription. Additionally, observational research has found that increased UV light exposure and serum vitamin D levels are associated with decreased serum levels of CYP3A4 substrates such as tacrolimus and sirolimus, while no association between UV light exposure or vitamin D levels and levels of mycophenolic acid, a non-CYP3A4 substrate, was found (110539). A small, low-quality clinical study shows that taking vitamin D reduces levels of the CYP3A4 substrate atorvastatin and its active metabolites by up to 55%; however, the clinical effects of atorvastatin were not reduced (16828). While researchers theorized that vitamin D might induce CYP3A4, this proposed mechanism was not specifically studied.
|
Theoretically, hypercalcemia induced by high-dose vitamin D can increase the risk of arrhythmia from digoxin.
High doses of vitamin D can cause hypercalcemia. Hypercalcemia increases the risk of fatal cardiac arrhythmias with digoxin (15). Avoid vitamin D doses above the tolerable upper intake level (4000 IU daily for adults) and monitor serum calcium levels in people taking vitamin D and digoxin concurrently.
|
Theoretically, hypercalcemia induced by high-dose vitamin D can reduce the therapeutic effects of diltiazem for arrhythmia.
High doses of vitamin D can cause hypercalcemia. Hypercalcemia can reduce the effectiveness of verapamil in atrial fibrillation (10574). Theoretically this could also occur with diltiazem. Avoid vitamin D doses above the tolerable upper intake level (4000 IU daily for adults) and monitor serum calcium levels in people taking vitamin D and diltiazem concurrently.
|
Theoretically, taking thiazide diuretics and high-dose vitamin D can increase the risk of hypercalcemia.
Thiazide diuretics decrease urinary calcium excretion, which could lead to hypercalcemia if vitamin D supplements are taken concurrently (3072,11541,69580). This has been reported in people being treated with vitamin D for hypoparathyroidism, and also in elderly people with normal parathyroid function who were taking a thiazide, vitamin D, and calcium-containing antacids daily (11539,11540).
|
Hypercalcemia induced by high-dose vitamin D can reduce the therapeutic effects of verapamil for arrhythmia.
Hypercalcemia due to high doses of vitamin D can reduce the effectiveness of verapamil in atrial fibrillation (10574). Avoid vitamin D doses above the tolerable upper intake level (4000 IU daily for adults) and monitor serum calcium levels in people taking vitamin D and verapamil concurrently.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of alkylating agents.
There's concern that antioxidants could reduce the activity of chemotherapy drugs which generate free radicals, such as cyclophosphamide, chlorambucil, carmustine, busulfan, and thiotepa (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
Concomitant use of vitamin E and anticoagulant or antiplatelet agents might increase the risk of bleeding.
Vitamin E seems to inhibit of platelet aggregation and antagonize the effects of vitamin K-dependent clotting factors (4733,4844,11580,11582,11583,11584,11586,112162). These effects appear to be dose-dependent, and are probably only likely to be clinically significant with doses of at least 800 units daily (11582,11585). Mixed tocopherols, such as those found in food, might have a greater antiplatelet effect than alpha-tocopherol (10364). RRR alpha-tocopherol (natural vitamin E) 1000 IU daily antagonizes vitamin K-dependent clotting factors (11999). Advise patients to avoid high doses of vitamin E, especially in people with low vitamin K intake or other risk factors for bleeding.
|
Theoretically, antioxidant effects of vitamin E might reduce the effectiveness of antitumor antibiotics.
There's concern that antioxidants could reduce the activity of antitumor antibiotic drugs such as doxorubicin, which generate free radicals (391). However, some researchers theorize that antioxidants might make chemotherapy more effective by reducing oxidative stress that might interfere with apoptosis (cell death) of cancer cells (14012,14013). More evidence is needed to determine what effect, if any, antioxidants such as vitamin E have on chemotherapy involving antitumor antibiotics. Advise patients to consult their oncologist before using vitamin E supplements, especially in high doses.
|
A specific form of vitamin E might increase absorption and levels of cyclosporine.
There is some evidence that one specific formulation of vitamin E (D-alpha-tocopheryl-polyethylene glycol-1000 succinate, TPGS, tocophersolan, Liqui-E) might increase absorption of cyclosporine. This vitamin E formulation forms micelles which seems to increase absorption of cyclosporine by 40% to 72% in some patients (624,625,10368). However, this interaction is unlikely to occur with the usual forms of vitamin E.
|
Theoretically, vitamin E might induce metabolism of CYP3A4, possibly reducing the levels CYP3A4 substrates.
Vitamin E appears to bind with the nuclear receptor, pregnane X receptor (PXR), which results in increased expression of CYP3A4 (13499,13500). Although the clinical significance of this is not known, use caution when considering concomitant use of vitamin E and other drugs affected by these enzymes.
|
Vitamin E might decrease the beneficial effects of niacin on high-density lipoprotein (HDL) cholesterol levels.
A combination of niacin and simvastatin (Zocor) effectively raises high-density lipoprotein (HDL) cholesterol levels in people with coronary disease and low HDL levels. Clinical research shows that taking a combination of antioxidants (vitamin C, vitamin E, beta-carotene, and selenium) along with niacin and simvastatin (Zocor) attenuates this rise in HDL, specifically the HDL-2 and apolipoprotein A1 fractions, by more than 50% (7388,11537). Vitamin E alone combined with a statin does not seem to decrease HDL levels (11286,11287). It is not known whether the adverse effect on HDL is due to one of the other antioxidants or to the combination. It also is not known whether it will occur in other patient populations.
|
Taking selumetinib with vitamin E can result in a total daily dose of vitamin E that exceeds safe limits and therefore might increase the risk of bleeding.
Selumetinib contains 48-54 IU vitamin E per capsule (102971). The increased risk of bleeding with vitamin E appears to be dose-dependent (11582,11585,34577). Be cautious when using selumetinib in combination with supplemental vitamin E, especially in patients at higher risk of bleed, such as those with chronic conditions and those taking antiplatelet drugs (102971).
|
Using vitamin E with warfarin might increase the risk of bleeding.
Due to interference with production of vitamin K-dependent clotting factors, use of more than 400 IU of vitamin E daily with warfarin might increase prothrombin time (PT), INR, and the risk of bleeding, (91,92,93). At a dose of 1000 IU per day, vitamin E can antagonize vitamin K-dependent clotting factors even in people not taking warfarin (11999). Limited clinical evidence suggests that doses up to 1200 IU daily may be used safely by patients taking warfarin, but this may not be applicable in all patient populations (90).
|
Amiloride can modestly reduce zinc excretion and increase zinc levels.
Clinical research shows that amiloride can reduce urinary zinc excretion, especially at doses of 10 mg per day or more. This zinc-sparing effect can help to counteract zinc losses caused by thiazide diuretics, but it is unlikely to cause zinc toxicity at usual amiloride doses (830,11626,11627,11634). The other potassium-sparing diuretics, spironolactone (Aldactone) and triamterene (Dyrenium), do not seem to have a zinc-sparing effect.
|
Zinc modestly reduces levels of atazanavir, although this effect does not seem to be clinically significant.
Clinical research shows that zinc might decrease serum atazanavir levels by chelating with atazanavir in the gut and preventing its absorption (93578). Although a single dose of zinc sulfate (Solvazinc tablets) 125 mg orally does not affect atazanavir concentrations in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate 125 mg daily for 2 weeks reduces plasma levels of atazanavir by about 22% in these patients. However, despite this decrease, atazanavir levels still remain at high enough concentrations for the prevention of HIV virus replication (90216).
|
Zinc might decrease cephalexin levels by chelating with cephalexin in the gut and preventing its absorption.
A pharmacokinetic study shows that zinc sulfate 250 mg taken concomitantly with cephalexin 500 mg decreases peak levels of cephalexin by 31% and reduces the exposure to cephalexin by 27%. Also, taking zinc sulfate 3 hours before cephalexin decreases peak levels of cephalexin by 11% and reduces the exposure to cephalexin by 18%. By decreasing cephalexin levels, zinc might increase the risk of treatment failure. This effect does not occur when zinc is taken 3 hours after the cephalexin dose (94163). To avoid an interaction, advise patients take zinc sulfate 3 hours after taking cephalexin.
|
Theoretically, zinc might interfere with the therapeutic effects of cisplatin.
Animal research suggests that zinc stimulates tumor cell production of the protein metallothionein, which binds and inactivates cisplatin (11624,11625). It is not known whether zinc supplements or high dietary zinc intake can cause clinically significant interference with cisplatin therapy. Cisplatin might also increase zinc excretion.
|
Theoretically, taking zinc along with integrase inhibitors might decrease the levels and clinical effects of these drugs.
|
Zinc might reduce the levels and clinical effects of penicillamine.
By forming an insoluble complex with penicillamine, zinc interferes with penicillamine absorption and activity. Zinc supplements reduce the efficacy of low-dose penicillamine (0.5-1 gram/day), but do not seem to affect higher doses (1-2.75 gram/day), provided dosing times are separated (2678,4534,11605). Advise patients to take zinc and penicillamine at least 2 hours apart.
|
Zinc can decrease the levels and clinical effects of quinolones antibiotics.
|
Zinc modestly reduces levels of ritonavir.
Clinical research shows that zinc might reduce serum ritonavir levels by chelating with ritonavir in the gut and preventing its absorption (93578). In patients with HIV, ritonavir is taken with atazanavir to prevent the metabolism and increase the effects of atazanavir. A pharmacokinetic study shows that, in patients being treated with atazanavir/ritonavir, co-administration of zinc sulfate (Solvazinc tablets) 125 mg as a single dose or as multiple daily doses for 2 weeks reduces plasma levels of ritonavir by about 16% (90216). However, atazanavir levels still remains high enough to prevent HIV virus replication. Therefore, the decrease in ritonavir levels is not likely to be clinically significant.
|
Zinc might reduce levels of tetracycline antibiotics.
Tetracyclines form complexes with zinc in the gastrointestinal tract, which can reduce absorption of both the tetracycline and zinc when taken at the same time (3046,4945). Taking zinc sulfate 200 mg with tetracycline reduces absorption of the antibiotic by 30% to 40% (11615). Demeclocycline and minocycline cause a similar interaction (4945). However, doxycycline does not seem to interact significantly with zinc (11615). Advise patients to take tetracyclines at least 2 hours before, or 4-6 hours after, zinc supplements to avoid any interactions.
|
Below is general information about the adverse effects of the known ingredients contained in the product Zoo Friends Complete. Some ingredients may not be listed. This information does NOT represent a recommendation for or a test of this specific product as a whole.
General
...Orally and topically, biotin is generally well tolerated.
Most Common Adverse Effects: None.
Gastrointestinal ...Orally, high-dose biotin has been rarely associated with mild diarrhea. Transient mild diarrhea was reported by 2 patients taking biotin 300 mg daily (95662).
Pulmonary/Respiratory ...In one case report in France, a 76-year-old female frequent traveler developed eosinophilic pleuropericarditis after taking biotin 10 mg and pantothenic acid 300 mg daily for 2 months. She had also been taking trimetazidine for 6 years (3914). Whether eosinophilia in this case was related to biotin, pantothenic acid, other substances, or patient-specific conditions is unknown. There have been no other similar reports.
General
...Orally and intravenously, calcium is well-tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Belching, constipation, diarrhea, flatulence, and stomach upset.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about calciphylaxis and kidney stones.
Cardiovascular
...There has been concern that calcium intake may be associated with an increased risk of cardiovascular disease (CVD) and coronary heart disease (CHD), including myocardial infarction (MI).
Some clinical research suggests that calcium intake, often in amounts over the recommended daily intake level of 1000-1300 mg daily for adults, is associated with an increased risk of CVD, CHD, and MI (16118,17482,91350,107233). However, these results, particularly meta-analyses, have been criticized for excluding trials in which calcium was administered with vitamin D (94137). Many of these trials also only included postmenopausal females. Other analyses report conflicting results, and have not shown that calcium intake affects the risk of CVD, CHD, or MI (92994,93533,97308,107231). Reasons for these discrepancies are not entirely clear. It may relate to whether calcium is taken as monotherapy or in combination with vitamin D. When taken with vitamin D, which is commonly recommended, calcium supplementation does not appear to be associated with an increased risk of CVD, CHD, or MI (93533,107231). Also, the association between calcium supplementation and CVD, CHD, or MI risk may be influenced by the amount of calcium consumed as part of the diet. Supplementation with calcium may be associated with an increased risk of MI in people with dietary calcium intake above 805 mg daily, but not in those with dietary calcium intake below 805 mg daily (17482). To minimize the possible risk of CVD, CHD, or MI, advise patients not to consume more than the recommended daily intake of 1000-1200 mg and to consider total calcium intake from both dietary and supplemental sources (17484). While dietary intake of calcium is preferred over supplemental intake, advise patients who require calcium supplements to take calcium along with vitamin D, as this combination does not appear to be associated with an increased risk of MI (93533).
Rarely, calcium intake can increase the risk of calciphylaxis, which usually occurs in patients with kidney failure. Calciphylaxis is the deposition of calcium phosphate in arterioles, which causes skin ulcers and skin necrosis. In a case report, a 64-year-old female with a history of neck fracture, sepsis, and ischemic colitis presented with painful leg ulcers due to calciphylaxis. She discontinued calcium and vitamin D supplementation and was treated with sodium thiosulfate and supportive care (95816).
Gastrointestinal ...Orally, calcium can cause belching, flatulence, nausea, gastrointestinal discomfort, and diarrhea (1824,1843,12950,38803). Although constipation is frequently cited as an adverse effect of calcium, there is no scientific substantiation of this side effect (1824,1843,1844,1845,12950,38978). Calcium carbonate has been reported to cause acid rebound, but this is controversial (12935,12936).
Oncologic ...There is some concern that very high doses of calcium might increase the risk of prostate cancer. Some epidemiological evidence suggests that consuming over 2000 mg/day of dietary calcium might increase the risk for prostate cancer (4825,12949). Additional research suggests that calcium intake over 1500 mg/day might increase the risk of advanced prostate cancer and prostate cancer mortality (14132). Consumption of dairy products has also been weakly linked to a small increase in prostate cancer risk (98894). However, contradictory research suggests no association between dietary intake of calcium and overall prostate cancer risk (14131,14132,104630). More evidence is needed to determine the effect of calcium, if any, on prostate cancer risk.
Renal ...Kidney stones have been reported in individuals taking calcium carbonate 1500 mg daily in combination with vitamin D 2000 IU daily for 4 years (93943).
General ...Orally, copper is generally well tolerated when consumed in doses below the tolerable upper intake level (UL).
Dermatologic
...Contact dermatitis caused by copper has been reported rarely.
A case report describes a 5-year-old male who developed recurrent fingertip dermatitis and a positive skin test to copper after playing with toy cars made with a copper-containing alloy (95538). Also, in a small clinical trial in children 1-3 months of age with umbilical granuloma, 3 of 33 children receiving a single topical application of copper sulfate developed superficial burns, whereas no superficial burns occurred in those receiving topical sodium chloride (109403).
In one case report, a 68-year-old male with type 2 diabetes and peripheral neuropathy developed second- and third-degree burns after wearing a copper-containing compression sock on the right leg for 3 hours while sitting in the sun. The patient received treatment with topical silver sulfadiazine and oral clindamycin. After 6 weeks, the patient was found to have multiple persistent wounds containing necrotic tissue which required debridement, daily dressing changes, and tubular compression. It is thought that the heat conductance of copper magnified the effects of sun exposure in this case (109402).
Endocrine ...There is evidence from observational studies that people with diabetes (type 1 or type 2) have higher copper levels in their blood than people without diabetes, although not all studies have shown this (95537). It is not known if elevated copper levels contribute to development or worsening of diabetes.
Hematologic ...A case report of copper overdose in a 28-year-old male resulted in hemolysis exacerbated by glucose-6-phosphate dehydrogenase deficiency. The patient was hospitalized, received D-penicillamine chelation, blood transfusion, and ultimately, 4 cycles of plasmapheresis which led to clinical recovery (112378).
General
...Orally, folic acid is generally well-tolerated in amounts found in fortified foods, as well as in supplemental doses of less than 1 mg daily.
Most Common Adverse Effects:
Orally: At doses of 5 mg daily - abdominal cramps, diarrhea, and rash. At doses of 15 mg daily - bitter taste, confusion, hyperactivity, impaired judgment, irritability, nausea, sleep disturbances.
Serious Adverse Effects (Rare):
Orally: Cancer (long-term use), cardiovascular complications, liver injury, seizures.
All ROAs: Allergic reactions such as bronchospasm and anaphylactic shock.
Cardiovascular ...There is some concern that high oral doses of folic acid might increase the risk of adverse cardiovascular outcomes. Clinical research shows that taking doses of 800 mcg to 1.2 mg/day might increase the risk of adverse cardiovascular events in patients with cardiovascular disease (12150,13482). High doses of folic acid might promote cell growth by providing large amounts of the biochemical precursors needed for cell replication. Overgrowth of cells in the vascular wall might increase the risk of occlusion (12150). Although some research suggests that use of folic acid might increase the need for coronary revascularization, analysis of multiple studies suggests that taking folic acid up to 5 mg/day for up to 24 months does not appear to affect coronary revascularization risk (90798).
Dermatologic ...Orally, folic acid 1-5 mg daily can cause rash (7225,90375,91319). Folic acid 15 mg daily can sometimes cause allergic skin reactions (15).
Gastrointestinal ...Orally, folic acid 5 mg daily can cause abdominal cramps and diarrhea (7225). Folic acid 15 mg daily can sometimes cause nausea, abdominal distention, flatulence, and bitter taste in the mouth (15). In children aged 6-30 months at risk of malnourishment, taking a nutritional supplement (Nutriset Ltd) enriched in folic acid 75-150 mcg daily, with or without vitamin B 12 0.9-1.8 mcg daily, for 6 months increases the likelihood of having persistent diarrhea (90391).
Hepatic ...Liver dysfunction, with jaundice and very high liver enzymes, occurred in a 30-year-old pregnant patient with severe nausea and vomiting taking a folic acid supplement (Folic acid, Nature Made) 400 mcg daily. Based on the timing of ingestion, the lack of other etiological factors, a positive drug-induced lymphocyte stimulation test, and liver function normalization once the folic acid had been stopped, the authors suggest the folic acid supplement was the cause. However, the authors did not determine which substance in the folic acid supplement was responsible and therefore it cannot be determined that folic acid itself was the cause (91309).
Neurologic/CNS ...Orally, folic acid 15 mg daily can sometimes cause altered sleep patterns, vivid dreaming, irritability, excitability, hyperactivity, confusion, and impaired judgment (15). Large doses of folic acid can also precipitate or exacerbate neuropathy in people deficient in vitamin B12 (6243). Use of folic acid for undiagnosed anemia has masked the symptoms of pernicious anemia, resulting in lack of treatment and eventual neurological damage (15). Patients should be warned not to self-treat suspected anemia. There is also some concern that consuming high amounts of folic acid from the diet and/or supplements might worsen cognitive decline in older people. A large-scale study suggests that people over 65 years of age, who consume large amounts of folic acid (median of 742 mcg/day), have cognitive decline at a rate twice as fast as those consuming smaller amounts (median of 186 mcg/day). It's not known if this is directly attributable to folic acid. It is theorized that it could be due to folic acid masking a vitamin B12 deficiency. Vitamin B12 deficiency is associated with cognitive decline (13068). More evidence is needed to determine the significance of this finding. For now, suggest that most patients aim for the recommended folic acid intake of 400 mcg/day.
Oncologic
...There is some concern that high dose folic acid might increase the risk of cancer, although research is unclear and conflicting.
A large-scale population study suggests that taking a multivitamin more than 7 times per week with a separate folic acid supplement significantly increased the risk of prostate cancer (15607). Clinical research also shows that taking folic acid 1 mg daily increase the absolute risk of prostate cancer by 6.4% over a 10-year period when compared with placebo. However, those with a higher baseline dietary intake of folic acid had a lower rate of prostate cancer, but this was not statistically significant. Also, folate and folic acid intake in patients with prostate cancer is not associated with the risk of prostate cancer recurrence after radical prostatectomy (91317). However, it is possible that discrepancies are due to dietary folate versus folic acid intake. Large analyses of population studies suggest that while dietary folate/folic acid is not associated with prostate cancer, high blood folate/folic acid increases the risk of prostate cancer (50411,91316).
Additional clinical research shows that taking folic acid 800 mcg daily, in combination with vitamin B12 400 mcg, significantly increases the risk of developing cancer, especially lung cancer, and all-cause mortality in patients with cardiovascular disease (17041). However, this may be due to vitamin B12, as other observational research found that higher vitamin B12 levels are linked with an increased risk for lung cancer (102383). Meta-analyses of large supplementation trials of folic acid at levels between 0.5-2.5 mg daily also suggest an increased risk of cancer (50497,110318). Also, in elderly individuals, taking folic acid 400 mcg daily with vitamin B12 500 mcg daily increased the risk of cancer. The risk was highest in individuals over 80 years of age and in females and mainly involved gastrointestinal and colorectal cancers (90393).
Not all researchers suspect that high intake of folic acid supplements might be harmful. Some research suggests that increased dietary intake of folic acid, along with other nutrients, might be protective against cancer (16822). A meta-analysis of multiple clinical trials suggests that folic acid supplementation studies with folic acid levels between 500 mcg to 50 mg/day does not increase the risk of general or site-specific cancer for up to 7 years (91312,91321). Also, a post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378).
Psychiatric ...Orally, folic acid 15 mg daily can sometimes cause exacerbation of seizure frequency and psychotic behavior (15).
Pulmonary/Respiratory ...Folic acid use in late pregnancy has been associated with an increased risk of persistent and childhood asthma at 3. 5 years in population research (50380). When taken pre-pregnancy or early in pregnancy, population research has not found an association with increased risk of asthma or allergies in childhood (90799,103979). Folic acid use in pregnancy has been associated with a slightly increased risk of wheeze and lower respiratory tract infections up to 18 months of age in population research (50328).
General
...Orally, iodine is well tolerated when taken in amounts that do not exceed the tolerable upper intake level (UL) or when used therapeutically with appropriate medical monitoring (2197,7080,7135).
Most Common Adverse Effects:
Orally: Abdominal upset, diarrhea, goiter, headache, hyperthyroidism, hypothyroidism, metallic taste, nausea, rhinorrhea, thyroid adenoma.
Topically: Burns, dermatitis, irritation.
Serious Adverse Effects (Rare):
All ROAs: Hypersensitivity reactions such as anaphylaxis and angioedema.
Dermatologic
...Orally, taking iodine chronically or in large amounts has been reported to cause acneform skin lesions called iododerma (2138).
In one case, a patient developed iododerma after consuming a specific product (Hoxsey's Brown Tonic) containing an unspecified quantity of potassium iodide. After several months of consumption, the patient developed acneform skin lesions on the nose, cheeks, and upper back and presented with a urine iodine level of 7,455,647 ug/L (reference range: 34-523 ug/L). After discontinuation of potassium iodide, the lesions resolved gradually over the course of several weeks (95431).
Topically, iodine may stain skin, irritate tissues, and cause sensitization in some individuals (15,56106). Iodine burns are associated with application of 7% hydroalcoholic solution (15). Povidone-iodine may cause contact dermatitis or irritant reactions in some people. However, patch testing with potassium iodide is usually negative in these patients, indicating that contact dermatitis caused by topical iodine does not indicate a propensity for reaction to oral potassium iodide (93001).
Endocrine
...Prolonged use and/or large oral doses of iodine intake can cause thyroid gland hyperplasia, thyroid adenoma, goiter, and hypothyroidism (15,56013,56089,91397,91398,99793,99795).
In another case report, an infant presented with reversible hypothyroidism at birth because the mother had consumed excessive seaweed soup during and after pregnancy, which resulted in excessive iodine consumption (99795). Iodine has also been linked to rare cases of adverse events. In one case report, a 56-year-old male developed thyrotoxic hypokalemic paralysis thought to be related to excessive intake of iodine (91401).
Topically, using povidone-iodine (PI) 1% solution as a gargle and nasal spray, in addition to intranasal application of PI 10% ointment over 5 days, can precipitate subclinical hypothyroidism, with elevated thyroid stimulating hormone (TSH) and normal thyroid hormone levels. TSH levels seem to normalize about 7-12 days after stopping topical PI application (105877).
Gastrointestinal
...Orally, the commonly reported adverse effects of a saturated solution of potassium iodide (SSKI) are nausea (14%), abdominal pain (14%), metallic taste (4%), and diarrhea (4%) (17561).
These side effects can be minimized by avoiding quick dosage increases (17574). Taking iodine chronically or in large amounts has also been reported to cause soreness in teeth and gums, burning in mouth and throat, increased salivation, swelling of parotid and submaxillary glands, inflammation of the respiratory tract, gastric upset, and diarrhea (15,2138).
Intranasally, applying povidone-iodine 1% solution along with a 10% ointment can cause unpleasant nasal tingling (105877).
Immunologic ...People who are allergic to iodine-containing foods or drugs are sometimes stated to have "iodine allergy", but the actual allergen is another agent such as seafood proteins or radiocontrast media (93001). However, some people can be hypersensitive to iodine when used orally. Symptoms of hypersensitivity can include angioedema, cutaneous and mucosal hemorrhage, fever, arthralgia, lymph node enlargement, eosinophilia, urticaria, erythema, and thrombotic thrombocytopenic purpura (15,17561). Other reported side effects include potassium toxicity, metabolic acidosis, pustular psoriasis, and vasculitis (17574). However, such sensitivity is very rare (93001). Orally, iodine hypersensitivity can cause fatal periarteritis (15).
Neurologic/CNS
...Orally, common side effects of a saturated solution of potassium iodide (SSKI) have included headache (7%) (17561).
Side effects can be minimized by avoiding quick dosage increases (17574).
High intake of iodine may be associated with adverse cognitive outcomes in children. Observational research in children aged 7-14 years has found that those consuming drinking water with iodine concentrations above 900 mcg/L daily, which exceeds the tolerable upper intake level, is associated with a 1.6-point reduction in intelligence level when compared with those consuming water with iodine concentrations below 300 mcg/L (108709).
Ocular/Otic ...Orally, taking iodine chronically or in large amounts has been reported to cause eye irritation and eyelid swelling (15,2138).
Pulmonary/Respiratory ...Orally, common side effects of a saturated solution of potassium iodide (SSKI) included rhinorrhea (11%) (17561). Side effects can be minimized by avoiding quick dosage increases (17574). Taking iodine chronically or in large amounts has also been reported to cause coryza, sneezing, cough, and pulmonary edema (15,2138). Ophthalmically, povidone-iodine 5% solution 3 drops administered in each eye has been reported to slow respiration by about 18 seconds (range 4 to 96 seconds) when compared with saline control in children ages 2-17 years undergoing strabismus surgery (103077).
Renal ...When povidone-iodine was used in renal pelvic instillation sclerotherapy, one patient (2%) had significant flank pain during treatment (55970).
General
...Orally or intravenously, iron is generally well tolerated when used appropriately.
Most Common Adverse Effects:
Orally: Abdominal pain, constipation, diarrhea, gastrointestinal irritation, nausea, and vomiting.
Serious Adverse Effects (Rare):
Orally: Case reports have raised concerns about oral or gastric ulcerations.
Intravenously: Case reports have raised concerns about hypophosphatemia and osteomalacia.
Cardiovascular
...There is debate regarding the association between coronary heart disease (CHD) or myocardial infarction (MI) and high iron intake or high body iron stores.
Some observational studies have reported that high body iron stores are associated with increased risk of MI and CHD (1492,9542,9544,9545,15175). Some observational studies reported that only high heme iron intake from dietary sources such as red meat are associated with increased risk of MI and CHD (1492,9546,15174,15205,15206,91180). However, the majority of research has found no association between serum iron levels and cardiovascular disease (1097,1099,9543,9547,9548,9549,9550,56469,56683).
There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given intravenous ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
There is also a case of a 56-year-old female, negative for HFE mutation homozygosity, diagnosed with acquired iron overload cardiomyopathy after starting ferrous sulfate 325 mg twice daily 3 years prior for iron deficiency secondary to alcoholic cirrhosis with esophageal varices and encephalopathy. The patient had no follow-up care over the 3 years and denied any blood transfusions over that time (113906).
Dermatologic ...Cutaneous hemosiderosis, or skin staining, has been reported following intravenous (IV) iron infusion in various case reports. Most of these cases are due to extravasation following iron infusion (112605,112611). In one case, extravasation has occurred following iron derisomaltose infusion in a 41-year-old female with chronic kidney disease (112605). Rarely, diffuse cutaneous hermosiderosis has occurred. In one case, a 31-year-old female with excessive sweating developed cutaneous hemosiderosis in the armpits following an (IV) iron polymaltose infusion (112611).
Endocrine
...Population research in females shows that higher ferritin levels are associated with an approximately 1.
5-fold higher odds of developing gestational diabetes. Increased dietary intake of heme-iron, but not non-heme iron, is also associated with an increased risk for gestational diabetes. The effects of iron supplementation could not be determined from the evaluated research (96618). However, in a sub-analysis of a large clinical trial in pregnant adults, daily supplementation with iron 100 mg from 14 weeks gestation until delivery did not affect the frequency or severity of glucose intolerance or gestational weight gain (96619).
Intravenous (IV) iron may trigger hypophosphatemia in some patients (113905). A meta-analysis of clinical studies in adults with iron deficiency anemia shows that IV ferric carboxymaltose is associated with a higher risk of hypophosphatemia when compared with other IV formulations (i.e. iron dextran, iron isomaltoside, iron sucrose, and ferumoxytol) (115899). Severe hypophosphatemia requiring IV phosphate has also occurred following IV ferric carboxymaltose (112608,112610).
Additionally, cases of osteomalacia related to hypophosphatemia subsequent to parenteral iron administration have been rarely reported (112603,112609).
Gastrointestinal
...Orally, iron can cause dry mouth, gastrointestinal irritation, heartburn, abdominal pain, constipation, diarrhea, nausea, or vomiting (96621,102864,104680,104684,110179,110185,110188,110189,110192,115894).
These adverse effects are uncommon at doses below the tolerable upper intake level (UL) of 45 mg per day of elemental iron in adults with normal iron stores (7135). Higher doses can be taken safely in adults with iron deficiency, but gastrointestinal side effects may occur (1095,20118,20119,56698,102864). Taking iron supplements with food seems to reduce gastrointestinal side effects (7135). However, food can also significantly reduce iron absorption. Iron should be taken on an empty stomach, unless it cannot be tolerated.
There are several formulations of iron products such as ferrous sulfate, ferrous gluconate, ferrous fumarate, and others. Manufacturers of some formulations, such as polysaccharide-iron complex products (Niferex-150, etc), claim to be better tolerated than other formulations; however, there is no reliable evidence to support this claim. Gastrointestinal tolerability relates mostly to the elemental iron dose rather than the formulation (17500).
Enteric-coated or controlled-release iron formulations might reduce nausea for some patients, however, these products also have lower absorption rates (17500).
Liquid oral preparations can blacken and stain teeth (20118).
Iron can also cause oral ulcerations and ulcerations of the gastric mucosa (56684,91182,96622,110179). In one case report, an 87-year-old female with Alzheimer disease experienced a mucosal ulceration, possibly due to holding a crushed ferrous sulfate 80 mg tablet in the mouth for too long prior to swallowing (91182). The ulceration was resolved after discontinuing iron supplementation. In another case report, a 76-year old male suffered gastric mucosal injury after taking a ferrous sulfate tablet daily for 4 years (56684). In a third case report, a 14-year-old female developed gastritis involving symptoms of upper digestive hemorrhage, nausea, melena, and stomach pain. The hemorrhage was attributed to supplementation with ferrous sulfate 2 hours after meals for the prior 2 weeks (96622). In one case report, a 43-year old female developed atrophic gastritis with non-bleeding ulcerations five days after starting oral ferrous sulfate 325 mg twice daily (110179).
Intravenously, iron can cause gastrointestinal symptoms such as nausea and diarrhea(104684,110192,115894).
Hematologic ...Orally, iron supplements have been associated with hemochromatosis. In one case report, a 56-year-old female, negative for HFE mutation homozygosity, was diagnosed with acquired hemochromatosis after starting ferrous sulfate 325 mg twice daily 3 years prior, without follow-up care, for a previous iron deficiency secondary to alcoholic cirrhosis with esophageal varices and encephalopathy (113906).
Immunologic
...Although there is some clinical research associating iron supplementation with an increased rate of malaria infection (56796,95432), the strongest evidence to date does not support this association, at least for areas where antimalarial treatment is available (95433,96623).
In an analysis of 14 trials, iron supplementation was not associated with an increased risk of malaria (96623). In a sub-analysis of 7 preliminary clinical studies, the effect of iron supplementation was dependent upon the access to services for antimalarial treatment. In areas where anemia is common and services are available, iron supplementation is associated with a 9% reduced risk of clinical malaria. In an area where services are unavailable, iron supplementation was associated with a 16% increased risk in malaria incidence (96623). The difference in these findings is likely associated with the use of malaria prevention methods.
A meta-analysis of clinical studies of all patient populations shows that administering intravenous (IV) iron, usually iron sucrose and ferric carboxymaltose, increases the risk of infection by 16% when compared with oral iron or no iron. However, sub-analyses suggest this increased risk is limited to patients with inflammatory bowel disease (IBD) (110186). Additionally, a meta-analysis in adults with cancer-associated anemia shows that IV iron does not increase the risk of infection when compared with oral iron or no iron therapy (115892).
Intravenously, iron has rarely resulted in allergic reactions, including anaphylactoid reactions (110185,110192,112606,112607). There is one case of Kounis syndrome, also referred to as allergic angina or allergic myocardial infarction, in a 39-year-old female patient without previous coronary artery disease given IV ferric carboxymaltose. The patient experienced anaphylactic symptoms, including headache, abdominal pain, and breathing difficulties, 3 minutes after starting the infusion. She was further diagnosed with non-ST-elevation myocardial infarction (112607).
Musculoskeletal ...Intravenous (IV) iron may trigger hypophosphatemia in some patients, and cases of osteomalacia related to hypophosphatemia subsequent to parenteral iron administration have been rarely reported (112609,113905). In one case, a 70-year-old male with a genetic hemorrhagic disorder infused with ferric carboxymaltose developed lower limb pain with hypophosphatemia and diffuse bone demineralization in the feet (112609). In a second case, a 61-year-old male developed femoral neck insufficiency fractures following repeated ferric carboxymaltose transfusions for anemia related to vascular malformation in the bowel (112603).
Oncologic
...There is a debate regarding the association between high levels of iron stores and cancer.
Data are conflicting and inconclusive (1098,1099,1100,1102). Epidemiological studies suggest that increased body iron stores may increase the risk of cancer or general mortality (56703).
Occupational exposure to iron may be carcinogenic (56691). Oral exposure to iron may also be carcinogenic. Pooled analyses of population studies suggest that increasing the intake of heme iron increases the risk of colorectal cancer. For example, increasing heme iron intake by 1 mg/day is associated with an 11% increase in risk (56699,91185).
Pulmonary/Respiratory ...Orally, iron has been associated with rare reports of iron pill aspiration. This occurs when all or part of the pill is aspirated into the lungs. Once in the lungs, it can cause a chemical burn of the bronchial mucosa. Dozens of cases of iron pill aspiration have been reported in individuals ranging in age from 22 months to 92 years. Patients presented with cough, dyspnea, wheezing, and hemoptysis. The hemoptysis led to death in 2 patients due to hemorrhage. Long-term complication of fibrosis and bronchial stenosis was reported in a few of the cases. In one case, a 48-year-old female accidentally aspirated a ferrous sulfate tablet and presented to the emergency department with cough, blood-stained sputum, chest pain, dyspnea, and acute distress. Bronchoscopy was performed, parts of the pill were retrieved, and chemical burns and necrotic tissue were observed in the bronchus intermedius mucosa and throughout the middle and lower lobes. Debridement with bronchoalveolar lavage was performed. The patient was transferred to the intensive care unit, placed on mechanical ventilation for 2 days, treated with corticosteroids, and discharged on the fifth day of hospitalization. Four weeks post-discharge the patient had significantly improved but still had some reduction in lung capacity.
Other ...Intravenously, sodium ferric gluconate complex (SFGC) caused drug intolerance reactions in 0. 4% of hemodialysis patients including 2 patients with pruritus and one patient each with anaphylactoid reaction, hypotension, chills, back pain, dyspnea/chest pain, facial flushing, rash and cutaneous symptoms of porphyria (56527).
General
...Orally, niacinamide is well tolerated in amounts typically found in food.
When used topically and orally in higher doses, niacinamide seems to be generally well tolerated.
Most Common Adverse Effects:
Orally: Dizziness, drowsiness, itching, gastrointestinal disturbances, headache, and rash.
Topically: Burning sensation, itching, and mild dermatitis.
Dermatologic ...Orally, large doses of niacinamide are associated with occasional reports of rashes, itching, and acanthosis nigricans (4880,11695,11697,14504,107709), though a meta-analysis of 19 clinical studies suggests that dermatological adverse event rates are similar between niacinamide and control (110497). Topically, application of niacinamide in a cream has been reported to cause a burning sensation, itching and pruritus, crusting, and mild dermatitis (93357,93360,110501,110498).
Endocrine ...Orally, niacinamide in high doses, 50 mg/kg daily, has been associated with modestly higher insulin requirements in patients with type 1 diabetes, when compared with taking niacinamide 25 mg/kg daily. Theoretically, high-dose niacinamide might increase insulin resistance, although to a lesser extent than niacin (4881,14512).
Gastrointestinal ...Orally, large doses of niacinamide can cause gastrointestinal disturbances including nausea, vomiting, heartburn, anorexia, epigastric pain, flatulence, and diarrhea (6243,11694,11695,11696,11697,107709,110497,113682).
Hematologic ...Orally, niacinamide supplementation might increase the risk for thrombocytopenia in patients undergoing hemodialysis (98940,107709). A meta-analysis of small clinical studies shows that taking niacinamide during hemodialysis to reduce phosphate levels is associated with a 2.8-fold increased risk for thrombocytopenia when compared with placebo. In one of the included studies, platelet levels returned to normal within 20 days after niacinamide discontinuation (98940).
Hepatic ...Orally, older reports of elevated liver function tests with high doses of niacinamide (3 grams or more daily) have raised concerns about liver toxicity. However, newer studies have not reported this concern; it is possible that some of these cases were due to contamination with niacin (4880,11694,11695,14503).
Neurologic/CNS ...Orally, large doses of niacinamide can cause dizziness, drowsiness, and headaches (11694,11695,11696,11697,107709).
General
...Orally, pantothenic acid is generally well tolerated.
Topically and intramuscularly, dexpanthenol, a synthetic form of pantothenic acid, seems to be well tolerated.
Most Common Adverse Effects:
Topically: Burning, contact dermatitis, eczema, irritation, and itching related to dexpanthenol.
Cardiovascular ...There is one case of eosinophilic pleuropericardial effusion in a patient taking pantothenic acid 300 mg per day in combination with biotin 10 mg per day for 2 months (3914).
Dermatologic ...Topically, dexpanthenol has been associated with itching, burning, skin irritation, contact dermatitis, and eczema (67779,67781,67788,111258,111262). Three cases of allergic contact dermatitis have been reported (111260,111261).
Gastrointestinal ...Orally, pantothenic acid has been associated with diarrhea (67822,111258).
General
...Orally, riboflavin is generally well tolerated.
Most Common Adverse Effects:
Orally: Dose-related nausea and urine discoloration.
Gastrointestinal ...Orally, riboflavin has been associated with rare diarrhea and dose-related nausea (1398,71483). In one clinical study, one subject out of 28 reported having diarrhea two weeks after starting riboflavin 400 mg daily (1398).
Genitourinary ...Orally, high doses of riboflavin can cause bright yellow urine. Furthermore, in one clinical study, one subject out of 28 reported polyuria two weeks after starting riboflavin 400 mg daily (1398,3094).
General
...Orally, sodium is well tolerated when used in moderation at intakes up to the Chronic Disease Risk Reduction (CDRR) intake level.
Topically, a thorough evaluation of safety outcomes has not been conducted.
Serious Adverse Effects (Rare):
Orally: Worsened cardiovascular disease, hypertension, kidney disease.
Cardiovascular
...Orally, intake of sodium above the CDRR intake level can exacerbate hypertension and hypertension-related cardiovascular disease (CVD) (26229,98176,100310,106263).
A meta-analysis of observational research has found a linear association between increased sodium intake and increased hypertension risk (109398). Observational research has also found an association between increased sodium salt intake and increased risk of CVD, mortality, and cardiovascular mortality (98177,98178,98181,98183,98184,109395,109396,109399). However, the existing research is unable to confirm a causal relationship between sodium intake and increased cardiovascular morbidity and mortality; high-quality, prospective research is needed to clarify this relationship (100312). As there is no known benefit with increased salt intake that would outweigh the potential increased risk of CVD, advise patients to limit salt intake to no more than the CDRR intake level (100310).
A reduction in sodium intake can lower systolic blood pressure by a small amount in most individuals, and diastolic blood pressure in patients with hypertension (100310,100311,106261). However, post hoc analysis of a small crossover clinical study in White patients suggests that 24-hour blood pressure variability is not affected by high-salt intake compared with low-salt intake (112910). Additionally, the available research is insufficient to confirm that a further reduction in sodium intake below the CDRR intake level will lower the risk for chronic disease (100310,100311). A meta-analysis of clinical research shows that reducing sodium intake increases levels of total cholesterol and triglycerides, but not low-density lipoprotein (LDL) cholesterol, by a small amount (106261).
It is unclear whether there are safety concerns when sodium is consumed in amounts lower than the adequate intake (AI) levels. Some observational research has found that the lowest levels of sodium intake might be associated with increased risk of death and cardiovascular events (98181,98183). However, this finding has been criticized because some of the studies used inaccurate measures of sodium intake, such as the Kawasaki formula (98177,98178,101259). Some observational research has found that sodium intake based on a single 24-hour urinary measurement is inversely correlated with all-cause mortality (106260). The National Academies Consensus Study Report states that there is insufficient evidence from observational studies to conclude that there are harmful effects from low sodium intake (100310).
Endocrine ...Orally, a meta-analysis of observational research has found that higher sodium intake is associated with an average increase in body mass index (BMI) of 1. 24 kg/m2 and an approximate 5 cm increase in waist circumference (98182). It has been hypothesized that the increase in BMI is related to an increased thirst, resulting in an increased intake of sugary beverages and/or consumption of foods that are high in salt and also high in fat and energy (98182). One large observational study has found that the highest sodium intake is not associated with overweight or obesity when compared to the lowest intake in adolescents aged 12-19 years when intake of energy and sugar-sweetened beverages are considered (106265). However, in children aged 6-11 years, usual sodium intake is positively associated with increased weight and central obesity independently of the intake of energy and/or sugar-sweetened beverages (106265).
Gastrointestinal ...In one case report, severe gastritis and a deep antral ulcer occurred in a patient who consumed 16 grams of sodium chloride in one sitting (25759). Chronic use of high to moderately high amounts of sodium chloride has been associated with an increased risk of gastric cancer (29405).
Musculoskeletal
...Observational research has found that low sodium levels can increase the risk for osteoporosis.
One study has found that low plasma sodium levels are associated with an increased risk for osteoporosis. Low levels, which are typically caused by certain disease states or chronic medications, are associated with a more than 2-fold increased odds for osteoporosis and bone fractures (101260).
Conversely, in healthy males on forced bed rest, a high intake of sodium chloride (7.7 mEq/kg daily) seems to exacerbate disuse-induced bone and muscle loss (25760,25761).
Oncologic ...Population research has found that high or moderately high intake of sodium chloride is associated with an increased risk of gastric cancer when compared with low sodium chloride intake (29405). Other population research in patients with gastric cancer has found that a high intake of sodium is associated with an approximate 65% increased risk of gastric cancer mortality when compared with a low intake. When zinc intake is taken into consideration, the increased risk of mortality only occurred in those with low zinc intake, but the risk was increased to approximately 2-fold in this sub-population (109400).
Pulmonary/Respiratory ...In patients with hypertension, population research has found that sodium excretion is modestly and positively associated with having moderate or severe obstructive sleep apnea. This association was not found in normotensive patients (106262).
Renal ...Increased sodium intake has been associated with impaired kidney function in healthy adults. This effect seems to be independent of blood pressure. Observational research has found that a high salt intake over approximately 5 years is associated with a 29% increased risk of developing impaired kidney function when compared with a lower salt intake. In this study, high salt intake was about 2-fold higher than low salt intake (101261).
General
...Orally and parenterally, thiamine is generally well tolerated.
Serious Adverse Effects (Rare):
Parenterally: Hypersensitivity reactions including angioedema and anaphylaxis.
Immunologic
...Orally, thiamine might rarely cause dermatitis and other allergic reactions.
Parenterally, thiamine can cause anaphylactoid and hypersensitivity reactions, but this is also rare (<0.1%). Reported symptoms and events include feelings of warmth, tingling, pruritus, urticaria, tightness of the throat, cyanosis, respiratory distress, gastrointestinal bleeding, pulmonary edema, angioedema, hypotension, and death (15,35585,105445).
In one case report, a 46-year-old female presented with systemic allergic dermatitis after applying a specific product (Inzitan, containing lidocaine, dexamethasone, cyanocobalamin and thiamine) topically by iontophoresis; the allergic reaction was attributed to thiamine (91170).
General
...Orally, vitamin A is generally well-tolerated at doses below the tolerable upper intake level (UL).
Serious Adverse Effects (Rare):
Orally: In very high doses, vitamin A can cause pseudotumor cerebri, pain, liver toxicity, coma, and even death.
Dermatologic ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity including dry skin and lips; cracking, scaling, and itchy skin; skin redness and rash; hyperpigmentation; shiny skin, and massive skin peeling (7135,95051). Hypervitaminosis A can cause brittle nails, cheilitis, gingivitis, and hair loss (15,95051). Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause skin redness and generalized peeling of the skin a few days later and may last for several weeks (15).
Gastrointestinal ...There is some evidence that oral vitamin A supplementation might increase the risk of diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with diarrhea in well-nourished children (319). Diarrhea (82326,82389), nausea (7135,100329), abdominal pain (95051), abdominal fullness (100329), and vomiting (7135,82559,95051,109755) have been reported following use of large doses of oral vitamin A. Adverse effects from a single ingestion of a large dose of vitamin A is more common in young children than adults (15). In children, approximately 25,000 IU/kg can cause vomiting and diarrhea (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including anorexia, abdominal discomfort, and nausea and vomiting (7135).
Genitourinary ...Hypervitaminosis A can cause reduced menstrual flow (15). Intravaginally, all-trans retinoic acid can cause vaginal discharge, itching, irritation, and burning (9199).
Hematologic ...Hypervitaminosis A can cause spider angiomas, anemia, leukopenia, leukocytosis, and thrombocytopenia (15,95051).
Hepatic ...Since the liver is the main storage site for vitamin A, hypervitaminosis A can cause hepatotoxicity, with elevated liver enzymes such as alanine aminotransferase (ALT, formerly SGPT) and aspartate aminotransferase (AST, formerly SGOT), as well as fibrosis, cirrhosis, hepatomegaly, portal hypertension, and death (6377,7135,95051).
Musculoskeletal
...Vitamin A can increase the risk for osteoporosis and fractures.
Observational research has found that chronic, high intake of vitamin A 10,000 IU or more per day is associated with an increased risk of osteoporosis and hip fracture in postmenopausal adults, as well as overall risk of fracture in middle-aged males (7712,7713,9190). A meta-analysis of these and other large observational studies shows that high dietary intake of vitamin A or retinol is associated with a 23% to 29% greater risk of hip fracture when compared with low dietary intake (107294). High serum levels of vitamin A as retinol also increase the risk of fracture in males. Males with high serum retinol levels are seven times more likely to fracture a hip than those with lower serum retinol levels (9190). Vitamin A damage to bone can occur subclinically, without signs or symptoms of hypervitaminosis A. Some researchers are concerned that consumption of vitamin A fortified foods such as margarine and low-fat dairy products in addition to vitamin A or multivitamin supplements might cause excessive serum retinol levels. Older people have higher levels of vitamin A and might be at increased risk for vitamin A-induced osteoporosis.
Vitamin A's effects on bone resorption could lead to hypercalcemia (95051).
Hypervitaminosis can cause slow growth, premature epiphyseal closure, painful hyperostosis of the long bones, general joint pain, osteosclerosis, muscle pain, and calcium loss from the bones (15,95051). One child experienced severe bone pain after taking vitamin A 600,000 IU daily for more than 3 months (95051). Vitamin A was discontinued and symptoms lessened over a period of 2 weeks. The patient made a full recovery 2 months later.
Neurologic/CNS
...Orally, adverse effects from a single large dose of vitamin A are more common in young children than adults (15).
Headache, increased cerebrospinal fluid pressure, vertigo, and blurred vision have been reported following an acute oral dose of vitamin A 500,000 IU (7135). In children, approximately 25,000 IU/kg can cause headache, irritability, drowsiness, dizziness, delirium, and coma (15). Chronic use of large amounts of vitamin A causes symptoms of vitamin A toxicity including fatigue, malaise, lethargy, and irritability (7135).
There are reports of bulging of the anterior fontanelle associated with an acute high oral dose of vitamin A in infants (7135,90784,95053,95054). In children, approximately 25,000 IU/kg can cause increased intracranial pressure with bulging fontanelles in infants (15). Also, muscular incoordination has been reported following short-term high doses of vitamin A (7135).
A case of intracranial hypertension involving diffuse headaches and brief loss of vision has been reported secondary to topical use of vitamin A. The patient was using over-the-counter vitamin A preparations twice daily including Avotin 0.05% cream, Retin-A gel 0.01%, and Isotrexin gel containing isotretinoin 0.05% and erythromycin 2%, for treatment of facial acne. Upon exam, the patient was noted to have bilateral optic disc edema. The patient discontinued use of topical vitamin A products. Two months later, the patient reported decreased headaches and an improvement in bilateral optic disc edema was seen (95056).
Ocular/Otic ...In children, oral vitamin A approximately 25,000 IU/kg can cause swelling of the optic disk, bulging eyeballs, and visual disturbances (15). Adverse effects from a single ingestion of a large dose of vitamin A are more common in young children than adults (15).
Oncologic ...There is concern that high intake of vitamin A might increase some forms of cancer. Population research suggests high vitamin A intake might increase the risk of gastric carcinoma (9194).
Psychiatric ...Chronic oral use of large amounts of vitamin A causes symptoms of vitamin A toxicity, which can include symptoms that mimic severe depression or schizophrenic disorder (7135).
Pulmonary/Respiratory ...There is some evidence that oral vitamin A supplementation might increase the risk of pneumonia and diarrhea in children. Although vitamin A can prevent diarrhea and reduce mortality in malnourished children, doses as low as 10,000 IU weekly for 40 weeks have been associated with pneumonia and diarrhea in well-nourished children (319). In preschool children, high-dose vitamin A also increases the risk of respiratory infection (82288).
Other ...Chronic use of large amounts of vitamin A (>25,000 IU daily for more than 6 years or 100,000 IU daily for more than 6 months) can cause symptoms of vitamin A toxicity including mild fever and excessive sweating (7135). High intakes of vitamin A may result in a failure to gain weight normally in children and weight loss in adults (15).
General
...Orally, intramuscularly, and topically, vitamin B12 is generally well-tolerated.
Most Common Adverse Effects:
Intramuscular: Injection site reactions.
Serious Adverse Effects (Rare):
Intramuscularly: Severe hypokalemia has been rarely linked with correction of megaloblastic anemia with vitamin B12.
Cardiovascular ...In human clinical research, an intravenous loading dose of folic acid, vitamin B6, and vitamin B12, followed by daily oral administration after coronary stenting, increased restenosis rates (12150). Hypertension following intravenous administration of hydroxocobalamin has been reported in human research (82870,82864).
Dermatologic
...Orally or intramuscularly, vitamin B12 can cause allergic reactions such as rash, pruritus, erythema, and urticaria.
Theoretically, allergic reactions might be caused by the cobalt within the vitamin B12 molecule (82864,90373,90381,103974). In one case report, oral methylcobalamin resulted in contact dermatitis in a 59-year-old Japanese female with a cobalt allergy (103974). In another case report, a 69-year-old female developed a symmetrical erythematous-squamous rash for 5 years after oral vitamin B12 supplementation for 10 years. A patch test confirmed that the systemic allergic dermatitis was due to vitamin B12 supplementation, which resolved 3 months after discontinuation (114578).
Vitamin B12 (intramuscular or oral) has also been associated with at least 19 cases of acneiform eruptions which resolved upon discontinuation of vitamin B12 (90365,90369,90388). High-dose vitamin B12 (20 mcg daily) and vitamin B6 (80 mg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may last up to four months after the supplement is stopped and can be treated with systemic corticosteroids and topical therapy (10998,82870,82871).
Gastrointestinal ...Intravenously, vitamin B12 (hydroxocobalamin) 2. 5-10 grams can cause nausea and dysphagia (82864).
Genitourinary ...Intravenously, vitamin B12 (hydroxocobalamin) 5-15 grams has been associated with chromaturia in clinical research (82870,82871,112282,112264).
Hematologic ...According to case report data, the correction of megaloblastic anemia with vitamin B12 may result in fatal hypokalemia (82914).
Musculoskeletal ...According to case report data, correction of megaloblastic anemia with vitamin B12 has precipitated gout in susceptible individuals (82879).
Neurologic/CNS ...Treatment with vitamin B12 has been rarely associated with involuntary movements in infants with vitamin B12 deficiency (90370,90385,90397). In some cases these adverse reactions were misdiagnosed as seizures or infantile tremor syndrome (90370,90385). These adverse reactions presented 2-5 days after treatment with vitamin B12 and resolved once vitamin B12 was discontinued (90370,90385,90397).
Oncologic ...Although some epidemiological research disagrees (9454), most research has found that elevated plasma levels of vitamin B12 are associated with an increased risk of various types of cancer, including lung and prostate cancers and solid tumors (50411,102383,107743). One study found, when compared with blood levels of vitamin B12 less than 1000 ng/mL, plasma vitamin B12 levels of at least 1000 ng/mL was strongly associated with the occurrence of solid cancer (107743). It is unclear if increased intake of vitamin B12, either through the diet or supplementation, directly affects the risk of cancer. It is possible that having cancer increases the risk of vitamin B12 elevation. However, one observational study has found that the highest quintile of dietary intake of vitamin B12 is associated with a 75% increased incidence of developing esophageal cancer when compared with the lowest quintile in never drinkers, but not drinkers (107147).
Renal ...There is a case report of oxalate nephropathy in a 54-year-old male which was determined to be related to the use of intravenous hydroxocobalamin as treatment for cyanide poisoning. Intermittent hemodialysis was started 5 days after admission, along with a low-oxalate diet, oral calcium acetate, and pyridoxine 5 mg/kg daily (107148). A review of the use of intravenous hydroxocobalamin for suspected cyanide poisoning in 21 intensive care units in France between 2011 and 2017 resulted in a 60% increased odds of acute kidney injury and a 77% increased odds of severe acute kidney injury in the first week. However, biopsies were not conducted and a direct link with use of hydroxocobalamin could not be made (107139).
Other ...Several studies have found that higher vitamin B12 levels may be associated with increased mortality or decreased survival rates in hospitalized elderly patients (82889,82812,82857,82895). Human research has also found a positive correlation between vitamin B12 status and all-cause mortality in Pima Indians with diabetes (82863).
General
...Orally or by injection, vitamin B6 is well tolerated in doses less than 100 mg daily.
Most Common Adverse Effects:
Orally or by injection: Abdominal pain, allergic reactions, headache, heartburn, loss of appetite, nausea, somnolence, vomiting.
Serious Adverse Effects (Rare):
Orally or by injection: Sensory neuropathy (high doses).
Dermatologic ...Orally, vitamin B6 (pyridoxine) has been linked to reports of skin and other allergic reactions and photosensitivity (8195,9479,90375). High-dose vitamin B6 (80 mg daily as pyridoxine) and vitamin B12 (20 mcg daily) have been associated with cases of rosacea fulminans characterized by intense erythema with nodules, papules, and pustules. Symptoms may persist for up to 4 months after the supplement is stopped, and may require treatment with systemic corticosteroids and topical therapy (10998).
Gastrointestinal ...Orally or by injection, vitamin B6 (pyridoxine) can cause nausea, vomiting, heartburn, abdominal pain, mild diarrhea, and loss of appetite (8195,9479,16306,83064,83103,107124,107127,107135). In a clinical trial, one patient experienced infectious gastroenteritis that was deemed possibly related to taking vitamin B6 (pyridoxine) orally up to 20 mg/kg daily (90796). One small case-control study has raised concern that long-term dietary vitamin B6 intake in amounts ranging from 3.56-6.59 mg daily can increase the risk of ulcerative colitis (3350).
Hematologic ...Orally or by injection, vitamin B6 (pyridoxine) can cause decreased serum folic acid concentrations (8195,9479). One case of persistent bleeding of unknown origin has been reported in a clinical trial for a patient who used vitamin B6 (pyridoxine) 100 mg twice daily on days 16 to 35 of the menstrual cycle (83103). It is unclear if this effect was due to vitamin B6 intake.
Musculoskeletal ...Orally or by injection, vitamin B6 (pyridoxine) can cause breast soreness or enlargement (8195).
Neurologic/CNS ...Orally or by injection, vitamin B6 (pyridoxine) can cause headache, paresthesia, and somnolence (8195,9479,16306). Vitamin B6 (pyridoxine) can also cause sensory neuropathy, which is related to daily dose and duration of intake. Doses exceeding 1000 mg daily or total doses of 1000 grams or more pose the most risk, although neuropathy can occur with lower daily or total doses as well (8195). The mechanism of the neurotoxicity is unknown, but is thought to occur when the liver's capacity to phosphorylate pyridoxine via the active coenzyme pyridoxal phosphate is exceeded (8204). Some researchers recommend taking vitamin B6 as pyridoxal phosphate to avoid pyridoxine neuropathy, but its safety is unknown (8204). Vitamin B6 (pyridoxine) neuropathy is characterized by numbness and impairment of the sense of position and vibration of the distal limbs, and a gradual progressive sensory ataxia (8196,10439). The syndrome is usually reversible with discontinuation of pyridoxine at the first appearance of neurologic symptoms. Residual symptoms have been reported in patients taking more than 2 grams daily for extended periods (8195,8196). Daily doses of 100 mg or less are unlikely to cause these problems (3094).
Oncologic ...In females, population research has found that a median intake of vitamin B6 1. 63 mg daily is associated with a 3.6-fold increased risk of rectal cancer when compared with a median intake of 1.05 mg daily (83024). A post-hoc subgroup analysis of results from clinical research in adults with a history of recent stroke or ischemic attack suggests that taking folic acid, vitamin B12, and vitamin B6 does not increase cancer risk overall, although it was associated with an increased risk of cancer in patients who also had diabetes (90378). Also, in patients with nasopharyngeal carcinoma, population research has found that consuming at least 8.6 mg daily of supplemental vitamin B6 during treatment was associated with a lower overall survival rate over 5 years, as well as a reduced progression-free survival, when compared with non-users and those with intakes of up to 8.6 mg daily (107134).
General
...Orally, intravenously, and topically, vitamin C is well-tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, esophagitis, heartburn, headache, osmotic diarrhea, nausea, vomiting. Kidney stones have been reported in those prone to kidney stones. Adverse effects are more likely to occur at doses above the tolerable upper intake level of 2 grams daily.
Topically: Irritation and tingling.
Serious Adverse Effects (Rare):
Orally: There have been rare case reports of carotid inner wall thickening after large doses of vitamin C.
Intravenously: There have been case reports of hyperoxalosis and oxalate nephropathy following high-dose infusions of vitamin C.
Cardiovascular
...Evidence from population research has found that high doses of supplemental vitamin C might not be safe for some people.
In postmenopausal adults with diabetes, supplemental vitamin C intake in doses greater than 300 mg per day is associated with increased risk of cardiovascular mortality. However, dietary intake of vitamin C is not associated with this risk. Also, vitamin C intake is not associated with an increased risk of cardiovascular mortality in patients without diabetes (12498).
Oral supplementation with vitamin C has also been associated with an increased rate of carotid inner wall thickening in men. There is preliminary evidence that supplemental intake of vitamin C 500 mg daily for 18 months can cause a 2.5-fold increased rate of carotid inner wall thickening in non-smoking men and a 5-fold increased rate in men who smoked. The men in this study were 40-60 years old (1355). This effect was not associated with vitamin C from dietary sources (1355).
There is also some concern that vitamin C may increase the risk of hypertension in some patients. A meta-analysis of clinical research suggests that, in pregnant patients at risk of pre-eclampsia, oral intake of vitamin C along with vitamin E increases the risk of gestational hypertension (83450). Other clinical research shows that oral intake of vitamin C along with grape seed polyphenols can increase both systolic and diastolic blood pressure in hypertensive patients (13162). Three cases of transient hypotension and tachycardia during intravenous administration of vitamin C have also been reported (114490).
Dental ...Orally, vitamin C, particularly chewable tablets, has been associated with dental erosion (83484).
Dermatologic ...Topically, vitamin C might cause tingling or irritation at the site of application (6166). A liquid containing vitamin C 20%, red raspberry leaf cell culture extract 0.0005%, and vitamin E 1% (Antioxidant and Collagen Booster Serum, Max Biocare Pty Ltd.) has been reported to cause mild tingling and skin tightness (102355). It is unclear if these effects are due to vitamin C, the other ingredients, or the combination.
Gastrointestinal ...Orally, the adverse effects of vitamin C are dose-related and include nausea, vomiting, esophagitis, heartburn, abdominal cramps, gastrointestinal obstruction, and diarrhea. Doses greater than the tolerable upper intake level (UL) of 2000 mg per day can increase the risk of adverse effects such as osmotic diarrhea and severe gastrointestinal upset (3042,4844,96707,104450,114493,114490). Mineral forms of vitamin C, such as calcium ascorbate (Ester-C), seem to cause fewer gastrointestinal adverse effects than regular vitamin C (83358). In a case report, high dose intravenous vitamin C was associated with increased thirst (96709).
Genitourinary ...Orally, vitamin C may cause precipitation of urate, oxalate, or cysteine stones or drugs in the urinary tract (10356). Hyperoxaluria, hyperuricosuria, hematuria, and crystalluria have occurred in people taking 1 gram or more per day (3042,90943). Supplemental vitamin C over 250 mg daily has been associated with higher risk for kidney stones in males. There was no clear association found in females, but the analysis might not have been adequately powered to evaluate this outcome (104029). In people with a history of oxalate kidney stones, supplemental vitamin C 1 gram per day appears to increase kidney stone risk by 40% (12653). A case of hematuria, high urine oxalate excretion, and the presence of a ureteral stone has been reported for a 9-year-old male who had taken about 3 grams of vitamin C daily since 3 years of age. The condition resolved with cessation of vitamin C intake (90936).
Hematologic ...Prolonged use of large amounts of vitamin C can result in increased metabolism of vitamin C; subsequent reduction in vitamin C intake may precipitate the development of scurvy (15). In one case, a patient with septic shock and a large intraperitoneal hematoma developed moderate hemolysis and increased methemoglobin 12 hours after a high-dose vitamin C infusion. The patient received a blood transfusion and the hemolysis resolved spontaneously over 48 hours (112479).
Neurologic/CNS ...Orally, the adverse effects of vitamin C are dose-related and include fatigue, headache, insomnia, and sleepiness (3042,4844,83475,83476).
Renal ...Hyperoxalosis and oxalate nephropathy have been reported following high-dose infusions of vitamin C. Hyperoxalosis and acute kidney failure contributed to the death of a 76-year-old patient with metastatic adenocarcinoma of the lung who received 10 courses of intravenous infusions containing vitamins, including vitamin C and other supplements over a period of 1 month. Dosages of vitamin C were not specified but were presumed to be high-dose (106618). In another case, a 34-year-old patient with a history of kidney transplant and cerebral palsy was found unresponsive during outpatient treatment for a respiratory tract infection. The patient was intubated for acute hypoxemic respiratory failure, initiated on vasopressors, hydrocortisone, and antibacterial therapy, and received 16 doses of vitamin C 1.5 grams. Serum creatinine level peaked at greater than 3 times baseline and the patient required hemodialysis for oliguria and uncontrolled acidosis. Kidney biopsy revealed oxalate nephropathy with concomitant drug-induced interstitial nephritis (106625). In another case, a 41-year-old patient with a history of kidney transplant presented with fever, nausea, and decreased urine output 4 days after receiving intravenous vitamin C 7 grams for urothelial carcinoma. Serum creatinine levels increased from 1.7 mg/dL to 7.3 mg/dL over those 4 days, and hemodialysis was initiated 3 days after admission due to anuria. Renal biopsy confirmed the diagnosis of acute oxalate nephropathy (109962).
Other ...Intravenously, hypernatremia and falsely elevated ketone levels is reported in a patient with septic shock and chronic kidney disease after a high-dose vitamin C infusion. The hypernatremia resolved over 24 hours after cessation of the infusion (112479).
General
...Orally or intramuscularly, vitamin D is well tolerated.
Serious Adverse Effects (Rare):
Orally or intramuscularly: Excessive doses can lead to vitamin D toxicity with symptoms of hypercalcemia, and also sometimes azotemia and anemia.
Cardiovascular ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Rarely, people develop hypertension (10142). An analysis of clinical research suggests that, when taken orally, vitamin D might modestly increase levels of low-density lipoprotein (LDL)-cholesterol. However, it is not clear if this increase is clinically significant (84642).
Gastrointestinal ...Orally, vitamin D may cause dry mouth. In clinical research, intake of vitamin D 50,000 IU weekly for 4 weeks followed by 50,000 IU monthly for 5 months thereafter was associated with a 3.7-fold increase in reports of dry mouth compared with placebo (91348).Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Symptoms of vitamin D toxicity include pancreatitis (10142,84433). Vomiting occurred in one patient given a single dose of 200,000 IU (104624).
Genitourinary ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Advanced symptoms may include decreased libido (10142). Vaginal discharge and itching have been reported in a clinical trial following oral use (91348).
Hematologic
...Lab values of urinary and blood calcium, phosphate, albumin, blood urea nitrogen, serum cholesterol, aspartate aminotransferase, and alanine aminotransferase concentrations might increase with vitamin D use, especially with high doses (10142,91349,93943).
A case of elevated international normalized ration (INR) has been reported for an 84 year-old patient who took vitamin D 50,000 IU daily for 2 months. The patient's serum levels of vitamin D increased from <7 ng/mL to 100 ng/mL over 6 months. To resolve symptoms, vitamin D supplementation was discontinued (84433).
Musculoskeletal ...Vitamin D intoxication can occur when vitamin D supplements are taken in excessive doses (10142,17506). Symptoms of vitamin D toxicity include osteoporosis in adults and decreased growth in children (10142).
Ocular/Otic ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses (10142,17506). Symptoms of vitamin D toxicity include calcific conjunctivitis and photophobia (10142).
Psychiatric ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses (10142,17506). In rare cases, symptoms of vitamin D toxicity include psychosis (10142,93002).
Pulmonary/Respiratory ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Advanced symptoms of vitamin D toxicity may include runny nose (10142,17506,93002).
Renal ...Vitamin D intoxication can occur when vitamin D supplements are taken orally in excessive doses. Symptoms of vitamin D toxicity include azotemia. Vitamin D may also cause hypercalcemia, with advanced symptoms including kidney stones or kidney insufficiency due to precipitation of calcium phosphate in the tubules. Symptoms of renal impairment include frequency, nighttime awakening to urinate, thirst, inability to concentrate urine, and proteinuria. Renal impairment is usually reversible with discontinuation of vitamin D supplements (10142,93002,93943,110831,110833).
General
...Orally and topically, vitamin E is generally well-tolerated.
Serious Adverse Effects (Rare):
Orally: Bleeding, hemorrhagic stroke, cardiovascular complications.
Inhaled: Vitamin E acetate is thought to be responsible for e-cigarette, or vaping, product-use associated lung injury (EVALI).
Cardiovascular
...Some evidence suggests that taking vitamin E supplements, especially greater than or equal to 400 IU taken by mouth daily for over one year, might also increase the risk of mortality in non-healthy patients (12212,13036,15305,16709,83339).
A population study shows that vitamin E use is associated with a significantly increased risk of mortality in people with a history of severe cardiovascular disease such as stroke or myocardial infarction (16709). In an analysis of clinical trials, patients who took either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) in doses of 400 IU/day or higher had an increased risk of mortality from all causes. The risk of mortality seems to increase when higher doses are used (12212). A large-scale study also suggests that patients with diabetes or cardiovascular disease who take RRR-alpha-tocopherol (natural vitamin E) 400 IU daily have an increased risk of heart failure and heart failure-related hospitalization (13036). However, in another large scale study, taking 600 IU vitamin E every other day for 10 years did not increase the risk of heart failure in healthy females over 45 years of age (90068). There is speculation that high-dose vitamin E might disrupt the normal antioxidant balance and result in pro-oxidant rather than antioxidant effects.
There is some evidence that vitamin E in combination with simvastatin (Zocor), niacin, selenium, vitamin C, and beta-carotene might lower high density lipoprotein-2 (HDL-2) by 15%. HDL-2 is considered to be the most cardioprotective component of HDL (7388). However, vitamin E and a statin alone don't seem to negatively affect HDL (11286,11287). In addition, vitamin E has been associated with increased triglycerides (85215). Although only certain isomers of vitamin E are included for determination of dietary requirements, all isomers are considered for determining safe intake levels. All the isomers are thought to potentially contribute to toxicity.
Dermatologic
...Topically, vitamin E has been associated with contact dermatitis, inflammatory reactions, and eczematous lesions (11998,85066,85285).
Dermatitis, often associated with moisturizers containing vitamin E, has a scattered generalized distribution, is more common on the face than the hands, and is more common in females with a history of atopic dermatitis. In a retrospective analysis of results of patch tests for DL-alpha-tocopherol sensitivity, 0.9% of patients had a definite positive reaction, while over 50% had a weakly positive, non-vesicular erythematous reaction (107869).
Orally, vitamin E has been associated with pruritus in one clinical trial (34596).
Subcutaneously, vitamin E has been associated with reports of lipogranuloma (85188,112331). In one case, subcutaneous injection of a specific supplement (1Super Extenze), containing mineral oil and tocopherol acetate, into the penile tissue resulted in penile disfigurement due to sclerosing lipogranuloma (85188). In another case, a 50-year-old Iranian female presented with lipogranuloma of the face, characterized by severe facial erythema, edema, and tenderness, 3 months after receiving subcutaneous injections of vitamin E to the cheeks for "facial rejuvenation." The patient had noticed initial symptoms within 3 days, and her symptoms progressively worsened over time (112331).
Gastrointestinal ...Orally, vitamin E supplementation has been associated with abdominal pain, nausea, diarrhea, or flu-like symptoms (85040,85323). Intravenously, large doses of vitamin E in premature infants are associated with an increased risk of necrotizing enterocolitis and sepsis (85083,85231).
Genitourinary ...There is contradictory evidence about the effect of vitamin E on prostate cancer risk. One large-scale population study shows that males who take a multivitamin more than 7 times per week and who also take a separate vitamin E supplement have a significantly increased risk of developing prostate cancer (15607). In a large-scale clinical trial (The SELECT trial) in males over the age of 50 years, taking all-rac-alpha-tocopherol (synthetic vitamin E) 400 IU daily increased the risk of developing prostate cancer by 17% when compared with placebo. However, the difference in prostate cancer risk between vitamin E and placebo became significant only 3 years after patients stopped taking supplementation and were followed in an unblinded fashion. Interestingly, patients taking vitamin E plus selenium did not have a significantly increased risk of prostate cancer (17688).
Hematologic ...High doses of vitamin E might increase the risk of bleeding due to antagonism of vitamin K-dependent clotting factors and platelet aggregation. Patients with vitamin K deficiencies or taking anticoagulant or antiplatelet drugs are at a greater risk for bleeding (4098,4844,11999,34596,34538,34626,34594,112162).
Neurologic/CNS ...There is concern that vitamin E might increase the risk of hemorrhagic stroke (16708,34594,34596,108641). In one clinical study, there was a higher incidence of hemorrhagic stroke in male smokers taking all-rac-alpha-tocopherol (synthetic vitamin E) for 5-8 years compared to those not taking vitamin E (3949). Other studies lasting from 1.4-4.5 years and using either all-rac-alpha-tocopherol (synthetic vitamin E) or RRR-alpha-tocopherol (natural vitamin E) showed no significantly increased risk for stroke (2307,3896,3936). A meta-analysis of studies shows that vitamin E in doses of 300-800 IU daily, including both natural and synthetic forms, does not significantly affect total stroke risk. However, it significantly increases the risk of hemorrhagic stroke by 22%. This means that there will be one additional hemorrhagic stroke for every 1250 patients taking vitamin E. In contrast to this finding, the analysis also found that vitamin E significantly reduces the risk of ischemic stroke by 10%. This means that one ischemic stroke will be prevented for every 476 patients taking vitamin E (14621). In patients with moderately severe Alzheimer disease, taking vitamin E 2000 IU for 2 years has been associated with a modest, but significant, increase in falls and episodes of syncope when compared to placebo (4635).
Pulmonary/Respiratory ...When inhaled, vitamin E acetate is thought to play a role in the development of e-cigarette, or vaping, product-use associated lung injury (EVALI). Although a causal link has not yet been determined, in two case series, vitamin E acetate has been found in most bronchoalveolar lavage samples taken from the primary site of lung injury in patients with EVALI, whereas no vitamin E was found in healthy control samples. Other ingredients, including THC or nicotine, were also commonly found in samples. However, priority toxicants including medium chain triglyceride (MCT) oil, plant oil, petroleum distillate, or terpenes, were undetectable in almost all samples. EVALI has resulted in death in some patients (101062,102970).
Other ...In an analysis of 3 trials, taking vitamin E 400 IU with vitamin C 1000 mg daily for 14-22 weeks during gestation appears to increase the risk of gestational hypertension by 30% compared to placebo in patients at risk of pre-eclampsia. However, the risk of pre-eclampsia itself was not increased (83450).
General
...Orally, zinc is well tolerated in doses below the tolerable upper intake level (UL), which is 40 mg daily for adults.
Topically, zinc is well tolerated.
Most Common Adverse Effects:
Orally: Abdominal cramps, diarrhea, metallic taste, nausea and vomiting (dose-related).
Topically: Burning, discoloration, itching, stinging, and tingling when applied to irritated tissue.
Intranasally: Bad taste, dry mouth, headache, irritation, reduced sense of smell.
Serious Adverse Effects (Rare):
Orally: There have been cases of acute renal tubular necrosis, interstitial nephritis, neurological complications, severe vomiting, and sideroblastic anemia after zinc overdose.
Intranasally: There have been cases where intranasal zinc caused permanent loss of smell (anosmia).
Dermatologic
...Topically, zinc can cause burning, stinging, itching, and tingling when applied to inflamed tissue (6911,8623,87297).
Zinc oxide can be deposited in the submucosal tissue and cause dark discoloration of the skin. This can occur with prolonged topical application to intact skin, application to eroded or ulcerated skin, or penetrating traumatic exposure, and also parenteral administration (8618).
In rare cases, oral zinc has resulted in worsened acne (104056), skin sensitivity (6592), a leishmanial reaction with a macular rash that occurred on exposed parts of the body (86935), eczema (104055), systemic contact dermatitis (109457), and the development of severe seborrheic dermatitis (86946).
Gastrointestinal
...Orally, zinc can cause nausea (338,2663,2681,6592,6700,18216,106230,106233,106227,113661), vomiting (2663,2681,6519,6592,96069,96074), a metallic or objectionable taste in the mouth (336,338,6700,11350,18216,106902,113661), abdominal cramping (6592,96069), indigestion (87227), heartburn (96069), dry mouth (87533), and mouth irritation (336,2619).
When used orally in amounts above the tolerable upper intake level, zinc may cause irritation and corrosion of the gastrointestinal tract (331,86982,87315,106902), watery diarrhea (1352), epigastric pain (2663,2681), and severe vomiting (2663,2681).
Intranasally, zinc can cause bad taste, dry mouth, and burning and irritation of the throat (8628,8629).
When used topically as a mouth rinse, zinc may cause tooth staining (90206).
Hematologic ...There is concern that high daily doses of zinc, above the tolerable upper intake level (UL) of 40 mg per day, might increase the risk of copper deficiency, potentially leading to anemia and leukopenia (7135,112473). To prevent copper deficiency, some clinicians give a small dose of copper when zinc is used in high doses, long-term (7303).
Hepatic ...There are two cases of liver deterioration in patients with Wilson disease following initiation of treatment with zinc 50-200 mg three times daily. The mechanism of action is not understood, and the event is extremely uncommon (86927,87470).
Immunologic ...Daily doses of 300 mg of supplemental zinc for 6 weeks appear to impair immune response (7135). A case of erythematosus-like syndrome, including symptoms such as fever, leg ulcers, and rash, has been reported following intake of effervescent tablets (Solvezink) containing zinc 45 mg (87506). In another case, severe neutropenia was reported after taking supplemental zinc 900 mg daily for an unknown duration (112473).
Musculoskeletal ...Orally, zinc may cause body aches in children (113661).
Neurologic/CNS
...Zinc-containing denture adhesives can cause toxicity if used more frequently than recommended for several years.
Case reports describe hyperzincemia, low copper levels, blood dyscrasias, and neurological problems, including sensory disturbances, numbness, tingling, limb weakness, and difficulty walking in patients applying denture adhesive multiple times daily for several years (17092,17093,90205,90233). Due to reports of zinc toxicity associated with use of excessive amounts of zinc-containing denture adhesives for several years, GlaxoSmithKline has reformulated Polygrip products to remove their zinc content (17092,17093).
Intranasally (8628) and orally (87534), zinc can cause headache. When used orally in amounts above the tolerable upper intake level (UL), zinc may cause central nervous system (CNS) symptoms including lethargy, fatigue, neuropathy, dizziness, and paresthesia (2663,2681,87369,87470,87533,87534,112473).
Oncologic ...There is concern that zinc might worsen prostate disease. For example, some preliminary evidence suggests that higher dietary zinc intake increases the risk for benign prostatic hyperplasia (6908). Epidemiological evidence suggests that taking more than 100 mg of supplemental zinc daily or taking supplemental zinc for 10 or more years doubles the risk of developing prostate cancer (10306). Another large-scale population study also suggests that men who take a multivitamin more than 7 times per week and who also take a separate zinc supplement have a significantly increased risk of prostate cancer-related mortality (15607). However, a large analysis of population research suggests that there is no association between zinc intake and the risk of prostate cancer (96075).
Pulmonary/Respiratory
...There are several hundred reports of complete loss of sense of smell (anosmia) that may be permanent with use of zinc gluconate nasal gel, such as Zicam (11306,11155,11707,16800,16801,17083,86999,87535).
Loss of sense of smell is thought to be dose related but has also been reported following a single application (11306,11155,11707,16800). Patients often report having sniffed deeply when applying the gel, then experiencing an immediate burning sensation, and noticing anosmia within 48 hours (17083). On June 16, 2009, the US Food and Drug Administration (FDA) advised patients not to use a specific line of commercial zinc nasal products (Zicam) after receiving 130 reports of loss of smell (16800). The manufacturer of these products had also received several hundred reports of loss of smell related to its intranasal zinc products (16801). Zinc sulfate nasal spray was used unsuccessfully for polio prophylaxis before the polio vaccine was developed. It caused loss of smell and/or taste, which was sometimes permanent (11713). Animal studies suggest that zinc sulfate negatively affects smell, possibly by damaging the olfactory epithelium and neurons (11156,11703,11704,11705,11706). Zinc gluconate nasal spray has not been tested for safety in animals or humans. The clinical studies of intranasal zinc have not described anosmia as an adverse effect, but testing was not done to see if zinc use adversely affected sense of smell (6471,8628,8629,10247). Also, these clinical studies reported tingling or burning sensation in the nostril, dry nose, nose pain, and nosebleeds.
When used in amounts above the tolerable upper intake level (UL), zinc may cause flu-like symptoms including coughing (2663).
Renal ...In overdose, zinc can cause acute renal tubular necrosis and interstitial nephritis (331,1352,87338).
Other ...Occupational inhalation of zinc oxide fumes can cause metal fume fever with symptoms including fatigue, chills, fever, myalgias, cough, dyspnea, leukocytosis, thirst, metallic taste, and salivation (331).